
Asynchronous Search with Aggregations

Marius C®alin Silaghi and Djamila Sam-Haroud and Boi Faltings
Swiss Federal Institute of Technology, Arti£cial Intelligence Lab, DI-LIA, CH-1015 Lausanne, Switzerland

{silaghi,haroud,faltings}@lia.di.ep¤.ch

Abstract

Many problem-solving tasks can be formalized as constraint
satisfaction problems (CSPs). In a multi-agent setting, infor-
mation about constraints and variables may belong to differ-
ent agents and be kept con£dential. Existing algorithms for
distributed constraint satisfaction consider mainly the case
where access to variables is restricted to certain agents, but
constraints may have to be revealed. In this paper, we pro-
pose methods where constraints are private but variables can
be manipulated by any agent.
We describe a new search technique for distributed CSPs,
called asynchronous aggregation search (AAS). It differs
from existing methods in that it treats sets of partial solutions,
exchanges information about aggregated valuations for com-
binations of variables and uses customized messages to allow
distributed solution detection. Three new distributed back-
tracking algorithms based on AAS are then presented and an-
alyzed. While the approach we propose provides a more gen-
eral framework for dealing with privacy requirements on con-
straints, our experiments show that its overall performance is
comparable or better than that of existing methods.
Keywords: search, distributed AI, constraint satisfaction

Introduction
Multi-agent systems are often used for solving combina-
torial problems such as resource allocation, scheduling, or
planning. Constraint satisfaction has proven to be a highly
successful paradigm for solving such problems in central-
ized settings. A constraint satisfaction problem (CSP) is
given by:

• a set of n variables x1, ..., xn,

• a set of n domains, D1, ..., Dn, for the variables,

• a set of k relations, r1 = (xi, xj , ...), ...,rk, each of which
is a subset of the set of variables, and

• a set of k constraints, C1, ..., Ck. Ci gives the allowed
value combinations for the corresponding relation ri.

A solution to a CSP is an assignment of values from the
corresponding domains to each variable such that for all re-
lations, the combination of assigned values is allowed by
the corresponding constraint. Many combinatorial prob-
lems, such as resource allocation, scheduling and planning

Copyright c© 2000, American Association for Arti£cial Intelli-
gence (www.aaai.org). All rights reserved.

can be modeled as CSPs. A distributed CSP (DCSP) arises
when information is distributed among several agents. In
the common de£nition of DCSP (Yokoo et al. 92), vari-
ables are distributed among agents so that each variable can
only be assigned values by a single agent. Several Asyn-
chronous Search (AS) algorithms have been developed that
allow solving such problems by exchanging messages about
variable assignments and con¤icts with constraints (called
nogoods) (Yokoo et al. 92; Hamadi & BessiÁere 98).

Asynchronous Search
In this section, we recall the basic background of AS using a
small example (Figure 1). Without loosing the fundamental
characteristics of AS, we restrict our description to the case
with unbounded nogood recording (Yokoo et al. 92) and
where each agent has exactly one variable. In this frame-
work, each agent is responsible for maintaining the value
of one variable. It has a link toward any agent that owns a
constraint involving that variable. Agents are arranged in a
priority order. A constraint is enforced by the agent which
has the highest priority among those that are responsible for
one of the variables in the corresponding relation.

In our example, there are four agents, A1, A2, A3, A4

who control the variables x1, x2, x3, x4, with identical do-
mains D1=D2=D3=D4={0, 1, 2, 3}. Agent A1 wants to en-
sure that 3x1 + 1 > x3, A2 wants to have x1 > x2 − 2, A3

