
Nogood-based Asynchronous Distributed Optimization
(ADOPT-ng)

Marius Silaghi
Florida Institute of Technology

msilaghi@fit.edu

Makoto Yokoo
Kyushu University

yokoo@is.kyushu-u.ac.jp

ABSTRACT
This work proposes an asynchronous algorithm for solving
Distributed Constraint Optimization problems (DCOPs) us-
ing a new kind of nogoods, namely valued nogoods. The
proposed technique is an extension of the asynchronous dis-
tributed optimization (ADOPT) where valued nogoods en-
able more flexible reasoning, leading to important speed-up.
Valued nogoods are an extension of classic nogoods that as-
sociates each nogood with a threshold and optionally with
a set of references to culprit constraints.

DCOPs have been shown to have very elegant distributed
solutions, such as ADOPT, distributed asynchronous over-
lay (DisAO), or DPOP. These algorithms are typically tuned
to minimize the longest causal chain of messages, as a mea-
sure of how the algorithms will scale for systems with re-
mote agents (with large latency in communication). Among
the mentioned techniques, DPOP performs very well for the
chosen metric (requiring a number of such sequential mes-
sages linear in the number of agents), but in general has
exponential space requirements. DisAO and ADOPT have
the advantage of needing only polynomial space. ADOPT
has the property of maintaining the initial distribution of
the problem. ADOPT needs a preprocessing step consisting
of computing a depth first search (DFS) tree on the agent
graph. We show that valued nogoods reduce the practi-
cal importance/need of this preprocessing since independent
subproblem are now dynamically detected and exploited.

1. INTRODUCTION
Distributed Constraint Optimization (DCOP) is a formal-

ism that can model naturally distributed problems. These
are problems where agents try to find assignments to a set of
variables subjects to constraints. The natural distribution
comes from the assumption that only a subset of the agents
has knowledge of each given constraint. Nevertheless, in
DCOP it is assumed that agents try to maximize their cu-
mulated satisfaction by the chosen solution. This is different
from other related formalisms where agents try to maximize

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

the satisfaction of the least satisfied among them [21].
Several synchronous and asynchronous distributed algo-

rithms have been proposed for distributedly solving DCOPs.
Since a DCOPs can be viewed as a distributed version of the
common centralized Valued Constraint Satisfaction Prob-
lems (VCSPs), it is normal that successful techniques for
VCSPs were ported to DCOPs. However the effectiveness
of such techniques has to be evaluated from a different per-
spective (and different measures) as imposed by the new
requirements. Typically research has focused on techniques
in which reluctance is manifested towards modifications to
the distribution of the problem (modification accepted only
when some reasoning infers it is unavoidable for guaran-
teeing to reach solutions). This criteria is largely believed
valuable and adaptable for large, open, and/or dynamic dis-
tributed problems. It is also perceived as an alternative
approach to problems with privacy requirements [14, 20, 25,
16].

A synchronous algorithm, synchronous branch and bound,
was the first known distributed algorithm for solving
DCOPs [7]. Stochastic versions have also been pro-
posed [26]. From the point of view of efficiency, a distributed
algorithm for solving DCOPs is typically evaluated with re-
gard to applications to agents on the Internet, namely where
latency in communication is significantly higher than local
computations. A measure representing well this assumption
is given by the number of cycles of a simulator that in turn
lets each agent process all the messages that it receives [22].
Within the mentioned assumption, this measure is equiva-
lent for real solvers to the longest causal chain of sequential
messages, as used in [17].

From the point of view of this measure, a very efficient cur-
rently existing DCOP solver is DPOP [11], which is linear in
the number of variables. However, in general that algorithm
has message sizes and local computation costs that are ex-
ponential in the induced width of a chosen depth search tree
of the constraint graph of the problem, clearly invalidating
the assumptions that lead to the acceptance of the number
of cycles as efficiency measure.

Two other algorithms competing as efficient solvers
of DCOPs, are the asynchronous distributed optimiza-
tion (ADOPT) and the distributed asynchronous overlay
(DisAO). DisAO works by incrementally joining the sub-
problems owned by agents found in conflict. ADOPT im-
plements a parallel version of A* [15]. While DisAO is typi-
cally criticized for its extensive abandon of the maintenance
of the natural distributedness of the problem at the first
conflict (and expensive local computations invalidating the

above assumptions like DPOP [4, 8, 1]), ADOPT can be
criticized for its strict message pattern that only provides
reduced reasoning opportunities. ADOPT also works only
on special orderings on agents, namely dictated by some
Depth First Search tree on the constraint graph.

It is easy to construct huge problems whose constraint
graphs are forests and that are easily solved by DPOP (in
linear time), but unsolvable with the other known algo-
rithms. It is also easy to construct relatively small problems
whose constraint graph is full and therefore require unac-
ceptable (exponential) space with DPOP, while being easily
solvable with algorithms like ADOPT, e.g. for the trivial
case where all tuples are optimal with cost zero.

