
Indexing Genomic Sequences on the IBM Blue Gene

Amol Ghoting
IBM T. J. Watson Research Center
Yorktown Heights, NY 10598, USA

aghoting@us.ibm.com

Konstantin Makarychev
IBM T. J. Watson Research Center
Yorktown Heights, NY 10598, USA

konstantin@us.ibm.com

ABSTRACT
With advances in sequencing technology and through ag-
gressive sequencing efforts, DNA sequence data sets have
been growing at a rapid pace. To gain from these advances,
it is important to provide life science researchers with the
ability to process and query large sequence data sets. For
the past three decades, the suffix tree has served as a fun-
damental data structure in processing sequential data sets.
However, tree construction times on large data sets have
been excessive. While parallel suffix tree construction is an
obvious solution to reduce execution times, poor locality of
reference has limited parallel performance. In this paper, we
show that through careful parallel algorithm design, this lim-
itation can be removed, allowing tree construction to scale
to massively parallel systems like the IBM Blue Gene. We
demonstrate that the entire Human genome can be indexed
on 1024 processors in under 15 minutes.

1. INTRODUCTION
Over the past few years, with advances in sequencing tech-

nology and through aggressive sequencing efforts, DNA se-
quence databases have reached gigantic proportions. The
GenBank sequence database recently surpassed the 100Gbp1

mark [20] and conservative estimates suggest that its size is
doubling every six months. Furthermore, individual genomes
in this database can also be very large – for example, the
Human and Triticum Aestivum genomes span 3Gbp and
16Gbp, respectively. To further from these advances, it is
imperative that life science researchers have the ability to
efficiently process and query such large sequence data sets.

For the past three decades, the suffix tree has served as a
fundamental data structure in string processing. As pointed
out by many, it exposes the internal structure of a string
in a way that facilitates the efficient implementation of a
myriad of string operations. Examples of these operations
include string matching (both exact and approximate), exact

1One bp (base pair) is one character in the sequence

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage, and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
SC09November 14-20, 2009, Portland, Oregon, USA
Copyright 2009 ACM 978-1-60558-744-8/09/11 ...$10.00.

set matching, all-pairs suffix-prefix matching, finding repet-
itive structures, and finding the longest common sub-string
across multiple strings [11]. Many recent research efforts
in the bioinformatics domain [3, 8, 9, 11, 16, 17, 19] have
advocated the use suffix trees in evaluating queries on bio-
logical sequence data sets and the past few years have seen
researchers devise several disk-based suffix tree construction
algorithms [2, 4, 7, 14, 15, 21, 22, 24, 25] that maintain very
large suffix trees on disk. However, tree construction times
continue to be daunting – for example, indexing the Human
genome requires in excess of 30 hours on a single processor
system with 2 gigabytes of physical memory [25].

Further complicating the issue is the fact that genome in-
dexing is not a one-time problem. For example, consider
the area of comparative genomics [23] where one is inter-
ested in comparing different genomes, be they from the same
or different species. Here researchers may be interested in
comparing the genomes of individuals that are prone to a
specific type of cancer to those that are not susceptible. In
this case, we need to efficiently build a suffix tree for each
genome/group of genomes on an on-demand basis.

In this article, we consider the problem of building a suf-
fix tree using a massively parallel system with the intent of
reducing index construction time. Specifically, we consider
the problem of building a suffix tree for genomic sequences
as large as the Human genome (3Gbp) using the IBM Blue
Gene/L2 system. This is a challenging problem for the fol-
lowing reasons:

• Disk-based suffix tree construction algorithms exhibit
poor I/O efficiency when accessing the partially con-
structed suffix tree during construction.

• Disk-based suffix tree construction algorithms are lim-
ited in that to garner reasonable I/O efficiency the
input string being indexed must fit in main memory.

These two limitations of suffix tree construction algorithms
have been well documented in the literature [10, 21, 25]. If
one wishes to realize a scalable parallel suffix tree construc-
tion, these limitations mean two things:

• Each processor should be capable of housing the entire
input string in its local memory.

• Due to poor I/O efficiency, each processor should be
provided with I/O bandwidth that is comparable to
that of a serial system.

2http://www-03.ibm.com/systems/deepcomputing/
bluegene

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SC09 November 14-20, 2009, Portland, Oregon, USA.
Copyright 2009 ACM 978-1-60558-744-8/09/11 ...$10.00.

The first condition is hard to realize as most state-of-the-
art massively parallel systems have a small amount of mem-
ory (for example, 512 megabytes) per processing element3.
In the future, the available main memory per processing el-
ement will only reduce, further aggravating the situation.
Furthermore, state-of-the-art parallel systems do not pro-
vide I/O bandwidth that is comparable to that of a serial
system, making it hard to satisfy the second condition.

To address the aforementioned challenges, we show that
through architecture-conscious algorithm re-design, one of
the simplest suffix tree construction algorithms can be re-
architected to efficiently build very large suffix trees on a
parallel system like the IBM Blue Gene/L, even when the
input string is significantly larger than the size of main mem-
ory on a single processor. Specifically, we make the following
contributions:

• We present a parallel suffix tree construction algorithm
to build disk-based trees. The algorithm supports a
tunable memory footprint, employs in-network caching
(for the string and tree), and leverages effective collec-
tive communication to realize an efficient paralleliza-
tion.

• We experimentally evaluate the proposed approach on
the IBM Blue Gene/L system and show that the pro-
posed algorithm is scalable and can index the entire
human genome (3Gbp) in under 15 minutes on 1024
processors.

The remainder of this article is organized as follows. Sec-
tion 2 presents a background on suffix trees. Related efforts
and their drawbacks are discussed in Section 3. We present
our parallel suffix tree construction algorithm in Section 4.
An experimental evaluation is presented in Section 5 fol-
lowed by our conclusions in Section 6.

2. BACKGROUND
Let A denote a set of characters. Let S = s0, s1, . . . , sn−1, $,

where si ∈ A and $ /∈ A, denote a $ terminated input string
of length n + 1. The ith suffix of S, denoted by Si, is the
substring si, si+1, . . . , sn−1, $. The suffix tree for S, denoted
as T , stores all the suffixes of S in a tree structure. This
tree has the following properties:

• Paths from the root node to the leaf nodes have a one-
to-one relationship with the suffixes of S. The terminal
character $ is unique and ensures that no suffix is a
proper prefix of any other suffix. Therefore, there are
as many leaf nodes as there are suffixes.