requires that x1 > x3 − 2, and A4 needs x2 + x3 − x4 > 4
to hold. In order to solve this problem with conventional
AS techniques, we £rst need to assign a priority to each
agent, then move certain constraints to the agent with the
higher priority. Let us assume that Ai+1 has precedence
over Ai. In this case, A1’s constraint has to be communi-
cated to A3 which will be responsible for its enforcement.
Each agent will start by randomly assigning to its variable
a value from its domain (0 in our example). Upon asyn-
chronous backtracking, the local search space for each agent
is determined by its local constraints along with the restric-
tions imposed by the other agents via ok? and nogood mes-
sages. When an agent assigns a value to its variable, it sends
an ok?(var=value) message to all the higher-priority agents
having a link with it. These agents then evaluate their con-
straints on that variable. If these constraints are satis£ed by
the new assignment, given all the known values for the other
variables, they do nothing, otherwise they try a new value for

6: x2={0}

4: nogood{x3={0}✕ x2={0}}

A1 A2 A3 A4

2: x1={0}
3: x1={0}

5: add link(x2)

x1={0}

0: x3={0}

T
im

e

x3={0}

1: x2={0}

x2={0}

Nogood

x4={0}

12: nogood{x1={0}}

x2={1}

x1={1}

Nogood

7: nogood{x1={0}✕ x2={0}}

x1>x2-2 x1>x3-2 x2+x3-x4>4
x1={0..3} x2={0..3} x3={0..3} x4={0..3}

Nogood

x3={2}
31: x3={2}

Solution{x1={1}✕ x2={2}✕ x3={2}✕ x4={0}}

.........................(Some messages are omitted).....................

.........................(Some messages are omitted).....................

3x1+1>x3

Figure 1: Simpli£ed trace of an asynchronous search pro-
cess. Each agent Ai is assorted with a variable xi, a set
of constraints involving this variable and states represented
by boxes. A state shows either the assignment chosen for
the owned variable or a con¤icting situation (nogood). The
arrows represent messages. Each message is pre£xed by a
number.

their variable. If any of them £nds no available value, then
it generates a nogood message. The agent receiving this no-
good message will then have to incorporate the information
in its local search space and change the faulty assignment
or generate other nogoods, accordingly. Hence, constraints
are always evaluated by higher-priority agents and values al-
ways changed by lower priority ones.

Figure 1 shows a simpli£ed trace of message passing ob-
tained for our example using the asynchronous backtracking
algorithm described in (Yokoo et al. 92).

Each agent starts by assigning the value 0 to its variable.
Agent A1 then sends an ok? message to A2 and A3 and
agents A2 and A3 both send ok? messages to A4. Agents A2

and A3 both £nd the value received from A1 to be compat-
ible with their constraints. Hence, they do not react. How-
ever, A4’s constraint is violated and this agent returns a no-
good message (4) to A3.

Private constraints
In the AS formulation, constraints may need to be revealed
to any other agent that controls a variable in the correspond-
ing constraint. This corresponds well to certain applications,
for example distributed control, but less well to negotiation
where variables are public but constraints are private. In
this paper, we address this latter case by proposing a tech-
nique called Asynchronous Aggregation Search. It differs
from asynchronous search by the fact that agents exchange
messages not about assignments to individual variables, but
about tuples of variables. This allows eliminating restric-
tions on the order in which constraints are treated. Coupled
with the fact that AAS allows aggregating ranges of tuples,
we obtain ef£ciency gains over the existing asynchronous
backtracking algorithms. The evaluation is done using three

A1 A2 A3 A4

2: x1={0..3}|0:0|✕ x3={0}|0:0|1: x1={0..3}|0:0|

x1={0..3}✕x2={0,1}

x1={0..3}✕x3={0}

0: x3={0,1}|2:0|

T
im

e

x1={0..3}✕x3={0,1} Searching

4: x2={0,1}|1:0|

x1>x2-2 x1>x3-2 x2+x3-x4>4

Solution{x1={1..3}✕ x2={2}✕ x3={2}✕ x4={0}}

3x1+1>x3

x1={0..3}✕x3={0}

3: x3={0}|0:0|

Nogood

5: nogood{x3={0}|0:0|✕ x2={0,1}|1:0|}

x1={1..3}✕x2={2}
8: x2={2}|1:1|

6: add link(x3)