In this work we address the aforementioned critiques of
ADOPT showing that it is possible to define a message
scheme based on a new type of nogoods, called valued no-
goods, that not only virtually eliminates the need of precom-
puting a DFS tree of the constraint graph, but also leads to
significant improvement in efficiency. Nogoods are at the ba-
sis of much flexibility in asynchronous algorithms. A nogood
specifies a set of assignments that conflict constraints [19].
A basic version of the valued nogoods consists in associat-
ing each nogood to a threshold, namely a cost limit vio-
lated due to the assignments of the nogood. It is significant
to note that the valued nogoods lead to efficiency improve-
ments even if used in conjunction with a DFS tree, instead of
the less semantically explicit cost messages of ADOPT. We
find that a version of valued nogoods that is associated with
a list of culprits constraints [12] produces additional impor-
tant improvements. Each of these incremental concepts and
improvements is described in the following sections.

2. PRIOR STATE OF THE ART

2.1 DFS-trees

x1 x3

x4

x2 x5

x3

x1

x2

x5 x4

x5

x3

x1

x2

x4

a) b) c)

Figure 1: For a DCOP with primal graph depicted
in (a), two possible DFS trees (pseudotrees) are (b)
and (c). Interrupted lines show constraint graph
neighboring relations not in the DFS tree.

The primal graph of a DCOP is the graph having the vari-
ables as nodes and having an arc for each pair of variables
linked by a constraint [5]. A Depth First Search (DFS) tree
associated to a DCOP is a spanning tree generated by the
arcs used for visiting once each node during some depth first
traversal of its primal graph. DFS trees were first success-
fully used for Distributed Constraint problems in [3]. The
property exploited there is that separate branches of the
DFS-tree are completely independent once the assignments

of common ancestors are decided. Two examples of DFS
trees for a DCOP primal graph are shown in Figure 1.

Nodes directly connected to a node in a primal graph are
said to be its neighbors. In Figure 1.a, the neighbors of x3 are
{x1, x5, x4}. The ancestors of a node are the nodes on the
path between it and the root of the DFS tree, inclusively. In
Figure 1.b, {x5, x3} are ancestors of x2. x3 has no ancestors.

2.2 ADOPT
The Adopt [9] is an asynchronous complete DCOP algo-

rithm, which is guaranteed to find an optimal solution. Here,
we only show a brief description of the ADOPT. Please con-
sult [9] for the detail. First, the ADOPT organize agents
into a Depth-first Search (DFS) tree, in which constraints
are allowed between a variable and any of its ancestors or de-
scendants, but not between variables in separate sub-trees.

ADOPT uses three kinds of messages: VALUE, COST,
and THRESHOLD. A VALUE message communicates the
assignment of a variable from ancestors to descendants who
share constraints with the sender. When the algorithm
starts, each agent takes a random value for its variable and
sends appropriate VALUE messages. A COST message is
sent from a child to its parent, which indicates the esti-
mated lower-bound of the cost of the subtree rooted at the
child. Since communication is asynchronous, a cost message
contains a context, i.e., a list of the value assignments of the
ancestors. The THRESHOLD message is introduced to im-
prove the search efficiency. An agent tries to assign its value
so that the estimated cost is lower than the given threshold
communicated by the THRESHOLD message from its par-
ent. Initially, the threshold is 0. When the estimated cost
is higher than the given threshold, the agent opportunisti-
cally switches its value assignment to another value that has
the smallest estimated cost. Initially, the estimated cost is
0. Therefore, an unexplored assignment has an estimated
cost 0. A cost message also contains the information of the
upper-bound of the cost of the subtree, i.e., the actual cost
of the subtree. When the upper-bound and the lower-bound
meet at the root agent, then a globally optimal solution has
been found and the algorithm is terminated.

3. DISTRIBUTED VALUED CSPS
Constraint Satisfaction Problems (CSPs) are described by

a set X of variables and a set of constraints on the possible
combinations of assignments to these variables with values
from their domains.

Definition 1 (DisVCSP/DCOP). A Distributed Val-
ued CSP (DisVCSP), also known as distributed constraint
optimization problem (DCOP), is defined by a set of agents
A1, A2, ..., An, a set X of variables, x1, x2, ..., xn, and a set
of functions f1, f2, ...fi, ..., fn, fi : Xi → IR, Xi ⊆ X, where
only Ai knows fi.

The problem is to find argmin
x

Pn
i=1 fi(x|Xi). We assume

that xi can only take values from a domain Di = {1, ..., d}.
For simplification and without loss of generality one typi-

cally assumes that Xi ⊆ {x1, ..., xi}
Our idea can be easily applied to general valued CSPs.

4. COST OF NOGOODS
Previous flexible algorithms for solving distributed con-

straint satisfaction problems exploit the inference power

greenyellowred

blue x4

x3x1 x2

Figure 2: MIN resolution on valued global nogoods

of nogoods (e.g., ABT, AWC, ABTR [22, 23, 18])1. A
nogood ¬N stands for a set N of assignments that was
proven impossible, by inference using constraints. If N =
(〈x1, v1〉, ..., 〈xt, vt〉) where vi ∈ Di, then we denote by N
the set of variables assigned in N , N = {x1, ...xt}.

In order to apply nogood-based algorithms to DisVCSP,
we redefine the notion of nogoods as follows. First we attach
a value to each nogood obtaining a valued global nogood.

Definition 2 (Valued Global Nogood). A valued
global nogood has the form [c,N], and specifies that the
(global) problem has cost at least c, given the set of assign-
ments, N , for distinct variables.