• Edges spell non-empty strings.

• All internal nodes, except the root node, have at least
2 children. The edge for each child node begins with a
character that is different from the starting character
of its sibling nodes.

• For an internal node v, let l(v) denote the substring
obtained by traversing the path from the root node to
v. For every internal node v, with l(v) = xα, where
x ∈ A and α ∈ A∗, we have a pointer known as a suffix
link to an internal node u such that l(u) = α.

3http://www.top500.org

0 4 1 25

6

3

ABC$
[6]
$ ABC$

[6]
$

[6]
$

[3,6]
ABC$

ABC
[0,2]

BC
[1,2]

$

[3,6] [3,6]

C

[6]

[2]

Figure 1: Suffix tree for S = ABCABC$ [0123456].
Internal nodes are represented using circles and leaf
nodes are represented using rectangles. Each leaf
node is labeled with the index of the suffix it repre-
sents. The dashed arrows represent the suffix links.
Each edge is labeled with the substring it represents
and its corresponding edge encoding.

An instance of a suffix tree for a string S = ABCABC$ is
presented in Figure 1. Each edge in a suffix tree is repre-
sented using the start and end index of the corresponding
substring in S. Therefore, even though a suffix tree repre-
sents n suffixes (each with at most n characters) for a total
of Ω(n2) characters, it only requires O(n) space [26].

3. RELATED WORK
Algorithms due to Weiner [27], McCreight [18], and Ukko-

nen [26] have shown that suffix trees can be built in linear
space and time. These algorithms afford a linear time con-
struction by employing suffix links. Researchers have also
studied the parallelization of suffix tree construction algo-
rithms [1, 13] on various parallel abstract machines. Al-
though these algorithms provide theoretically optimal per-
formance, their memory accesses exhibit poor locality of ref-
erence. As a consequence, these algorithms are grossly inef-
ficient when either the tree or the string does not fit in main
memory.

To tackle this problem, this past decade has seen sev-
eral research efforts that target large disk-based suffix tree
construction. Most disk-based suffix tree construction algo-
rithms partition the suffix tree into smaller sub-trees (suffix
sub-trees) and build these sub-trees in main memory. They
then merge these sub-trees to realize the final suffix tree. In
theory, many these algorithms can be parallelized by hav-
ing each processor build a sub-tree of the entire suffix tree.
However, these algorithms are also I/O inefficient and hence
exhibit poor parallel scalability [10]. As a result, very little
work has been done in the area of parallel disk-based suffix
tree construction. We list these efforts next for the sake of
completeness.

3.1 Disk-based Suffix Tree Construction
Hunt et al. [14] presented the very first approach to ef-

ficiently build suffix trees that do not fit in main memory.
The approach drops the use of suffix links in favor of bet-
ter locality of reference. The method first finds a set of
fixed length prefixes such that the corresponding sub-trees
of the suffix tree (or suffix sub-trees) will fit in main mem-
ory. Next, for each of these prefixes, the approach builds

the associated suffix sub-tree using a scan of the data set.
This involves inserting each suffix Si with the prefix into the
tree, starting at the root node. Suffix insertion finds a path
in the tree that shares the longest common prefix with Si

and branches from this path when no more matching char-
acters are found. In other words, this method matches Si

with a suffix Sj : 0 ≤ j < i that shares the longest com-
mon prefix with Si. As each suffix ends with the unique
terminal character ($), no suffix can be a proper prefix of
any other suffix. Hence, every suffix insertion will result in
the splitting of an edge and lead to the creation of a leaf
node in the partially constructed suffix sub-tree. Although,
by design, the suffix sub-tree will fit in main memory, this
algorithm exhibits poor reference locality as the input string
need not fit in main memory. In fact, every suffix insertion
can result in Ω(log(n/B)) (where B is the size of main mem-
ory available to the string) near-random seeks to the input
string [10]. The worst case complexity of the approach is
O(n2), but it exhibits O(n log n) average case complexity.
All disk-based suffix tree construction algorithms (that will
be presented below) also exhibit this same complexity.

Cheung et al. proposed dynacluster [7], an algorithm
that employs dynamic clustering to identify tree nodes that
are frequently accessed together. The suffix tree is then built
a cluster at a time to reduce random tree accesses during
tree construction. While the tree construction phase drops
the use of suffix links, the authors demonstrate that one can
recover suffix links using a post-construction step.

Tian et al. proposed st-merge [25], an algorithm that
partitions the input string and constructs a suffix tree for
each of these partitions in main memory. These suffix trees
are then merged to create the final suffix tree. This approach
drops the use of suffix links entirely. The merge phase in this
algorithm is known to exhibit poor I/O efficiency when ei-
ther the suffix-tree or the input string does not fit in main
memory [25]. Phoophakdee and Zaki proposed trellis [21],
that is similar in flavor to st-merge but differs in the follow-
ing regards. First, the approach finds a set of variable length
prefixes such that the corresponding suffix sub-trees will fit
in main memory. Second, it partitions the input string and
constructs a suffix tree for each partition in main memory
(like st-merge) and stores the sub-trees for each prefix de-
termined in the first step, separately, on disk. Finally, it
merges all the sub-trees associated with each prefix to real-
ize the final set of suffix sub-trees. trellis also performs
post-construction link recovery. By design, trellis ensures
that each of the suffix sub-trees (built using the merge op-
eration) will fit in main memory during the merge phase.
However, like st-merge, it exhibits poor reference locality
when accessing the input string [21]. Furthermore, the link
recovery phase is I/O inefficient as it needs to simultaneously
access several suffix sub-trees.

4. PARALLEL CONSTRUCTION
Modern parallel supercomputers are often disk-less, have

limited main memory per processing element (for example,
512 megabytes) and do not offer support for virtual mem-
ory. Such systems provide file I/O over the network with
reasonable I/O bandwidth through parallel I/O, but suffer
from high file I/O latency. Existing suffix tree construction
algorithms cannot be trivially parallelized on such systems
for the following reasons.

• Due to limited main memory per processor, the in-
put string being indexed cannot always be maintained
in-core, and needs to be maintained and read off the
network file system. Accessing the suffix tree during
the tree construction and link recovery processes re-
quires accessing the input string (using start and end
indices). These accesses are near random and hence
said processes are extremely I/O inefficient when the
input string does not fit in main memory [10]. Parallel
executions become latency bound.