7: x3={0}|0:0|

Nogood
10: nogood{x3={0}|0:0|✕ x2={2}|1:1|}

x1={2,3}✕x2={3}

9: x1={1..3}|0:0|1:0|

12: x1={2..3}|0:0|1:1|
11: x2={3}|1:2|

Nogood
13: nogood{x3={0}|0:0|✕ x2={3}|1:2|}14: nogood{x3={0}|0:0|}

x1={1..3}✕x3={1..3}

15: x1={1..3}|0:1|✕ x3={1..3}|0:1|
16: x3={1..3}|0:1|

15: x1={1..3}|0:1|✕ x3={1..3}|0:1|

x1={1,3}✕x2={0..2}
17: x2={0..2}|1:2|

x4={0}✕x2={2}✕x3={2}

x1={1..3}✕x3={1..2}

18: x3={1,2}|0:1|2:0|

Figure 2: Trace of a search with AAS. The states of the
agents can be represented by the current solution to the local
CSP de£ned by their constraints. The pairs |a, b| included in
the messages are used for message ordering.

different implementations, based respectively on full, partial
and no nogood recording.

Asynchronous Search with Aggregations
We now introduce asynchronous aggregation search (AAS),
a new technique that propagates aggregated tuples of val-
ues rather than individual values themselves. In AAS, each
agent maintains values for the set of variables in which it
is involved. Thus, A1 maintains value combinations for x1

and x3, A2 for x1 and x2, A3 for x1 and x3, and A4 for
all of x2, x3 and x4 (see Figure 2). AAS differs from AS
in the fact that message arguments are not just individual
assignments, but Cartesian products of assignments (Hubbe
& Freuder 92) to different variables. More precisely, in the
current implementation of AAS, an assignment is a list of
domains, one for each involved variable, which represent
all the tuples of their Cartesian product. The assignment
x1 = {0..3}, x2 = {0, 1}, for example, will represent all
the tuples of the Cartesian product {0..3}×{0, 1}. Simi-
larly, a solution is no longer a list of individual assignments,
but a Cartesian product of domains which represents a set
of possible valuations. In scheduling and resource alloca-
tion problems with large domains, the savings allowed by
the Cartesian product representation can be particularly sig-
ni£cant.

Figure 2 illustrates the behavior of AAS on our small ex-
ample. Agent A1 £rst selects the Cartesian product {x1 =
{0..3}}×{x3 = {0}}, and sends an ok? message with the
needed parts of this information to A2, A3 and A4 who
manage constraints sharing variables with A1. The algo-
rithm now works in exactly the same manner as AS, except
that messages refer to Cartesian products and agents select

different Cartesian products rather than value assignments.
More speci£cally, A4 £nds that no combination in the Carte-
sian product {x2 = {0, 1}}×{x3 = {0}} is compatible with
its constraint. It therefore generates a nogood for this com-
bination which causes A2 to select the next Cartesian prod-
uct. Note that since this change selects a subrange of the
values allowed by the knowledge of A2 for x1, it is not nec-
essary to verify this change with A1. If it were not possible
to £nd such a subrange, a nogood would be generated and
sent to A1 in order to try another Cartesian-product there.

There are several ways in which the agents can build the
aggregations. Aggregation algorithms guaranteeing a com-
plete and non-redundant covering of the solution space de-
termined by local constraints are given in (Hubbe & Freuder
92; Haselböck 93; Silaghi, Sam-Haroud, & Faltings 2000).