Given a valued global nogood [c, (〈x1, v1〉, ..., 〈xt, vt〉)], one
can infer a global cost assessment (GCA) for the value
vt from the domain of xt given the assignments S =
〈x1, v1〉, ..., 〈xt−1, vt−1〉. This GCA is denoted (vt, c, S), and
is semantically equivalent to an applied global value nogood,
(i.e. the inference):

(〈x1, v1〉, ..., 〈xt−1, vt−1〉)→ (〈xt, vt〉 has cost c).

We will denote with vn2ca(N, k, v) the procedure that
takes as parameter a valued global nogood [c,N] and returns
a GCA for the assignment of 〈xk, v〉.

Remark 1. Given a valued global nogood [c,N], one can
infer the (GCA) (v, c,N) for any value v from the domain
of any variable x, where x is not assigned in N , i.e., x 6∈ N .

E.g., if A3 knows the valued global nogood
[10, {(x1, r), (x2, y)}], then it can infer for the value r
of x3 the GCA (r, 10, {(x1, r), (x2, y)}).

Proposition 1 (min-resolution). From a set
{(v, cv, Sv)} containing exactly one GCA for each value v in
the domain of variable xi and ∀k, j assignments for Sk ∩ Sj
are identical in both Sk and Sj of a minimization VCSP,
one can resolve a new valued global nogood: [minv cv,∪vSv].

Example 4.1 For the graph coloring problem in Figure 2
(costs are not shown), x1 is colored red (r), x2 yellow (y)
and x3 green (g). Assume that the following valued global
nogoods are known for each of the values {r, y, g} of x4:

(r): [10, {(x1, r), (x4, r)}], obtaining for x4 the GCA
(r, 10, {(x1, r)})

(y): [8, {(x2, y), (x4, y)}], obtaining for x4 the GCA
(y, 8, {(x2, y)})

1Other algorithms, like AAS, exploited generalizes nogoods
(i.e., extensions of nogoods to sets of values for a variable),
and the extension of the work here for that case is pointed
to in [12]

(g): [7, {(x3, g), (x4, g)}], obtaining for x4 the GCA
(g, 7, {(x3, g)})

By min-resolution on these GCAs one obtains the val-
ued global nogood [7, {(x1, r), (x2, y), (x3, g)}], meaning that
given the coloring of the first 3 nodes there is no solution
with (global) cost lower than 7.

Min-resolution can be applied on valued global nogoods:

Corollary 1.1. From a set S of no-goods, such that for
each [cv, Sv] in S 〈xi, v,∈〉Sv, containing exactly one global
valued nogood for each value v in the domain of variable xi
of a minimization VCSP, one can resolve a new valued global
nogood: [minv cv,∪v(Sv \ 〈xi, v〉)].

Remark 2 (DFS subtrees). Given two GCAs
(v, c′v, S

′
v) and (v, c′′v , S

′′
v) for a value v in the domain of

variable xi of a minimization VCSP, if one knows that the
two GCAs are inferred from different constraints then one
can infer a new GCA: 〈c′v + c′′v , S

′
v ∪ S′′v 〉. This is similar to

what ADOPT does to combine cost messages coming from
disjoint problem subtrees [10, 3].

This powerful reasoning can be applied when combining
a nogood obtained from the local constraints with a valued
nogood received from other agents (and obtained solely by
inferenced on other agents’ constraints). When a DFS tree
of the constraint graph is used for constraining the message
pattern as in ADOPT, this powerful inference applies, too.

The question is how to determine that the two GCAs are
inferred from different constraints, in a more general setting.
We introduce tagging of cost assessments with the identifiers
of the constraints used to infer them.

Definition 3 (SRC). A set of references to con-
straints is a set of identifiers, each of them for a distinct
constraint.

Note that several constraints of a given problem descrip-
tion can be composed in one constraint (in a different de-
scription of the same problem).

Remark 3. For privacy, a constraint can be represented
by several constraint references and several constraints of an
agent can be represented by a single constraint reference.

Now we generalize the concept of valued global nogood into
the concept of valued nogood.

Definition 4 (Valued Nogood). A valued nogood
has the form [SRC, c,N] where SRC is a set of references to
constraints having cost at least c, given a set of assignments,
N , for distinct variables.

Valued nogoods are generalizations of valued global no-
goods. Namely, valued global nogoods are valued nogoods
whose SRCs contain the references of all the constraints of
the problem.

Once we decide that a nogood
[SRC, c, (〈x1, v1〉, ..., 〈xi, vi〉)] will be applied to a cer-
tain variable xi, we obtain a cost assessment tagged
with the set of references to constraints SRC2, denoted
(SRC, vi, c, (〈x1, v1〉, ..., 〈xi−1, vi−1〉)).
2This is called a valued conflict list in [12]

red

red

blueblue blue

yellow green

x4

x3
x2x1

x6
x5

C4,7

x7

C4,5
C4,6

Figure 3: SUM-inference resolution on CAs

Definition 5 (Cost Assessment (CA)). A cost as-
sessment of variable xi has the form (SRC, v, c,N) where
SRC is a set of references to constraints having cost with
lower bound c, given a set of assignments, N , for distinct
variables, and some value v in the domain of xi.

As for valued nogoods and valued global nogoods, cost
assessments are generalizations of global cost assesments.