• The link recovery task requires all processors to simul-
taneously have both read and write access to the suffix
sub-trees. On massively parallel systems, this quickly
leads to I/O contention and limits scalability.

• Naive parallelization results in significant amount of
redundant work being performed, which also limits
scalability.

While modern parallel systems do not offer high (out-of-
network) disk I/O bandwidth (per processing element), they
do offer low in-network communication latency, and high in-
network communication bandwidth. Coupled with the fact
that such systems have a significant amount of aggregate
main memory, disk I/O-intensive algorithms can continue to
deliver high parallel performance as long as the processing el-
ements can effectively utilize their collective main memories
for data storage. Furthermore, effective collective commu-
nication can also aid in the management of their aggregate
main memories and minimize redundant work.

Our parallel suffix tree construction algorithm is specifi-
cally designed to index out-of-core input strings and main-
tain a constant working set size and a fixed memory foot-
print at all times. This is accomplished by tiling accesses to
the input string and the partially constructed suffix tree dur-
ing the construction and recovery processes. The algorithm
only needs to access a fixed portion of the input string at
any point during its execution. By caching this input string
in the collective main memory of a parallel system, the ap-
proach can index large strings while constraining most data
accesses to within the network. Moreover, by ensuring that
the input string is accessed in a blocked fashion, once a
block of the string is fetched from a remote processor, all
processing can continue on the local copy of the block of the
input string. Furthermore, the approach eliminates I/O con-
tention problems faced by the link recovery tasks by restruc-
turing computation to maximally re-use the suffix sub-trees
once they are read into the network. Fast collective com-
munication is leveraged to eliminate redundant work and
manage All-to-All in-network data movement.

The algorithm takes the memory budget (per processor)
(M), input string (S), and number of processors (C) as in-
put. The overall control flow for our algorithm is presented
in Algorithm 1 and is executed by each processor in the sys-
tem – collective procedures are noted in the pseudo code.
The algorithm has the following main steps:

1. In-Network String Caching: This step uses the collec-
tive main memories of all the processors on the system
to build a cache (with redundant copies) for the input
string. This allows one to handle all string accesses
within the network.

2. Task Generation: This step finds a set of prefixes P
such that the sub-tree of the suffix tree associated with

each prefix p ∈ P can be built within the memory
budget M . Furthermore, this step ensures that the size
of this set P is greater than the number of processors
C.

3. Prefix Location Discovery: This step finds the location
of a prefix p ∈ P in the input string.

4. Sub-tree Construction: This step builds the sub-tree
(Tp) of the suffix tree for each prefix p ∈ P , within the
memory budget M .

5. Suffix Link Recovery: This optional stage recovers the
complete set of suffix links, should they be needed.

These steps are detailed next.

Input: Input string S, Memory Budget M , Number of
Processors C

Output: Suffix Tree T
BuildInNetworkStringCache(S, M , C) (Collective);1

P = GenerateTasks(S, M , C) (Collective);2

while P not empty do3

p = GetNextAvailableTask(P) (Collective);4

L = LocatePrefix(p, S) (Collective);5

Tp = BuildSubTree(p, L, S) ;6

end7

T =
S

p∈P
Tp8

RecoverSuffixLinks(T) (Collective);9

Algorithm 1: Control Flow

4.1 In-Network String Caching
First, we build an in-network cache for the input string.

This is accomplished by having the processors reserve a fixed
portion of their main memories for a string cache. The pro-
cessors then collectively read the input string into their indi-
vidual memories. We use MPI’s collective file I/O primitives
to perform these operations. Collective I/O ensures that the
same copy of the string is not read multiple times off disk.
Once a piece of the string in read into the network, it is
efficiently distributed across the network without repeated
I/O. The string is replicated as many times as possible in
a round robin fashion. All string accesses in the implemen-
tation are forwarded to the closest copy of the string in the
network. Modern architectures support one-sided commu-
nication, where a processor can access the content of a re-
mote processor’s memory without interrupting the remote
processor and several toolkits (such as global arrays4) make
it possible to implement such caching infrastructures effi-
ciently. Since our algorithm accesses the input string in a
tiled fashion, our proposed approach to caching the input
string allows us to leverage the high point-to-point network
bandwidth on such systems. Note that supporting random
string I/O is hard as in-network latency is still significant.

4.2 Task Generation
Typically, the suffix tree is an order of magnitude larger

than the string being indexed. As a result, for large input
strings, the suffix tree cannot even be accommodated in vir-
tual memory, let alone main memory. The goal of this step
is to find a set of prefixes so as to partition the suffix tree

4http://www.emsl.pnl.gov/docs/global

into sub-trees (each prefix corresponds to a sub-tree) that
can be built in main memory. This approach to partitioning
a suffix tree into manageable pieces has been proposed pre-
viously [14, 21] for the case of serial tree construction. We
extend it to make use of the fast collective communication
capabilities on modern parallel systems.

Let f(p) denote the number of times prefix p occurs in
S. Let MTS (Maximum Tree Size) denote the maximum
amount of memory space in bytes that can be allotted to the
sub-tree of the suffix tree during tree construction (Note: we
will explain how MTS is determined at a later stage). Let
NS denote the size of a suffix tree node in bytes. The goal
of this step is to find a set of prefixes P such that:

1. ∀p ∈ P : 2 × f(p) < MTS
NS

2. T =
S

p∈P
Tp

3. |P | ≥ C

In other words, we want to find a set of prefixes P such that
each p ∈ P occurs no more than MTS

NS×2
times in S (Condi-

tion 1). This guarantees that the sub-tree associated with
each p will not occupy more than MTS bytes of space. Fur-
thermore, conditions 2 and 3 ensure that the union of these
sub-trees will cover the entire suffix tree and that we have
sufficient tasks to keep all the processors busy, respectively.

There are various ways to find the set P . One approach is
to compose P using fixed-length prefixes of each suffix. This
approach works well provided the data set is not skewed.
However, many real string data sets are skewed (the Human
genome, for example) [21]. As a result, using a fixed pre-
fix length can result in several partitions that are smaller
than necessary, resulting in poor memory usage – ideally
you want each sub-tree to have a size as close to MTS as
possible. Observing that once the sub-tree associated with
a prefix fits in main memory, it need not be extended, a sec-
ond approach is to compose P using variable-length prefixes.
Using variable-length prefixes allows one to gracefully han-
dle skewed data by allowing for the construction of sub-trees
that are roughly of the same size.