AAS Algorithms
In this section we will present three distributed backtrack
search algorithms based on aggregation. We start by giving
the necessary background and de£nitions. Similarly to the
AS algorithm of (Yokoo et al. 92), the agents are assigned
priorities. We assume that the agent Ai has priority over an-
other agent Aj if i > j. A link exists between two agents
if they share a variable. The link is directed from the agent
with lower priority to the agent with higher priority. Let Ai

and Aj be two agents related by a link such that i > j. Ai is
called the predecessor of Aj and conversely, Aj is called the
successor of Ai. The end agents are those without incom-
ing links. The system agent is a special agent that receives
the subscriptions of the agents for the search. It decides the
order of the agents, initializes the links and announces the
termination of the search.

De£nition 1 (Assignment) An assignment is a triplet
(xj , setj , hj) where xj is a variable, setj a set of values
for xj and hj a history of the pair (xj , setj).

The history provides the information necessary for a correct
message ordering. It determines if a given assignment is
more recent than another and will be described in more de-
tails later. Let a1 = (xj , setj , hj) and a2 = (xj , set

′

j , h
′

j)
be two assignments for the variable xj . a1 is newer than a2

if hj is more recent than h′

j .

De£nition 2 An aggregate is a list of assignments.

An aggregate will be denoted compactly by (V, S,H) where
V is the set of variables, and S and H their respective sets
of values and histories.

De£nition 3 (Explicit nogood) An explicit nogood has the
form ¬V , where V is an aggregate.

The agents communicate using channels without message
loss via:

• ok? messages which have as parameter an aggregate.
They represent proposals of domains for a given set of
variables and are sent from agents with lower priorities
to agents with higher priorities. An agent sends ok? mes-
sages containing only domains in which the target agent is
interested. He does not send domains for assignments he
was proposed and he has never changed. If he has not just

Nogood Solution

Searching
Accepting

announce
Nogood/Exhausted

announce
Solution/Solved

OK
Nogoodτ

No more
messages

OK
Nogood

OK

Nogood

Figure 3: Backtrack search procedure for each agent

discarded a recent applicable nogood1, then he sends only
the domains for which he proposes a new modi£cation
now. ok? messages are also sent as answers to add-link
messages.

• nogood messages which have as parameter an explicit
nogood. A nogood message is sent from an agent with
higher priority to an agent with lower priority, namely to
the agent with the highest priority among those that have
modi£ed an assignment in the parameter. An empty pa-
rameter signals failure.

• add-link(vars) messages: sent from agent Aj to agent Ai

(with j > i). They inform Ai that Aj is interested in the
variables vars.

Each agent Ai owns a set of local constraints. The vari-
ables Ai is interested in, are those implied in its local con-
straints, called the local variables and those establishing
links with other agents. The current solution space of Ai,
denoted as CAi , is described by the local constraints, a list
of explicit nogoods and a view.

De£nition 4 (View) The view of an agent Ai is an aggre-
gate (V, S,H) such that V contains variables Ai is inter-
ested in.

A view imposes restrictions on the original search space
de£ned by the local constraints of an agent. It contains for
each variable, the newest received assignment via ok? mes-
sages.

De£nition 5 (Entailed nogood) Let V1 be the view of a
given agent, T be the set of tuples disabled from the orig-
inal solution space by V1. We say that the nogood V1 → ¬T
is entailed by the view V1.

A tuple is contained in the current solution space of agent
Ai if it satis£es the local constraints and is not contained in
the explicit or entailed nogoods of CAi . The current instan-
tiation of an agent Ai is a Cartesian product such that all its
tuples are contained in CAi . The list of nogoods, respec-
tively the view, of an agent Ai is updated by the nogood,
respectively ok? messages it receives.

We now propose the following three distributed backtrack
search algorithms based on aggregation:

• AAS-2: is based on full nogood recording similarly to the
AS algorithm of (Yokoo et al. 92).

• AAS-1: proceeds similarly to dynamic backtrack-
ing (Ginsberg & McAllester 94). It removes the nogoods
depending on the instantiation of the modi£ed variables,
guaranteeing polynomial space complexity.