Remark 4. Given a valued nogood [SRC, c,N], one can
infer the cost assessment (CA) (SRC, v, c,N)) for any value
v from the domain of any variable x, where x is not assigned
in N , i.e., x 6∈ N .

E.g., if A6 knows the valued nogood
[{C4,7}, 10, {(x2, y), (x4, r)}], then it can infer for the
value b of x6 the CA ({C4,7}, b, 10, {(x2, y), (x4, r)}).

We can now detect and perform the desired powerful rea-
soning on valued nogoods and/or CAs coming from disjoint
subtrees, mentioned at Remark 2.

Proposition 2 (sum-inference). A set of cost as-
sessments for the value v of some variable, (SRCi, v, ci, Ni)
where ∀i, j : i 6= j ⇒ SRCi∩SRCj = ∅, and the assignment
of any variable xk is identical in any Ni where xk is present,
can be combined into a new cost assessment. The obtained
cost assessment is (SRC, v, c,N) such that SRC=∪iSRCi,
c=
P
i(ci), and N=∪iNi.

Example 4.2 For the graph coloring problem in Figure 3,
x1 is colored red, x2 yellow, x3 green, and x4 red. Assume
that the following valued nogoods are known for (x4, r):

• [{C4,5}, 5, {(x2, y), (x4, r)}] obtaining CA
({C4,5}, r, 5, {(x2, y)})
• [{C4,6}, 7, {(x1, r), (x4, r)}] obtaining CA

({C4,6}, r, 7, {(x1, r)})
• [{C4,7}, 9, {(x2, y), (x4, r)}] obtaining CA

({C4,7}, r, 9, {(x2, y)})
Due to x4’s constraint with X1, one can infer for 〈x4, r〉 the
following valued nogood:

• [{C1,4}, 10, {(x1, r), (x4, r)}] obtaining CA
({C1,4}, r, 10, {(x1, r)})

Then, by sum-inference on these CAs one obtains for x4 the
CA [{C1,4, C4,5, C4,6, C4,7}, r, 31, {(x1, r), (x2, y)}], meaning
that given the coloring of the first 2 nodes, coloring x4

in red leads to a cost of at least 31 for the constraints
{C1,4, C4,5, C4,6, C4,7}.

Remark 5 (sum-inference for valued nogoods).
Sum inference can be similarly applied to any set of val-
ued nogoods with disjoint SRCs and compatible assign-
ments. The result of combining nogoods [SRCi, ci, Si] is
[∪i SRCi,

P
i ci,∪iSi]. This can also be applied when

assignments are generalized to sets [12].

The min-resolution proposed for GCAs translates
straightforwardly for CAs as follows.

Proposition 3 (min-resolution). A set of cost as-
sessments for xi, (SRCi, vi, ci, Ni) where ∪i{vi} cover the
whole domain of xi and ∀k, j assignments for Nk ∩ Nj are
identical in both Nk and Nj , can be combined into a new
valued nogood. The obtained valued nogood is [SRC, c,N]
such that SRC=∪iSRCi, c= mini(ci) and N=∪iNi.

Example 4.3 For the graph coloring problem in Figure 2,
x1 is colored red, x2 yellow and x3 green. Assume that the
following valued nogoods are known for the values of x4:

(r): [{C1,4}, 10, {(x1, r), (x4, r)}] obtaining CA
({C1,4}, r, 10, {(x1, r)})

(y): [{C2,4}, 8, {(x2, y), (x4, y)}] obtaining CA
({C2,4}, y, 8, {(x2, y)})

(g): [{C3,4}, 7, {(x3, g), (x4, g)}] obtaining CA
({C3,4}, g, 7, {(x3, g)})

By min-resolution on these CAs one obtains the valued
global nogood [{C1,4, C2,4, C3,4}, 7, {(x1, r), (x2, y), (x3, g)}],
meaning that given the coloring of the first 3 nodes there
is no solution with cost lower than 7 for the constraints
{C1,4, C2,4, C3,4}.

As with valued global nogoods, the min-resolution could
be applied directly on valued nogoods:

Corollary 3.1 (min-resolution on valued nogoods).
From a set {[SRCv, cv, Sv)]|〈xi, v〉 ∈ Sv} containing exactly
one valued nogood for each value v in the domain of variable
xi of a minimization VCSP, one can resolve a new valued
nogood: [∪v SRCv,minv cv,∪v(Sv \ 〈xi, v〉)].

5. ADOPT WITH NOGOODS
We will now present a distributed optimization algorithm

using valued nogoods, to maximize the efficiency of reason-
ing by exploiting increased flexibility. The algorithm can be
seen as an extension of both ADOPT and ABT, and will
be denoted Asynchronous Distributed OPTimization with
valued nogoods (ADOPT-ng).

Like in ABT, agents communicate with ok? messages
proposing new assignments of sender’s variable, nogood
messages announcing a nogood, and add-link messages an-
nouncing interest in a variable. Like in ADOPT, agents
can also use threshold messages, but their content can be
included in ok? messages.

For simplicity we assume in this algorithm that the com-
munication channels are FIFO. Addition of counters to pro-
posed assignments and nogoods can help to remove this re-
quirement with minimal additional changes (i.e., older as-
signments and older nogoods for the currently proposed
value are discarded).