We employ variable-length prefixes due to the aforemen-
tioned advantages. We use a simple multiple scan approach
to find the set of variable-length prefixes P . Each processor
is responsible for processing a partition of the input string.
During each scan of the input string, each processor itera-
tively reads the input string at B byte intervals, in blocks
of size B + sc − 1 (sc is the scan number starting at 1) in
its partition (Note: we will explain how B is determined
at a later stage), considering prefixes of length sc during
each scan (to limit memory consumption). At the end of
the scan, we collectively aggregate the counts for the var-
ious prefixes of length sc discovered during the scan using
a parallel merge in log C time. The master node then adds
those prefixes that occur fewer than MTS

NS×2
to the task queue

P – each such prefix corresponds to a sub-tree of the suffix
tree and can be built independently, and hence constitutes
a task. Furthermore, during each scan, if a prefix of size
sc has a proper prefix in the task queue determined up to
the previous iteration, we ignore it as we no longer need to
extend it. For this purpose, before each scan, the master
node broadcasts the task queue to all the slave nodes. This
process continues until all potential prefixes are covered in
the task queue. It is easy to see that this procedure will give
us the desired set of variable-length prefixes. At the end of

this process if |P | < C, we reduce MTS as per a geometric
schedule and repeat the process. We found that reducing
MTS by half works very well in practice.

4.3 Prefix Location Discovery
Tasks discovered in the previous step are distributed across

the processors in a round robin fashion. Before suffix sub-
tree construction proceeds, one needs to get the list of loca-
tions for each prefix being processed. If each processor were
to scan the entire string to discover the location for its prefix
p, we would have a significant wastage of computation and
limited scale-up as most string accesses to find a matching
prefix p would be wasteful. To improve performance, this
step is performed collectively as there is significant overlap
of computation across processors. This step proceeds as fol-
lows. First, the processors collectively exchange the subset
of P that is to be processed in that iteration – let us call
this set of prefixes Q. Second, each processor finds the loca-
tions for all prefixes in Q in a partition of the input string.
The processors read the input string in blocks of size B +
MaxLengthOfPrefix, where MaxLengthOfPrefix is the length
of the longest prefix in Q. Finally, the processors perform
an All-To-All collective exchange using the MPI Alltoallv
primitive, at the end of which, each processor has a list of
locations for the prefix it is processing in that iteration.

Input: Input string S, Prefix p, Prefix Locations pLocs
Output: Suffix sub-tree Tp

Tp = NULL;1

/* Insert suffix Si into Tp, reusing the path

for suffix Sj : 0 ≤ j < i that shares the longest

common prefix with Si */ ;
for each i ∈ pLocs do2

addSuffix(Si, Tp);3

end4

Algorithm 2: Single-loop Suffix Sub-tree Construction

4.4 Suffix Sub-tree Construction
The goal of this step is to build a suffix sub-tree for the

prefix p that is assigned to the processor during that itera-
tion. This is the most time consuming step relative to the
steps we have already presented. A simple way to build each
sub-tree would be to use the“single-loop”approach proposed
by Hunt et al. [14]. The pseudo code for this approach is
presented in Algorithm 2. This approach inserts each suffix
Si with the prefix p into the tree, starting at the root node.
The addSuffix method finds a path in the tree that shares
the longest common prefix with Si and branches from this
path when no more matching characters are found. In other
words, this method matches Si with a suffix Sj : 0 ≤ j < i
that shares the longest common prefix with Si. As each suf-
fix ends with the unique terminal character ($), no suffix can
be a proper prefix of any other suffix. Hence, every suffix in-
sertion will result in the splitting of an edge and the creation
of a leaf node in the partially constructed suffix sub-tree.

This algorithm works very well in practice provided both
the input string and the suffix sub-tree fit in main mem-
ory. However, when the input string does not fit in main
memory, random string accesses significantly degrade the
performance of this algorithm. This degradation can be ex-
plained as follows. When inserting Si, the addSuffix method

CACHED STRING
READ USING COLLECTIVE I/O

T1 T2

1st PROCESSOR 2nd PROCESSOR 3rd PROCESSOR

T3

T6T4
T5

B0 B1 B2

T1 T2 T3

Figure 2: Parallel Suffix Sub-tree Construction

accesses the suffix Sj : 0 ≤ j < i that shares the longest com-
mon prefix with Si. While the portion of the input string
being referenced by Si is contiguous, that being referenced
by Sj need not be contiguous. In fact, for a random in-
put string from a symmetric Bernoulli distribution, Sj will
most likely be distributed across Ω(log(n/B)) different lo-
cations [10]. This results in Ω(n log(n/B)) random string
accesses when constructing the suffix sub-tree. Independent
of whether the string is cached in the network or read off the
file system, the execution becomes latency bound as most of
the execution time is spent on retrieving a substring from a
remote processor’s memory or the file system.

We will now show that through careful design, the“single-
loop” algorithm can be restructured to build a suffix tree
within a fixed memory budget with excellent processor uti-
lization, for strings of any length. There are three entities
that need to be accessed during suffix sub-tree construction:
1) the partially constructed suffix sub-tree, 2) the set of sub-
strings being referenced by the suffix sub-tree, and 3) the set
of suffixes being inserted into the tree. By construction, the
task generation step ensures that the suffix sub-tree will fit
in main memory. We will now show how computation can
be restructured so that both: the set of strings being refer-
enced by the partially constructed suffix sub-tree, and the
set of suffixes being inserted into the tree can be maintained
in a fixed memory budget.

4.4.1 Tiling Suffix Sub-tree Edge References
Suffix (sub-) trees have the following property: The start

index of each edge in the suffix tree is greater than the start
index of its parent edge. Thus, for a fully constructed suf-
fix sub-tree, it is possible to partition its edges into disjoint
partitions E0, E1, . . . , Ek based on their start indices such
that the parent edge for each edge in partition Ei is always
located in a partition Ej : j ≤ i. For an input string from
a symmetric Bernoulli distribution, if the string were parti-
tioned into blocks of size B, and the edges were partitioned
into n/B partitions based on the block in which their start
indices lie, then the tree edges would be partitioned into n/B
partitions, where each partition has O(B) edges. This prop-
erty serves as the basis for our suffix sub-tree construction
algorithm.