1This refers to nogoods discarded, as described later, since the
last instantiation, within the reset CL of AAS0

a variable
of S

disables a
nogood/CL

There exist in
Q’ a set S of

variables with
new possible

values

a variable in
S is involved
in the local
constraints

incoming ’Ok?’(Q)

No

Remove from CA
i the tuples

excluded by Q’

Reset the CL
(AAS0)

Reset CA
i

Add to CA
i the tuples

restored by S

Yes

Yes

No

No

Q’= filter from
Q obsolete
proposals

Suppress disabled
nogoods(AAS1,2)

Yes

Remove inconsistent tuples
 from the current instantiation

Stop

Figure 4: OK procedure.

• AAS-0: is a modi£cation of AAS1 with less nogood
recording. AAS0 is a novel algorithm which merges all
the nogoods maintained by each agent of AAS1 into a
single nogood using the relaxation rule:

V1 ∧ V2 → ¬T 1

V1 ∧ V3 → ¬T 2

⇒ V1 ∧ V2 ∧ V3 → ¬(T 1 ∨ T 2), (1)

where V1, V2 and V3 are aggregates, obtained by grouping
the elements of the nogoods, such that they have no vari-
able in common. Each agent maintains a single explicit
nogood which integrates each new incoming explicit no-
good using the relaxation rule.
In the case of AAS0, the right part of the nogood descrip-
tion corresponds to the expanded tuples and the left one is
referred to as the con¤ict list (CL).

The core backtrack procedure for each agent is the same
for the three algorithms. It is given by the £nite state ma-
chine of Figure 3. At the beginning, each agent Ai is in the
state Searching where it tries to generate a current in-
stantiation from CAi . At any time in the state Searching,
an agent can transit into the state Accepting where it ac-
cepts ok? or nogood messages. These cause the agent to
execute the procedures Ok, respectively Nogood which up-
date the local search space (i.e the views, the nogoods lists
and the position in the search tree) according to the con-
tent of the messages. When, in the state Searching, its
CAi is empty, the agent Ai announces a nogood and tran-
sits into the state Nogood. When, on the contrary, a local
solution is found (i.e. a set of tuples can be extracted from
CAi), the agent announces the instantiation by sending ok?
messages to the concerned agents and transits into the state
Solution. The current instantiation of the agent is known
as long as it remains in the state Solution.

The three algorithms differ by the actions undertaken in
the procedures Ok and Nogood, respectively described in
Figures 4 and 5.

The procedure Ok treats incoming ok? messages. The
parameter Q, of such a message is an aggregate. We say
that a given assignment (xj , setj , hj) of Q is obsolete if the
view of the receiving agent contains a newer assignment for

Incoming Nogood

New
view in
Nogood

Send ’Ok?’
to Myself

If valid
nogood

Insert it in the nogood
list(AAS1,2)/

Register it in CL(AAS0)

Add links

Store it for
further

usage(AAS2)

Stop

Yes

No

Yes

No

Update the current
instantiation

Figure 5: Nogood procedure.

xj . The procedure Ok starts by £ltering the obsolete as-
signments and then proceeds to updating the set CAi ac-
cording to the remaining valid assignments. Suppose that
one of these assignments offers a new possibility of valua-
tion for an external variable xj with respect to the current
view. In AAS2 or AAS1 all the nogoods which do not take
the new possibility into account will be disabled. In AAS1
this means that they will be removed. In AAS2 they will be
marked and kept for an eventual further usage. In AAS0, if
the nogood obtained by the relaxed inference rule contains
such a variable but does not take the new value into account,
the con¤ict list will be reset. Resetting CAi means that all
the tuples allowed by the current nogoods and view are in-
troduced in CAi . In the end, the previous instantiation can
be updated and renewed.