5.1 Data Structures
Each agent Ai stores its agent view (received assign-

ments), and its outgoing links (agents of lower priority than
Ai having constraints on xi). Instantiations may be tagged
with counters. To manage nogoods and CAs, Ai uses ma-
trices l[1..d], h[1..d], ca[1..d][i+1..n], lvn[1..i][i..n], lr[i+1..n]
and lastSent[1..i-1] where d is the domain size for xi. crt val
is the current value Ai proposes for xi.

• l[k] stores a CA for xi = k, that is inferred solely from
the constraints between xi and prior variables.

• ca[k][j] stores a CA for xi = k, that is obtained from
valued nogoods received from Aj .

• lvn[k][j] stores the last valued nogood for variables
with higher and equal priority than k and that is re-
ceived from Aj , j>i. lvn[k][i] stores nogoods coming
via threshold/ok? messages.

• lr[k] stores the last valued nogood received from Ak.

• h[k] stores a CA for xi =k that is inferred from ca[k][j],
lr[t], lvn[t][j], and l[k], for all j and t. Before inference,
the valued nogoods in lvn[t][j] need to be first trans-
lated into a CAs as described in Remark 4.

• lastSent[k] stores the last valued nogood sent to Ak.

5.2 ADOPT with valued nogoods
The pseudocode for ADOPT-ng is given in Algorithm 1.

To extract the cost of a CA we introduce the function cost(),
cost((SRC, T, c, v)) returns c. The min resolution(j) func-
tion applies the min-resolution over all values of the cur-
rent agent, but using only CAs having no assignment from
agents with lower priority than Aj (e.g., not using lvn[t][k]
for t > j). The sum inference() function used in Algo-
rithm 1 applies the sum-inference on its parameters when-
ever this is possible (detects disjoint SRCs), otherwise selects
the nogood with highest threshold or whose lowest priority
assignment has the highest priority (this has been previ-
ously used in [2, 18]). Function vn2ca transforms a valued
nogood in a cost assesment for xi. Its inverse is function
ca2vn. Function target(N) gives the index of the lowest
priority variable present in the nogood N . Like with file ex-
pansion, “*” in an index of a matrix means the set obtained
for all possible values of that index (e.g., lvn[*][t] stands for
{lvn[k][t] | ∀k}).

An agentAi stores several nogoods (CAs) coming from the
same source At and applicable to the same value v (namely
the one at ca[v][t], all those at lvn[k][t] for any k, and lr[t]
when v is crt val).

Remark 6. The order of combining CAs matters. Nota-
tion lr[t]|v stands for vn2ca(lr[t]) when lr[t]’s value for xi is
v, and is not used otherwise. To compute h[v]:

1. a) When maintaining DFS trees, for a value v, CAs
are combined for each DFS subtree s:
tmp[v][s]=sum-inferencet∈s(ca[v][t], lr[t]|v, lvn[*][t]);
b) Else, CAs coming from each agent At are combined:
tmp[v][t]=sum-inference(ca[v][t], lr[t]|v, lvn[*][t]);

2. CAs from step 1 (a or b) are combined:
h[v]=sum-inference(tmp[v][*]);

3. Add l[v]: h[v]=sum-inference(h[v], l[v]);

4. Add threshold: h[v]=sum-inference(h[v], lvn[*][i])

In ADOPT-ng agents are totally ordered, A1 having the
highest priority. Each agent Ai starts by calling the init()
procedure, which initializes its l with valued nogoods in-
fered from local (unary) constraints. It assigns xi to a
value with minimal local cost, crt val, announcing the as-
signment to lower priority agents in outgoing-links. The
agents answer any received message with the correponding
procedure: “when receive ok?”, “when receive nogood”,
and “when receive add-link”.

When a new assignment is learned from ok? or nogood
messages, valued nogoods based on older assignments for
the same variables are discarded and the l vector is updated.
Received nogoods are stored in matrices ca, lr and lvn. The
vector h is updated on any modification of l, lvn, lr or ca.
Ai always sets its crt val to the index with the lowest CA
threshold in vector h (preferring the previous assignment).
On each change to the vector h, its values are combined by
min-resolution to generate new nogoods for each higher pri-
ority agent (or ancestor, in versions using DFS trees). The
generation and use of multiple nogoods at once is already
shown useful for the constraint satisfaction case in [24].

The threshold valued nogood tvn delivered with ok? mes-
sages sets a common cost on all values of the receiver (see
Remark 4), effectively setting a threshold on costs below
which the receiver does not change its value. This achieves
the effect of THRESHOLD messages in ADOPT.

Intuitively, the convergence of ADOPT-ng can be noticed
from the fact that valued nogoods can only monotonically
increase valuation for each subset of the search space, and
therefore has to terminate since such valuations can be cov-
ered by a finite number of values. If agents Aj , j < i no
longer change their assignments, valued nogoods can only
monotonically increase at Ai for each value in Di: nogoods’
thresholds can only increase since they only change by sum-
inference.

Lemma 1. ADOPT-ng terminates in finite time.

Proof. It follows immediately by induction for an in-
creasingly growing suffix of the list of agents (in the order
used by the algorithm), assuming the other agents reach
quiescence.

The first step of the induction (for the last agent) follows
from the fact that the last agent terminates in one step if
the previous agents do not change their assignments.