The pseudo-code for a tiled suffix sub-tree constructor is
presented in Algorithm 3. Figures 2 and 3 depict how the
tree is constructed. For the time being, we will ignore all
InsertBlock and EOB references in the figure and the algo-

Input: Input string S, Prefix p, Block Size B, Prefix
Locations pLocs

Output: Suffix sub-tree Tp

Tp = {} ;1

AE[] = {} /* Active Edge array */;2

TI [] = {} /* Tree Index array */;3

SI [] = pLocs /* String Index array */;4

EOB = {} /* EOB suffix list */ ;5

Front = {0, . . . , sizeof(pLocs) − 1} ;6

/* List of active indices in AE, TI, and SI */ ;
for (i = 0, i < n/B, i + +) do7

/* Read ith Tree Block from string cache */ ;
TreeBlock= S[i × B, i × B + B − 1] ;8

/* Start with the first element in the front

*/ ;
cnt = firstElement(Front) ;9

for (j = i, j < n/B, j + +) do10

/* Skip unneeded Insert Blocks */ ;
if SI [cnt] > j ×B + B − 1 and EOB = {} then11

continue ;
/* Read Insert Block from string cache */ ;
InsertBlock= S[j × B, j × B + B − 1] ;12

/* Process end-of-block suffixes */ ;
for each k ∈ EOB do13

addSuffix(SI [k], AE[k], T I [k]) ;14

if Incomplete insertion then15

if end of InsertBlock not reached during16

insertion then remove(EOB, k);
end17

else18

/* Suffix has been completely

inserted, hence remove from front

and EOB */ ;
remove(EOB,k) ;19

remove(Front, k) ;20

end21

end22

/* Process suffixes that have a String

Index in InsertBlock */ ;
while j × B ≤ SI [cnt] ≤ j × B + B − 1 do23

addSuffix(SI [cnt], AE[cnt], T I [cnt]) ;24

if Incomplete insertion then25

if end of InsertBlock reached during26

insertion then add(EOB, cnt)
end27

else28

/* Suffix has been completely

inserted, hence remove from front

*/ ;
remove(Front, cnt) ;29

end30

/* Pick next element in front */ ;
cnt = nextElement(Front) ;31

end32

end33

end34

Algorithm 3: Tiled Suffix Sub-tree Construction

rithm. Let us assume that the input string is broken into
blocks of size B, giving us a total of n/B blocks (let us call
these TreeBlocks). The suffix sub-tree is built in n/B steps.
During the ith step, each suffix starting with the prefix p is
inserted into the suffix tree such that the input string ref-
erences (from the edges in the partially constructed suffix
sub-tree) lie in the ith TreeBlock. At the end of the ith step,
all leaf nodes with parent edges that have a start index in
the ith TreeBlock will have been created – the correspond-
ing suffixes have been completely inserted into the suffix
sub-tree and no more work needs to be done for these suf-
fixes. Furthermore, all internal edge (those edges that are
not connected to a leaf node) accesses that lie in the ith Tree-
Block will be complete. In summary, at the end of the ith

step, each suffix with prefix p is either completely inserted
or inserted to a point where all input string references (due
to tree edges) up to the ith TreeBlock are complete. For
suffixes that fit the latter condition, more work needs to be
done in the following steps. For these suffixes, we save a
front of the computation performed up to the ith step and
resume from this front in the (i + 1)th step. For each suffix
being inserted that needs further work, we need to maintain
state information that tells us the point up to which a suffix
was inserted into the suffix sub-tree. Hence, for each suffix,
we maintain the Active Edge (AE) that tells us which tree
edge was processed last, the Tree Index (TI) that gives us
the index (between start and end index) up to which this
edge was processed, and the String Index (SI) that gives us
the number of characters of this suffix that have been com-
pletely inserted. Note that the signature for the addSuffix
method has been updated to reflect the stateful insertion of
suffixes into the suffix sub-tree. This front is carried from
one step to the next until it is empty – this is guaranteed to
happen when the last TreeBlock is processed.

4.4.2 Tiling Suffix Accesses
The above mentioned approach assumes that the suffixes

being inserted into the suffix sub-tree are always available in
main memory. Obviously one cannot make this assumption
when processing large strings. We remove this restriction
by restructuring computation such that we tile accesses to
the suffixes as they are inserted into the tree. Again, let us
assume that the input string is broken into blocks of size B
(let us call these InsertBlocks). The input string can be pro-
cessed one InsertBlock at a time, as is explained in Algorithm
3 and depicted in Figure 3. For every ith TreeBlock, only
the j ≥ i InsertBlocks are needed. Introducing InsertBlocks
raises the issue that it is now possible for a suffix insertion
to be incomplete because the suffix crosses an InsertBlock
boundary. These suffixes are saved as end-of-block (EOB)
suffixes and are processed in the following iteration. After
all InsertBlocks are processed for a certain TreeBlock, EOB
is guaranteed to be empty. While the front has O(n) entries,
for a random input string (from a symmetric Bernoulli dis-
tribution), only O(B) of these entries are processed with
each InsertBlock5. This property allows one to maintain a
constant working set size during execution.

4.5 Suffix Link Recovery
Many important string processing applications require suf-

fix links [5, 6, 12]. For such applications, we invoke the op-

5This is possible as the contents of the String Index array
are always in a sorted order.