The procedure Nogood treats incoming nogood mes-
sages. The argument, Q, of such a message is an explicit
nogood. Let V be the view of the receiving agent. Suppose
that there exists in Q, respectively in V , an assignment a1,
respectively a2 for the variable xj such that a1 is newer than
a2. We will say that the nogood gives a new view for the
variable xj . In this case, the agent has to update its view
by sending an ok? message to itself. An explicit nogood is
valid if it concerns (i.e. invalidates) the current instantiation
of the agent. If the received nogood is valid and if it contains
variables that are unknown in the current view of the agent
Ai, the procedure Add links will establish new links with all
the agents Aj , j < i, for which these variables are local.

Solution Detection
In the existing asynchronous search algorithms, solutions
are only detected upon quiescence2. This state is usu-
ally recognized using general purpose distributed mecha-
nism (Chandy & Lamport 85). We have noticed that in the
particular case of asynchronous search, solutions can be de-
tected before quiescence. This means that termination can
be inferred earlier and that the number of messages required
for termination detection can be reduced. We have intro-
duced a system message (not considered in the notion of
quiescence) called accepted which informs the sender of an
ok? message of the acceptance of its proposal:

• accepted messages are sent from an agent to all its pre-
decessors (along all incoming links). If the agent has
been an end agent, it also sends an accepted to the sys-
tem agent,

2end of ok?, nogood and add-link messages

• an accepted message has as parameter a Cartesian prod-
uct obtained by intersecting the current instantiation of the
sender with the parameters of the last accepted messages
received from all its outgoing links3,

• an accepted message is sent by an agent only when its
parameter is non empty (i.e does not contain empty do-
mains), all the outgoing links have presented an accepted
message and the agent is in the state Solution,

• the agents checks whether to send accepted messages
when they reach the state Solution or when they re-
ceive accepted messages.

accepted messages are FIFO ordered.
Let Di be the subgraph induced by the agents Aj with

j > i such that Aj can be reached from Ai along the directed
links initialized by the system agent.

Proposition 1 If a given agent Ai receives an accepted(Sk)
message from all its outgoing links and if ∀k,

⋂
Sk 6= ∅,

then Ai can infer that
⋂

Sk is a solution for the partial CSP
de£ned by the agents of Di.

Proof sketch. Di is a directed acyclic graph. If a given node
Aj of this graph receives an accepted(Sk) message from all
its k direct successors such that

⋂
Sk 6= ∅, it is obvious

that the k successors have found an agreement on all the el-
ements of

⋂
Sk. Following the de£nition of accepted mes-

sages, the agent Aj can in turn send an accepted through all
its incoming links and the process be repeated recursively.
The proposition is therefore simply proved by induction on
Di.

Corollary 1 A correct solution is detected when the system
agent receives an accepted(Si) message from each initial
end agent Ai and when

⋂
i Si 6= ∅.

Message ordering
In asynchronous search (AS), the messages must respect a
FIFO channel order of delivery to ensure correct termination
(Yokoo et al. 92). Our algorithm requires a stronger condi-
tion to hold since the channel for each variable is no longer
a tree but a graph. This means that several messages can ar-
rive to the same agent, for changing the value of the same
variable, through different paths of the graph. For exam-
ple, in Figure 2 agent A3 can receive messages concerning
variable x1 from both A1 and A2. An order must therefore
be established between these kind of messages. In AS it
is suf£cient to maintain a counter, for the emitter, and in-
clude its value within each message sent in order to obtain
a FIFO order of delivery. In our algorithm, we include such
counters for all the agents that modify a given domain in
the message. The history of changes is built by associating
a chain of pairs |a : b| to each variable of a message (see
Figure 2). Such a pair means that a change of the variable’s
domain was performed by the agent with index a when its

3We de£ne the intersection Si ∩ Sj of two Cartesian products
Si and Sj as the Cartesian product of the union of all variables
implied in Si and Sj . The domain of each variable of Si ∩ Sj is
given by the intersection of its domains in Si and Sj .

counter for the corresponding variable had the value b. The
local counters are reset each time an incoming ok? changes
the known history of the corresponding variable. It is incre-
mented each time the agent proposes a change to the domain
of that variable. To ensure correct termination, we use the
next conventions: The history of changes where the agent
with the smaller index or the counter with the larger value
occurs £rst is the most recent. If a history is the pre£x of the
other, then the longer one is more recent.