Assuming that the previous induction assertion is true for
any suffix of k agents. Let us prove that it is also true for a
suffix of k+1 agents: For each assignment of the agent An−k,
the remaining k agents will reach quiescence, according to
the assumption of the induction step, or the assignments CA
cost increases. After values are proposed in turn and the
smallest threshold reaches its highest estimate, agent An−k
will select the best value and reaches quiescence. The other
agents reach quiescence according to the induction step.

Lemma 2. The last valued nogood sent by each agent in-
tegrates additively the non-zero costs of the constraints of all
of its successors.

Proof. At quiescence, each agent Ak has received the
valued nogoods describing the costs of each of its successors,
in the list given by the used ordering on agents (or descen-
dants in the DFS tree when a DFS tree is maintained).

procedure init do
h[v] := l[v]:=initialize CAs from unary constraints;
crt val=argminv(cost(h[v]));
send ok?(〈xi, crt val〉,∅) to all agents in outgoing-links;

when receive ok?(〈xj , vj〉, tvn) do
integrate(〈xj , vj〉);
if (tvn no-null and has no old assignment) then

k:=target(tvn); // threshold tvn as common cost;
lvn[k][i]:=sum-inference(tvn,lvn[k][i]);

check-agent-view();

when receive add-link(〈xj , vj〉),Aj do
add Aj to outgoing-links;
if (〈xj , vj〉) is old, send new assignment to Aj ;

when receive nogood(rvn, t) from At do
foreach new assignment a of a linked variable xj in
rvn do

integrate(a); // counters show newer assignment;

if (an assignment in rvn is outdated) then
if (some new assignment was integrated now) then

check-agent-view();

return;

foreach assignment a of a non-linked variable xj in
rvn do

send add-link(a) to Aj ;

if ((j := target(rvn)) == i) then
vn2ca(rvn, i) → CA rca for a value v of xi;
ca[v][t]:=sum-inference(rca,ca[v][t]);
lr[t]:=rca;

else
lvn[j][t]:=rvn;

check-agent-view();

procedure check-agent-view() do
for every(v ∈ Di) update l[v] and recompute h[v];
for every Aj with higher priority than Ai (respectively
ancestor in the DFS tree, when one is maintained) do

if (h has non-null cost CA for all values of Di)
then

vn:=min resolution(j);
if (vn 6= lastSent[j]) then

send nogood(vn,i) to Aj ;

crt val=argminv(cost(h[v]));
if (crt val changed) then

send ok?(〈xi, crt val〉,
ca2vn(sum-inference(lvn[*][k],ca[crt val][k]))

to each Ak in outgoing links;

procedure integrate(〈xj , vj〉) do
discard CAs and nogoods in ca, lvn, and lr that are
based on other values for xj ;
store 〈xj , vj〉 in agent view;

Algorithm 1: Procedures of Ai in ADOPT-ng

The lemma results by induction for an increasingly grow-
ing suffix of the list of agents (in the order used by the
algorithm): It is obvious for the last agent.

Assuming that it is true for the agent Ak, it follows that
it is also true for agent Ak−1 since adding Ak−1’s local cost

to the cost received from Ak will be higher (or equal when
removing zero costs) to the result of adding Ak−1’s local cost
to one from any successor of Ak. Respecting the order in Re-
mark 6 guarantees this value is obtained. Therefore the sum
between the local cost and the last valued nogood coming
from Ak defines the last valued nogood sent by Ak−1.

Theorem 4. ADOPT-ng returns an optimal solution.

Proof. We prove by induction on an increasingly grow-
ing suffix of the list of agents that this suffix converges to a
solution that is optimal for their subproblem.

The induction step is immediate for the suffix composed
of the agent An alone. Assume now that it is true for the
suffix starting with Ak. Following the previous two lemmas,
one can conclude that at quiescence Ak−1 knows exactly
the cumulated cost of the problems of its successors for its
chosen assignment, and therefore knows that this cumulated
cost cannot be better for any of its other values.

Since Ak−1 has selected the value leading to the best sum
of costs (between his own local cost and the costs of all sub-
sequent agents), it follows that the suffix of agents starting
with Ak−1 converged to an optimal solution for their sub-
problem.

The space complexity is basically the same as for ADOPT.
The SRCs do not change the space complexity of the valued
nogood.

5.3 Optimizing valued nogoods
Both for the version of ADOPT-ng using DFS trees, as

well as for the version that does not use such trees prepro-
cessing, if valued nogoods are used for managing cost infer-
ences, then a lot of effort can be saved at context switch-
ing by not discarding nogoods that remain valid [6]. The
amount of saved effort is higher if the nogoods are care-
fully selected (to minimize their dependence on changes in
often switched low priority variables). Computing valued
nogoods by minimizing the index of the least priority vari-
able involved in the context is shown by our experiments to
perform well in this case. This is done by computing the
valued nogoods using incrementally lower priority variables,
and keeping the valued nogoods with lower priority agents
only if they have better thresholds. Nogoods optimized in
similar manner were used in several previous DisCSP tech-
niques [2, 18].