Input: Input string S, Set of suffix sub-trees T , Block
Size B

Output: Set of suffix sub-trees T with suffix links
/* Phase 1 */ ;
L = {} ;1

for each t ∈ T do2

for each block b of size B in S do3

Traverse t such that accesses lie in b and find all4

internal nodes v that have a suffix link to a root
node of a sub-tree in T ;
For each internal node v that satisfies the above5

condition, insert address of v and size of the
sub-tree below v into L ;

end6

end7

Exchange tasks with other processors using an AlltoAll8

collective exchange ;
/* Phase 2 */ ;
for each t ∈ T do9

Find set of link recovery tasks Lt that point to t ;10

for l ⊂ Lt such that l + t fit in memory do11

Collectively read l into the processor’s memory ;12

for each block b of size B in S do13

Traverse each task in l such that accesses lie14

in b and set suffix links to the correct
position in sub-tree t;

end15

Lt = Lt − l ;16

Collectively write l to the file system ;17

end18

end19

Algorithm 4: Parallel Link Recovery

B0

B1

B2

B3

INPUT STRING PARTITIONED INTO 4 BLOCKS

B0 B1 B2 B3

B0
B0

B1
B2

B3

B1
B1

B2
B3

B2

B3
B3

B2
B3

i=0, j=0,1,2,3

i=1, j=1,2,3

i=2, j=2,3

i=3, j=3

TREE BLOCK

INSERT BLOCK

FRONT AFTER i = 0

FRONT AFTER i = 2

FRONT AFTER i = 1

Tk

Figure 3: Tiled Suffix Sub-tree Construction

tional step of suffix link recovery. Like others [7, 21], our
approach recovers suffix links after the suffix tree construc-
tion process. Parallel suffix link recovery is complicated by
the fact that it is extremely I/O intensive – the processors
simultaneously need both read and write access to multi-
ple suffix sub-trees. We improve parallel suffix link recovery
by improving the I/O efficiency of the process (through im-
proved temporal locality) and minimizing I/O contention
during execution (leveraging effective collective communica-
tion).

Suffix link recovery is performed in two phases and is de-
picted in Figures 4 and 5. The pseudo code for the two
phases of the algorithm is presented in Algorithm 4. In the
first phase, the sub-trees are distributed across the proces-
sors in a round robin fashion. Each processor then traverses
each suffix sub-tree Tp that is assigned to it and finds all
internal nodes (for example, the root node of T a

k in Figure
4) that point to the root nodes of other suffix sub-trees (for
example, the root node of T a

k in Figure 4). We know that
the suffix links of all the child nodes of such an internal node
will always point to the child nodes of the node that is the
pointed to by the suffix link of the said internal node (for ex-
ample, suffix links for all nodes in T a

k point to nodes in Ta).
Note that finding these internal nodes does not require one
to traverse the entire tree – the procedure only needs to ac-
cess the sub-tree up to a depth where it can find nodes with
suffix links that point to root nodes of other suffix sub-trees.
We use a methodology similar to tiled suffix sub-tree con-
struction in that we restructure accesses to the input string
such that at all times a string of size B is maintained in
memory. At the end of this phase, for each suffix sub-tree,
we have the addresses of the sub-trees within it (for exam-
ple, T a

k) that can be processed independently with one other
suffix sub-tree (for example, Ta) – these addresses constitute
tasks that will be processed in the second phase. Once each
processor has the list of tasks for all the suffix sub-trees as-
signed to it, we perform an All-To-All exchange, at the end
of which, each processor has a complete list of tasks that
point to one of the suffix sub-trees that is assigned to it.

In the second phase, each processor iteratively processes
each suffix sub-tree. For each suffix sub-tree, first, we get
a list of all tasks that point to it. Next, we load the suffix
sub-tree into main memory (for example, Ta) and use the
remainder of the memory budget to load as many tasks (for
example, T a

k) into main memory as possible, without exceed-
ing the memory budget. Retrieving a task requires reading a
sub-tree of the entire suffix sub-tree. If each processor were
to do so independently on a massively parallel system, we
will suffer from significant I/O contention as each processor
may have to read a sub-set of every tree in the worse case.
To do so efficiently, first, each processor reads all the suffix
sub-trees assigned to it iteratively and then exchanges por-
tions of this tree that are requested by other processors in a
collective fashion – this can be done very efficiently within
the network and improves temporal reuse. Essentially, to
maximize I/O efficiency, once a tree is read into the net-
work, we attempt to use it to the maximum extent possible
before purging it from main memory. Finally, we propagate
suffix links for all these tasks concurrently, tiling accesses
to the input string. After this batch of tasks is processed,
we update the sub-trees associated with these tasks on disk.
In order to update the suffix links on disk, each processor
needs to write the sub-trees associated with the processed

SUFFIX LINKS TO ROOTS
SUFFIX LINKS

PHASE 1: FIND INTERNAL NODES WITH SUFFIX
LINKS POINTING TO ROOTS OF SUFFIX SUB-TREES

PHASE 2: PROPAGATE SUFFIX LINKS IN EACH SUB-TREE

Tk

Ta

Ta

IS A SUBTREE OF Ta
k Tk

Tk

Ta
k

Ta
k

TASKS

Figure 4: Tiled Suffix Link Recovery

Ta

Tk

Ta
k

STEP 1: PROCESS SUB-TREE READ REQUESTS
- LEVERAGE COLLECTIVE I/O FOR READING

-PROCESSOR RESPONSIBLE FOR Tk HANDLES
ALL READ REQUESTS FOR SUB-TREES Tk

a

STEP 2: PROPAGATE SUFFIX LINKS LOCALLY

STEP3: PROCESS SUB-TREE WRITE REQUESTS
-PROCESSOR RESPONSIBLE FOR Tk SAVES

ALL ITS SUBTREES Tk
a

PHASE 1: FIND INTERNAL NODES WITH SUFFIX
LINKS POINTING TO ROOTS OF SUFFIX SUB-TREES

PHASE 2

Figure 5: Parallel Suffix Link Recovery

tasks (that span multiple suffix sub-trees) to disk. To do so
efficiently, each tree is written to by a single processor. All
the writes associated with this tree are exchanged between
the processors using collective communication. We repeat
the above procedure iteratively until all suffix sub-trees and
their associated tasks are processed. The second phase is
the more time consuming phase in the link recovery process
– by accessing the input string in a tiled fashion and max-
imizing tree reuse, the process is more I/O efficient when
compared with existing techniques. We would like to point
out that since suffix links are always guaranteed to exist,
during this phase, we only need to access the string refer-
enced in the link recovery tasks (for example, T a

k), and not
the string referenced by the suffix sub-tree being processed
in the iteration (for example, Ta).

4.6 Complexity Analysis
In the worst case, the running time of the algorithm is

O(n2/C). Sub-tree construction is the most expensive stage.
Each processor inserts Θ(n/C) suffixes into the tree; and it
takes at most O(n) time to insert one suffix. If the string
comes from a symmetric Bernoulli distribution, the running
time of the algorithm is O(n log n/C +n2/(BC)) as it takes
only O(log n) time to insert one suffix. The input string is
accessed O((n/B)2) times, each time reading B consecutive
bytes. Typically, n/B is a constant and hence the algorithm
scales as O(n log n/C).