Correctness, Completeness, Termination
The detailed proofs are available at (WebProof 2000).

Proposition 2 AAS0 is correct, complete, terminates.

Summary of Proof. Correctness is an immediate conse-
quence of Corollary 1.

The proof that quiescence is reached is close to the one
given for AS in (Yokoo et al. 92), using the additional
knowledge that only ok? messages could remove nogoods
of the agent with the least priority among those implied in
the hypothetical in£nite loop.

Quiescence can correspond to failure or solution, but it
can correspond as well to deadlock. In order to prove that
AAS0 cannot lead to deadlock, we have shown that if the
system reaches quiescence without having detected solution
or failure, a correct solution will be detected in £nite time
afterwards. Next steps were used:

Step 1 After receiving the last ok? message and perform-
ing the subsequent search, either each agent Ai has a £nal
instantiation that is consistent with its view, or failure is de-
tected.

Step 2 At quiescence, the view of each agent Ai consists
of the intersection of the instantiations of all instantiated
agents Aj , j < i, for the variables it is interested in. This
intersection corresponds, for each variable, to the newest
received assignment.

From the previous steps it results that in a £nite time after
quiescence, the intersection of the instantiations of all agents
Aj , j ≤ i is nonempty and consistent with all the constraints
in the agents Aj , j ≤ i, for all i. Consequently, the last
accepted messages sent by an agent to its predecessors are
such that at receiver,

⋂
Sk 6= ∅. This is true for all the

agents, which means that the accepted messages needed for
solution detection will reach the system agent.

For completeness, we have proved that failure cannot be
announced by AAS0 when a solution exists. A nogood,
whatever if it is explicit or entailed by a view, is a redun-
dant constraint with respect to the CSP to solve. Since all
the additional nogoods are generated by logical inference,
an empty nogood cannot be inferred when a solution ex-
ists.

Proposition 3 AAS1 and AAS2 are correct, complete and
terminate.

Proof. Immediate consequence of the fact that AAS1 and
AAS2 only add redundant constraints to AAS0 (under the
form of nogoods) and of Proposition 2.

Checks

Checks/Message0 20 40

AAS2

AS

305 10 15 25 35

1000000

2000000

3000000

4000000

5000000

6000000

7000000

AAS1

AS1

AAS0

AS0

x
x

x

x

x

x

xx

x

x

x

x

x

x

x

x

x

(15 agents)
x

x
x

x
x

x

x
x

x

AAS0

x
x

(15 agents)

(20 agents)

(20 agents)

x

x
x

x
x

x

x
x

AAS1
x

x

x

x

x

x

x

x

x

x

x

x

x

x

Figure 6: Comparison of the number of checks on four sets
of randomly generated problems near the peak. Abscissae
select the relative time needed for sending a message divided
by the time for a constraint check.

Experiments
AAS0, 1 and 2 have been evaluated on randomly generated
problems with 15 and 20 agents, situated on distinct comput-
ers on a LAN. The constraints have been distributed to the
agents in the same way that they would have been in AS so
that they can be compared with their variable-oriented coun-
terparts. The size of domains is of 5 values and the problems
are generated near the peak of dif£culty (Cheesman, Kanef-
sky, & Taylor 1991) with a density of 30% and a tightness of
constraints of 55%. The cost of search is evaluated using the
longest sequence of messages and constraint checks. Each
test is averaged over 50 instances. The measured parameters
used for evaluation are the same as those given in (Yokoo
et al. 92). In Figure 6, the slopes of the curves give the
number of messages. The intersections with the y-axis give
the number of checks when the messages are considered in-
stantaneous. AAS2 performs slightly better than AS. There
are speci£c cases where AS performs better for £nding the
£rst solution. However, for discovering that no solution ex-
ists AAS2 performs steadily better than AS since the whole
search space needs to be expanded. AAS2 also reduces the
longest sequence of messages as well as the number of no-
goods stored by a factor of 50% on average. AAS1 needs
more messages than AAS2, and AAS0 even more. How-
ever, they do not present memory problems. We have tested
the usefulness of the aggregation by comparing AAS0 and
AAS1 against our versions of AS where the equivalent no-
good policies are used (AS0 respectively AS1). It spares
95% of the messages. If space is available, it seems useful
to store some additional nogoods.

