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Abstract

It was recently shown possible to solve (M+1)st price
single item auctions without revealing absolutely any se-
cret except for the solution. Namely, with vMB-share [2],
the seller and the buyer only learn each other’s identity
and learn the selling price for a chosen (M+1)st pricing
scheme. No trusted party is necessary. In this paper we show
how vMB-share can be extended for the clearing of com-
binatorial negotiation problems with several items, buyers
and sellers. We first show how the more general problem
can be reduced to a virtual form, form that is relatively sim-
ilar to the single item auctions, by having a virtual bidder
for each candidate allocation. Then, some modifications in
the cryptographic techniques of vMB-share are made such
that it can offer a solution to problems in virtual form. As
explained in the paper, it is expected that a secure solution
hiding details that can be inferred from the running time will
have an exponential computation cost. Our preliminary ex-
perimental evaluation shows that some small negotiations
can nevertheless be solved with acceptable effort.

1. Introduction and Background

Most negotiations are made complex mainly by privacy
and security concerns. Multiparty Computation (MPC) pro-
tocols are among the best candidates for approaching these
problems. In [2], vMB-Share, a novel approach that resists
to collusion of any subset of agents and does not require a
third-party as auctioneer is presented. Distributing the trust
onto the bidders presents a definitive advantage over previ-
ously proposed methods because the possibility of a judge
divulging secrets can never be completely ruled out.

In this paper, we exploit secure simulations of arithmetic
circuit evaluations based on the Shamir’s secret sharing
scheme [1] to ensure bidders privacy. We describe a tech-
nique that allows the clearing of markets with multiple buy-
ers and sellers, and offers an important degree of privacy. It
is an extension of vMB-share to combinatorial auctions and
market exchanges. The concept of virtual auction form pro-

procedure market exchange do
Create table with candidate allocations;
Select bids (reservation prices) and send shares;
Sum shares and create differential bid vector;
Run modified vMB-share with M=0;
Hide non-null elements by multiplication with random
non-null numbers;
Send shares to other agents (deciding the allocation);

Algorithm 1: Algorithm finding the winning allocation

posed here allows for using vMB-share by adding an ab-
straction: namely, every candidate allocation is represented
by a virtual participant shared among real ones. The results
of the experiments presented here show that the method can
be successfully used for small sized problems.

2. Secure Market Exchanges

Assume agents A1, ..., An negotiate over N items. They
agree on a set of candidate allocations of the items among
themselves. A candidate allocation is represented by a tu-
ple ci specifying the agents that own each item after the
negotiation. ci=(Ai1 , Ai2 , ..., AiN ) where ci[k]=Aik means
that agent Aik remains with product k. The algorithm con-
sists of securely distributing shares of each agent’s bid for
each candidate allocation, using Shamir’s scheme. The bid
of an agent for allocation ci can be made of her bid for the
items she gets minus the reservation prices for the items she
sells. Each agent can add a constant to all her bids, such that
the minimal bid is non-negative. The sum of all the bids
for the allocation ci is denoted sci . Each agent obtains a
share of sci by summing her shares of all the bids for ci.
Each clearing alternative becomes a virtual agent when ap-
plying vMB-share for determining the highest value from
the summed bids over all allocations. We say that the ne-
gotiation is represented in its virtual form. The steps are
shown in Algorithm 1. A differential bid vector for an al-
location ci and a bid with value b, and K possible bid val-

ues, is: Vci = 〈
b︷ ︸︸ ︷

0, ..., 0, 1, 0, ..., 0︸ ︷︷ ︸
K

〉. After the virtual bid sci



for each candidate allocation ci is computed as just men-
tioned, it is transformed into a differential bid vector. The
formula used for the transformation is

Vci [j] =

∏K
k=0,k 6=j(sci − k)
∏K
k=0,k 6=j(j − k)

Each agent Ai knows only her share sAici . The vMB-share
technique is adapted to solve negotiations described in the
virtual form. Several modifications were required:

• The computations can no longer be done in ZZ, due
to the existence of multiplications. One can use either
modular arithmetic or rational numbers. In our experi-
ments we used modular arithmetic.

• The technique used by vMB-share to hide non-null se-
cret numbers by multiplying them with random num-
bers is not applicable with modular arithmetic. We
show how an alternative can be constructed, based on
multiplication of nun-null random secrets generated by
participants.

• A new technique is needed to reveal results only to in-
volved bidders. Our solution consists in revealing each
element i of each vector returned by VMB-share, only
to the participants involved in the transaction defined
by the allocation of the corresponding virtual bid, ci.

If Clarke tax mechanism is desired, the actual amount to
be paid/received by an agent has to be computed for each
subset of n− 1 agents (as done in [5]).

A more exemplified description appears in [4, 3]. [5]
gives a version for Generalized Vickrey Auctions, based on
homomorphic encryption and highlights the opportunity of
allocative externality, i.e., a bidder might care about what
other bidders get.

3. Analysis

Messages send/receive: The number of computation
rounds (in a round several messages can be exchanged si-
multaneously) is a measure of the efficiency of the al-
gorithm. The number of rounds is a factor of the num-
ber of agents n, the number of items and the total number
of prices K. More precisely, without the extensive paral-
lelization in [1],
Number rounds = nN ∗ K ∗ (K − 1) + 3

n represents the number of agents,N represents the number
of items negotiated in the market and K is the total number
of possible bids for each allocation.

The general combinatorial exchanges winner alloca-
tion determination problem with privacy requirements
is not in NP (its decision equivalent without privacy is
NP-complete). Given an optimum allocation, it is impossi-
ble to verify its correctness and optimality otherwise then

constructively with a protocol like ours, due to the pri-
vacy requirements. The combinatorial exchanges with
privacy requirements are NP-hard, as it follows by reduc-
tion from weighted CSPs.

A secure computation planning to avoid that the compu-
tation time reveals anything, must have a computation time
that is independent of the problem. A non-exponential cost
secure solution would be a proof that NP=P.

As explained in [1], the multiplication of secrets requires
a (dn/2e, n)-threshold scheme. The method offers bn/2c-
privacy.
Experimentations: We ran a simulation of our algorithm on
a SunOS 5.8, 2 Gb RAM machine with different number of
participants and different number of items, keeping a con-
stant number of prices K = 5. The results are summarized in
Table 1.

3 participants, 3 items; combinations = 27.
Time Run: The negotiation was completed in an average of

1min33s clock time. Experiment 1: 1min31s; Exper-
iment 2: 1min34s; Experiment 3: 1min33s

Number of rounds: We had a total number of 545 rounds of message
exchange among participants. Identical in all exper-
iments runs.

3 participants 5 items combinations = 243.
Time Run: The negotiation was completed in around 2min20s.

Experiment 1: 2min24s; Experiment 2: 2min16s;
Experiment 3: 2min24s

Number of rounds: We had a total number of 4865 rounds of message
exchange among participants. Identical in all runs of
experiments.

5 participants; 5 items; combinations = 3125.
Time Run: The negotiation was completed in around 1hour00

min 09s.
Number of rounds: We had a total number of 62507 rounds of message

exchange among participants.

Table 1. Experimental Results
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