4.7 Memory Budget Allotment
To afford an in-memory execution, we need to maintain

two entities in main memory – the suffix sub-tree and the
input string blocks. Hence, we need to pick MTS and B

such that MTS + 2B < M . When one increases MTS and
correspondingly decreases B, tiling overheads reduce, but
the I/O cost increases quadratically in the worst case. On
the other hand, when one decreases MTS and correspond-
ingly increases B, tiling overheads increase, but I/O costs
decrease. Hence, one needs to pick these two parameters
while being cognizant of their tradeoffs. We will evaluate
this tradeoff in our experiments.

5. EXPERIMENTAL EVALUATION
In this section, we present results of our performance eval-

uation. We do not evaluate suffix tree query processing per-
formance as we believe that the task of query processing
is orthogonal to that of tree construction – one can always
employ a suitable layout for query processing when writ-
ing out the final suffix tree to the file system. We would
like the reader to note that others have made such evalu-
ations [21, 25] and shown that large disk-based suffix trees
afford very reasonable query processing times. We use the
distributed memory IBM Blue Gene/L system with 1024
PowerPC 440 processors at 700 MHz and 512 MB of main
memory per processor for our evaluation. This system has
a three-dimensional torus network for point-to-point com-
munication and a global tree network for collective commu-
nication. The implementations were compiled using g++
version 3.4.3 and MPI6 is used for message passing. We are
not aware of any existing parallel suffix tree construction al-
gorithm that can handle out-of-core input strings and hence
do not compare with any existing algorithm.

5.1 Parallel Scalability
We measured execution time as we varied the number of

processors from 16 to 1024, over different data sets. All the
data sets were drawn from the Human genome (that has
an alphabet size of 4). Execution times include the time
for both suffix tree construction and link recovery and are
presented in Figures 6-7. We measure execution times sepa-
rately for different allocations of the memory budget – 50S-
50T indicates that 50% of the memory budget was allocated
to the string blocks and string cache, and the remaining 50%
was allocated to the suffix sub-tree.

We make the following observations:

• On the smallest data set (125 MB), we obtain a maxi-
mum cumulative speedup of only 6.72 – the maximum
possible speedup being 64. In fact, our gains are min-
imal beyond 64 processors on this data set. This is
attributed to the fact that as we increase the number
of processors on this data set, we need to build smaller
suffix sub-trees to keep all the processors busy. As
a result, tiling and synchronization overheads account
for a significant fraction of the execution time, limiting
scalability.

• As we increase the size of the data set from 250 MB
to 3000 MB, maximum cumulative speedup increases
from 16.1 to 34.7 (the maximum possible speedup is
64). For a fixed memory budget, increasing the num-
ber of processors does not require building smaller suf-
fix sub-trees, as we increase the length of the string.
Hence, scalability improves as we increase the size of
the data set. Furthermore, this suggests that as we

6http://www.mpi-forum.org/

 100

 1000

 0 200 400 600 800 1000 1200

T
im

e
(s

ec
s)

Processors

50S-50T
30S-70T
70S-30T

 100

 1000

 10000

 0 200 400 600 800 1000 1200

T
im

e
(s

ec
s)

Processors

50S-50T
30S-70T
70S-30T

Figure 6: Parallel execution times as we increase the number of processors – data set sizes 125 MB (left) and
250 MB (right).

 100

 1000

 10000

 100000

 0 200 400 600 800 1000 1200

T
im

e
(s

ec
s)

Processors

50S-50T
30S-70T
70S-30T

 100

 1000

 10000

 100000

 0 200 400 600 800 1000 1200

T
im

e
(s

ec
s)

Processors

50S-50T
30S-70T
70S-30T

Figure 7: Parallel execution times as we increase the number of processors – data set sizes 500 MB (left) and
1000 MB (right).

 1000

 10000

 100000

 0 200 400 600 800 1000 1200

T
im

e
(s

ec
s)

Processors

50S-50T
30S-70T
70S-30T

 1000

 10000

 100000

 1e+06

 0 200 400 600 800 1000 1200

T
im

e
(s

ec
s)

Processors

50S-50T
30S-70T
70S-30T

Figure 8: Parallel execution times as we increase the number of processors – data set sizes 2000 MB (left)
and 3000 MB (right).

increase the size of the data set beyond 3000 MB, we
should continue to deliver high performance provided
we have sufficient network I/O bandwidth for reading
and writing the suffix sub-trees.

• A 50S-50T allocation of the memory budget consis-
tently provides the best performance. The 30S-70T
allocation provides the worst performance; reducing
the space available for the string blocks and string
cache results in smaller string blocks (increasing the
total number of string blocks) – execution time scales
quadratically with the number of string blocks.

• We operate at an efficiency of over 50% when indexing
the Human genome on 1024 processors. We argue that
this number is relatively high given the I/O-intensive
nature of the suffix tree construction and link recovery
processes. On 1024 processors, suffix tree construction
for the entire Human genome (without suffix links)
takes 880 seconds, and suffix link recovery takes an ad-
ditional 910 seconds. It may appear that these execu-
tion times are rather large considering that we are us-
ing 1024 processors. This is attributed to the fact that
each processor on the IBM Blue Gene is approximately
ten times slower than the Intel/AMD processors used
for serial performance evaluation by us and others [21,
25]. The next generation of the IBM Blue Gene family
will have a much faster processor and should reduce
execution times further.

6. CONCLUSIONS
Aggressive DNA sequencing efforts have resulted in ge-

nomic sequence data sets growing at an ever increasing pace.
To gain from these advances, it is imperative that we have
efficient methods to index and query genomic sequences.
Suffix trees have often been used for indexing such data,
but large tree construction times and difficulty in paral-
lelizing extant algorithms have limited their usability. To
address this challenge, in this paper, we presented an algo-
rithm to index genomic sequences of any length on massively
parallel systems like the IBM Blue Gene/L. The algorithm
builds a suffix tree by simultaneously tiling accesses to both
the input string as well as the partially constructed suffix
tree. Together with effective collective communication and
in-network caching, the approach allows for scalable paral-
lel suffix tree construction. We empirically evaluated our
algorithm and showed that in a parallel setting with 1024
processors and very limited main memory per processor the
algorithm provides excellent scale-up and is capable of in-
dexing the entire Human genome in under 15 minutes at an
efficiency in excess of 50%.