5.4 Exploiting DFS trees
Note that while our versions of ADOPT work better that

the original DFS-tree based version, they can also create
hybrids by using an existing DFS tree. We have identified
two ways of exploiting such an existing structure. The first
way is by having each agent send his valued nogood only
to its parent in the tree (less efficient in length of longest
causal chain of messages but more efficient in number of total
messages), roughly equivalent to the original ADOPT. The
other way is by sending valued nogood to all the ancestors.
This later hybrid can be seen as a certain fulfillment of a
direction of research suggested in [9], namely communication
of costs to higher priority parents.

An extension proposed to this work consists in integrat-
ing consistency maintenance in nogood-based optimization.
This can be done with the introduction of valued consistency
nogoods, as described in [12, 13].

 0

 100

 200

 300

 400

 500

 600

 700

 800

 10 15 20 25 30 35 40

agents

cy
cl

es
ADOPT

ADOPT-aon
ADOPT-don
ADOPT-pon
ADOPT-aos
ADOPT-dos
ADOPT-pos

Figure 4: Longest causal chain of messages (cycles)
used to solve versions of ADOPT using CAs, on
problems with density .2.

6. EXPERIMENTS
We implemented several versions of ADOPT-ng, differing

by how the agents picks the targets of his nogoods. In one of
the implementations, ADOPT-pon, valued global nogoods
are sent only to the parent of the current agent in the DFS
tree. In ADOPT-don, the valued global nogoods are sent
to all the ascendent of the current agent in the DFS tree.
ADOPT-aon is a version where the DFS tree is reduced
to the linear list of agents (each having the predecessor as
parent). ADOPT-pos, ADOPT-dos, and ADOPT-aos are
the corresponding versions with valued nogoods rather than
valued global nogoods. Our current implementation does
not yet exploit the threshold nogoods in ok? messages and
does not store the optional CAs in ca[crt val][k] for any k.

The algorithms were compared on the set of problems
posted together with ADOPT, which are the same problems
that are used to report ADOPT’s performance in [9]. To
correctly compare our techniques with the original ADOPT
we have used the same order (or DFS trees) on agents for
each problem. The set of problems distributed with ADOPT
and used here contain 25 problems for each problem size. It
contains problems with 8, 10, 12, 14, 16, 18, 20, 25, 30, and
40 agents, and for each of these number of agents it contains
test sets with density .2 and respectively with density .3.
The density of a (binary) constraint problem’s graph with
n variables is defined by the ratio between the number of

binary constraints and n(n−1)
2

. Results are averaged on the
25 problems with the same parameters.

The number of cycles, i.e., longest causal (sequential)
chain of messages, for problems with density .2 is given in
Figure 4. Results for problems with density .3 are given in
Figure 5. The original ADOPT for 20 and 25 agents and
density .3 required more than 2 weeks for solving one of
the problems, and it was therefore evaluated using only the
remaining 24 problems at those problem sizes.

We can note that the use of valued nogoods brought up
to 10 times improvement on problems of density 0.2, and up
to 5 times improvement on the problems of density .3.

Another interesting remark is that sending nogoods only
to the parent node is significantly worse (in number of cy-

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 10 15 20 25 30

agents

cy
cl

es

ADOPT
ADOPT-aon
ADOPT-don
ADOPT-pon
ADOPT-aos
ADOPT-dos

Figure 5: Longest causal chain of messages (cycles)
used to solve versions of ADOPT using CAs, on
problems with density .3.

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 8 10 12 14 16 18 20 22 24

agents

m
es

sa
ge

s

ADOPT-aon
ADOPT-don
ADOPT-pon
ADOPT-aos
ADOPT-dos
ADOPT-pos

Figure 6: Total number of messages used by ver-
sions of ADOPT-ng using CAs to solve problems
with density .3.

cles), than sending nogoods to all ancestors. Versions using
DFS trees require less parallel/total messages, being more
network friendly, as seen in Figure 6.

Figure 5 shows that, with respect to the number of cycles,
the use of SRCs practically replaces the need of precomput-
ing a DFS tree since ADOPT-aos is one of the best solvers,
only slightly worse than ADOPT-dos. SRCs bring improve-
ments over versions with valued global nogoods, since SRCs
allow to detect dynamically obtained independences.

We do not perform any runtime comparison since our ver-
sions of ADOPT are implemented in C++, while the orig-
inal ADOPT is in JAVA (which obviously leads to all our
versions being an irrelevant order of magnitude faster).

It is visible from Figure 5 that the highest improvement
in number of cycles is brought by sending valued nogoods
to other ancestors besides the parent. The next factor for
improvement with difficult problems (density .3) was the
use of SRCs. The use of the structures of the DFS tree

bring slight improvements in number of cycles (when no-
goods reach all ancestors) and large improvements in total
message exchange.

Experimental comparison with DPOP is redundant since
its performance can be easily predicted. DPOP is a good
choice if the induced width γ of the graph of the problem
is smaller than logd T/n and smaller than logd S where T
is the available time, n the number of variables and d the
domain size where S is the available memory of a computer.

7. CONCLUSIONS
The ADOPT distributed constraint optimization algo-

rithm can be used efficiently (in number of cycles) with-
out its preprocessing step that computes a DFS tree by us-
ing valued nogoods tagged with sets of references to culprit
constraints (SRCs). The generalized algorithm is denoted
ADOPT-ng. SRCs allow to detect and exploit dynamically
created independences between subproblems (that are due
to some assignments). Experimentation shows that it is im-
portant to send nogoods to several higher priority agents.