Conclusion
We have presented AAS, a new asynchronous backtrack
search technique which requires no arti£cial redistribution
of constraints, allows for aggregating the information trans-
mitted using a Cartesian product representation and includes
an enhanced termination detection mechanism. AAS pro-
vides a natural support for enforcing privacy requirements
on constraints. Its evaluation has been done using three dif-
ferent algorithms called AAS2, AAS1 and AAS0. AAS2 is

based on full nogood recording while AAS1 and AAS0 are
distributed variants of the centralized dynamic backtracking
based on partial nogood recording. In particular, AAS0 is a
novel algorithm which only stores a single nogood. The ex-
periments have shown that the overall performance of AAS2
is comparable to that of AS (Yokoo et al. 92). AAS0 and
AAS1 have more potential in practice since the space they
require is bounded. Their evaluation have shown that ag-
gregation is of interest for reducing the number of messages
exchanged in distributed asynchronous search.

In the current implementation, the agents with the lower
priority may have to reveal more information about their
constraints. If undesirable, such a behavior can be avoided
using random or cyclic agent reordering. Moreover, situ-
ations where some agents are forced to reveal their whole
constraint are not precluded. This can occur, for example,
in problems where all the agents but the last accept every-
thing and the last one nothing. Malicious agents can form
coalitions and create intentionally such problems in order
to determine certain external constraints. In the future we
plan to analyze the importance of these issues. We will also
investigate how the dynamic change of constraints, which
often occurs in human negotiation, can be integrated.

Acknowledgements
This work was performed at the Arti£cial Intelligence Lab-
oratory of the Swiss Federal Institute of Technology in Lau-
sanne and was sponsored by the Swiss National Science
Foundation under project number 21-52462.97.

References
Chandy, K.-M., and Lamport, L. 85. Distributed snapshots:
Determining global states of distributed systems. TOCS’85
1(3):63–75.
Cheesman, P.; Kanefsky, B.; and Taylor, W. 1991. Where
the really hard problems are. In Proceedings of the 12th
International Joint Conference on AI.
Ginsberg, M., and McAllester, D. 94. Gsat and dynamic
backtracking. In J.Doyle., ed., Proceedings of the 4th IC
on PKRR, 226–237. KR.
Hamadi, Y., and BessiÁere, C. 98. Backtracking in dis-
tributed constraint networks. In ECAI’98, 219–223.
Haselböck, A. 93. Exploiting interchangeabilities in con-
straint satisfaction problems. In Proceedings of IJCAI’93,
282–287.
Hubbe, P. D., and Freuder, E. C. 92. An ef£cient cross
product representation of the constraint satisfaction prob-
lem search space. In Proc. of AAAI, 421–427.
Silaghi, M.-C.; Sam-Haroud, D.; and Faltings, B. 2000.
Fractionnement intelligent de domaine pour CSPs avec do-
maines ordonnés. In Proc. of RFIA2000.
WebProof. 2000. Detailed Proof for AAS.
http://liawww.ep¤.ch/˜silaghi/annexes/AAAI2000.
Yokoo, M.; Durfee, E. H.; Ishida, T.; and Kuwabara, K.
92. Distributed constraint satisfaction for formalizing dis-
tributed problem solving. In ICDCS’92, 614–621.