7. ACKNOWLEDGMENTS
We would like to thank all the anonymous reviewers for

their valuable suggestions.

8. REFERENCES
[1] A. Apostolico, C. Iliopoulos, G. Landau, B. Schieber,

and U. Vishkin. Parallel construction of a suffix tree
with applications. Algorithmica, 3(1-4), 1988.

[2] S. Bedathur and J. Haritsa. Engineering a fast online
persistent suffix tree construction. In Proceedings of

the IEEE International Conference on Data
Engineering, 2004.

[3] N. Bray, I. Dubchak, and L. Pachter. AVID: A global
alignment program. Genome Research, 13(1), 2003.

[4] A. Brown. Constructing genome scale suffix trees. In
Proceedings of the Asia-Pacific Bioinformatics
Conference, 2004.

[5] A. Carvalho, A. Freitas, A. Oliveira, and M. Sagot.
Efficient extraction of structured motifs using box
links. In Proceedings of the 11th Conference on String
Processing and Information Retrieval, 2004.

[6] W. Chang and E. Lawler. Sublinear approximate
string matching and biological applications.
Algorithmica, 12(4/5), 1994.

[7] C. Cheung, J. Yu, and H. Lu. Constructing suffix trees
for gigabyte sequences with megabyte memory. IEEE
Transactions on Knowledge and Data Engineering,
17(1), 2005.

[8] A. Delcher, S. Kasif, R. Fleischmann, J. Peterson,
O. White, and S. Salzberg. Alignment of whole
genomes. Nucleic Acids Res., 27(11), 1999.

[9] A. Delcher, A. Phillippy, J. Carlton, and S. Salzberg.
Fast algorithms for large-scale genome alignment and
comparison. Nucleic Acids Res., 30(1), 2002.

[10] A. Ghoting and K. Makarychev. Serial and parallel
methods for i/o efficient suffix tree construction. In
Proceedings of the ACM International Conference on
Management of Data, 2009.

[11] D. Gusfield. Algorithms on strings, trees, and
sequences: Computer science and computational
biology. Cambridge University Press, Cambridge, 1997.

[12] D. Gusfield and J. Stoye. Linear time algorithms for
finding and representing all the tandem repeats in a
string. Journal of Computer and System Sciences,
69(4), 2004.

[13] R. Hariharan. Optimal parallel suffix tree
construction. In Proceedings of the Symposium on
Theory of Computing, 1994.

[14] E. Hunt, M. Atkinson, and R. Irving. A database
index to large biological sequences. In Proceedings of
27th International Conference on Very Large
Databases, 2001.

[15] R. Japp. The top-compressed suffix tree: A disk
resident index for large sequences. In Proceedings of
the Bioinformatics Workshop at the 21st Annual
British National Conference on Databases, 2004.

[16] S. Kurtz, J. Choudhuri, E. Ohlebusch,
C. Schleiermacher, J. Stoye, and R. Giegerich.
Reputer: The manifold applications of repeat analysis
on a genome scale. Nucleic Acids Res., 29, 2001.

[17] S. Kurtz, A. Phillippy, A. Delcher, M. Smoot,
M. Shumway, C. Antonescu, and S. Salzberg. Versatile
and open software for comparing large genomes.
Genome Bio., 5(R12), 2004.

[18] E. McCreight. A space-economical suffix tree
construction algorithm. Journal of the ACM, 23(2),
1976.

[19] C. Meek, J. Patel, and S. Kasetty. Oasis: An online
and accurate technique for local-alignment searches on
biological sequences. In Proceedings of 29th
International Conference on Very Large Databases,

2003.

[20] NCBI. Public collections of dna and rna sequence
reach 100 gigabases. http://www.nlm.nih.gov/news/
press_releases/dna_rna_100_gig.html.

[21] B. Phoophakdee and M. Zaki. Genome-scale
disk-based suffix tree indexing. In Proceedings of the
ACM International Conference on Management of
Data, 2007.

[22] B. Phoophakdee and M. Zaki. Trellis+: An effective
approach for indexing massive sequences. In
Proceedings of the Pacific Symposium on
Biocomputing, 2008.

[23] G. M. Rubin, M. D. Yandell, J. R. Wortman, G. L.
Gabor Miklos, C. R. Nelson, I. K. Hariharan, M. E.
Fortini, P. W. Li, R. Apweiler, W. Fleischmann, J. M.
Cherry, S. Henikoff, M. P. Skupski, S. Misra,
M. Ashburner, E. Birney, M. S. Boguski, T. Brody,
P. Brokstein, S. E. Celniker, S. A. Chervitz,
D. Coates, A. Cravchik, A. Gabrielian, R. F. Galle,
W. M. Gelbart, R. A. George, L. S. Goldstein,
F. Gong, P. Guan, N. L. Harris, B. A. Hay, R. A.
Hoskins, J. Li, Z. Li, R. O. Hynes, S. J. Jones, P. M.
Kuehl, B. Lemaitre, J. T. Littleton, D. K. Morrison,
C. Mungall, P. H. O’Farrell, O. K. Pickeral, C. Shue,
L. B. Vosshall, J. Zhang, Q. Zhao, X. H. Zheng,
F. Zhong, W. Zhong, R. Gibbs, J. C. Venter, M. D.
Adams, and S. Lewis. Comparative genomics of the
eukaryotes. Science, 287(5461), 2000.

[24] K. Schurmann and J. Stoye. Suffix tree construction
and storage with limited main memory. Technical
report, Universitat Bielefeld, 2003.

[25] Y. Tian, S. Tata, R. Hankins, and J. Patel. Practical
methods for constructing suffix trees. VLDB Journal,
14(3), 2005.

[26] E. Ukkonen. Constructing suffix trees on-line in linear
time. In Proceedings of the IFIP 12th Work Computer
Congress on Algorithms, Software, Architecture:
Information Processing, 1992.

[27] P. Weiner. Linear pattern matching algorithms. In
Proceedings of 14th Annual Symposium on Switch and
Automata Theory, 1973.