DFS trees can still be used in conjunction with the value
nogood paradigm for optimization improving the total num-
ber of messages. ADOPT-ng versions exploiting DFS trees
that we tested so far are also slightly better (in number of
cycles) than the ones without DFS trees.

Besides that elegance brought by valued nogoods to the
description and implementation of ADOPT in ADOPT-ng,
use of SRCs to dynamically detect and exploit indepen-
dences, as well as generalized communication of nogoods to
several ancestors, brings experimental improvements of an
order of magnitude.

8. REFERENCES
[1] S. Ali, S. Koenig, and M. Tambe. Preprocessing

techniques for accelerating the DCOP algorithm
ADOPT. In AAMAS, 2005.

[2] C. Bessiere, I. Brito, A. Maestre, and P. Meseguer.
Asynchronous backtracking without adding links: A
new member in the abt family. Artificial Intelligence,
161:7–24, 2005.

[3] Z. Collin, R. Dechter, and S. Katz. Self-stabilizing
distributed constraint satisfaction. Chicago Journal of
Theoretical Computer Science, 2000.

[4] J. Davin and P. J. Modi. Impact of problem
centralization in distributed cops. In DCR, 2005.

[5] R. Dechter. Constraint Programming. Morgan
Kaufman, 2003.

[6] M. L. Ginsberg. Dynamic backtracking. Journal of AI
Research, 1, 1993.

[7] K. Hirayama and M. Yokoo. Distributed partial
constraint satisfaction problem. In Proceedings of the
Conference on Constraint Processing (CP-97),LNCS
1330, pages 222–236, 1997.

[8] R. Maheswaran, M. Tambe, E. Bowring, J. Pearce,
and P. Varakantham. Taking DCOP to the real world:
Efficient complete solutions for distributed event
scheduling. In AAMAS, 2004.

[9] P. J. Modi, W.-M. Shen, M. Tambe, and M. Yokoo.
Adopt: Asynchronous distributed constraint
optimization with quality guarantees. AIJ, 161, 2005.

[10] P. J. Modi, M. Tambe, W.-M. Shen, and M. Yokoo. A
general-purpose asynchronous algorithm for

distributed constraint optimization. In Distributed
Constraint Reasoning, Proc. of the AAMAS’02
Workshop, Bologna, July 2002. AAMAS.

[11] A. Petcu and B. Faltings. Approximations in
distributed optimization. In Principles and Practice of
Constraint Programming CP 2005, 2005.

[12] M.-C. Silaghi. Asynchronously Solving Distributed
Problems with Privacy Requirements. PhD Thesis
2601, (EPFL), June 27, 2002.
http://www.cs.fit.edu/~msilaghi/teza.

[13] M.-C. Silaghi. Howto: Asynchronous PFC-MRDAC
–optimization in distributed constraint problems
+/-ADOPT–. In IAT, Halifax, 2003.

[14] M.-C. Silaghi and B. Faltings. A comparison of
DisCSP algorithms with respect to privacy. In
AAMAS-DCR, 2002.

[15] M.-C. Silaghi, J. Landwehr, and J. B. Larrosa. volume
112 of Frontiers in Artificial Intelligence and
Applications, chapter Asynchronous Branch & Bound
and A* for DisWCSPs with heuristic function based
on Consistency-Maintenance. IOS Press, 2004.

[16] M.-C. Silaghi and D. Mitra. Distributed constraint
satisfaction and optimization with privacy
enforcement. In 3rd IC on Intelligent Agent
Technology, pages 531–535, 2004.

[17] M.-C. Silaghi, D. Sam-Haroud, and B. Faltings.
Consistency maintenance for ABT. In Proc. of
CP’2001, pages 271–285, Paphos,Cyprus, 2001.

[18] M.-C. Silaghi, D. Sam-Haroud, and B. Faltings.
Hybridizing ABT and AWC into a polynomial space,
complete protocol with reordering. Technical Report
#01/364, EPFL, May 2001.

[19] R. M. Stallman and G. J. Sussman. Forward reasoning
and dependency-directed backtracking in a system for
computer-aided circuit analysis. Artificial Intelligence,
9:135–193, 1977.

[20] R. Wallace and M.-C. Silaghi. Using privacy loss to
guide decisions in distributed CSP search. In
FLAIRS’04, 2004.

[21] M. Yokoo. Constraint relaxation in distributed
constraint satisfaction problem. In ICDCS’93, pages
56–63, June 1993.

[22] M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara.
Distributed constraint satisfaction for formalizing
distributed problem solving. In ICDCS, pages
614–621, June 1992.

[23] M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara.
The distributed constraint satisfaction problem:
Formalization and algorithms. IEEE TKDE,
10(5):673–685, 1998.

[24] M. Yokoo and K. Hirayama. Distributed constraint
satisfaction algorithm for complex local problems. In
Proceedings of 3rd ICMAS’98, pages 372–379, 1998.

[25] M. Yokoo, K. Suzuki, and K. Hirayama. Secure
distributed constraint satisfaction: Reaching
agreement without revealing private information. In
CP, 2002.

[26] W. Zhang and L. Wittenburg. Distributed breakout
revisited. In Proc. of AAAI, Edmonton, July 2002.

