
Solving a distributed CSP with cryptographic multi-party

computations, without revealing constraints and without involving

trusted servers∗

Marius-Călin Silaghi
Florida Institute of Technology

msilaghi@cs.fit.edu

May 23, 2003

Abstract

Everybody has its own constraint satisfaction prob-
lem, private concerns that owners prefer to keep as se-
cret as possible. Resources may be shared and cause
the need for cooperation. Here we consider the case
where privacy is an overwhelming requirement and
we assume that a majority of the participants are in-
corruptible. Namely, given n participants, at least an
n/2 unknown subset of them are trustworthy and not
corrupted or controlled by attackers. This is a com-
mon assumption in cryptographic multi-party com-
putations where techniques exploiting such assump-
tions are known as threshold schemes.

This work shows how a random solution of the de-
scribed problem can be offered with a secure protocol
that does not reveal anything except the existence of
the solution and tells each participant the valuations
corresponding to its subproblem. The technique is
based on the properties of the recent Paillier cryp-
tosystem and needs no external arbiter.

1 Introduction

Each participating agent has his problems. Private
concerns can often be formulated as constraint satis-
faction problems (CSPs) and then be solved with any
of the applicable CSP techniques. But life is more

∗Patent pending

difficult than this: we must share our streets, busses,
shops, green spaces, security, civic infrastructure, na-
tional research budget, and even our polluted air and
ozone layer. We may have to share our tools and
consumables and coordinate on our agendas. There-
fore one has to find agreements with the others for
a solution from the set of possible alternatives that
satisfy his subproblem. The general framework mod-
eling this kind of combinatorial problems is called
Distributed Constraint Satisfaction.

A distributed constraint satisfaction problem
(DisCSP) is defined as a set of agents, A1, ..., An, each
agent Ai willing to enforce a corresponding set of pri-
vate constraints, Ci. A constraint c ∈ Ci is defined by
a predicate on a set of variables, Vc. The sets of vari-
ables involved in the constraints of different agents
may not be disjoint. The union of all the variables
is {x1, ..., xm} and each variable xi can take values
from an associated domain Di = {vi1, ..., vid}. Here
we assume that agents know the variables involved
in the constraints of each other (false variables can
be added to hide this). Instead, agents want to avoid
that others find details about the exact combinations
allowed by the constraints they enforce.

The methods proposed here allows the n partici-
pating agents to securely find a solution by interact-
ing directly without any external arbiters and with-
out divulging any secrets. A common assumption in
some multi-party computations is that an unknown

1

majority of the participating agents are trustworthy
and not corrupted by any adversary. There, given a
problem with n agents, no subset of tmalicious agents
that follow the protocol (typically called passive ad-
versaries), t<n/2, can find anything about others’
problems except what is revealed by the solution.
This threshold scheme applies to our result as well.

First we describe an algorithm that computes se-
curely one solution of a DisCSP, namely the first in
the lexicographic order induced by a predefined or-
dering on variables and values. The returned result
divulges more information than what was needed.
Namely it divulges the fact that there is no solution in
tuples lexicographically ordered before the returned so-
lution. This information on a part of the search space
is typically not a requirement in the problem descrip-
tions and therefore may bring unnecessary and unfor-
tunate privacy losses. Subsequent research effort led
to the next described algorithm which is based on the
Paillier cryptosystem and on Merritt’s election pro-
tocol. This time (for satisfiable problems) a random
solution is returned without leaking any information
about the existence of a solution in any other search
subspace. The algorithm is refutation complete and
terminates. This is a polynomial space complexity
complement of the methods we proposed in previous
documents and which are based on differential bids.
It can deal with both satisfaction and optimization
problems.

Our protocol is based on three cryptographic tech-
niques: Paillier public key cryptosystem [Pai99],
Shamir’s secret sharing [Sha79], and Merritt’s elec-
tion protocol [Mer83]. After an example, we start
our presentation by first introducing these elements.
Next we describe the technique that we developed
and we end with a discussion about the motivations
and potential of other design choices.

2 Example

A common problem, meeting scheduling, consist of
finding allocations for a set of shared resources like:

• Place of the meeting.

• Date of the meeting.

• Topics to be discussed.

• Tools to be brought by participants.

• Hotel availability.

• Transportation availability.

The problem can be stated by using a set of first
order logic predicates whose variables’ values rep-
resent possible allocations of the shared resources.
Many research communities treat this case as a par-
ticular problem case of larger theories: artificial in-
telligence will refer to it as a constraint satisfac-
tion/optimization problem, operations research calls
this problem a particular case of integer program-
ming.

Problem Formulation When we try to solve a
meeting scheduling problem, the first step is to gather
all the data: resources (variables), possible alloca-
tions (variable domains), and the logic predicates
that have to be satisfied. In mathematically ap-
proaching the problem it is often tempting to jump
too easily over this step. However, a serious effort to
bring it into practice will encounter here the most dif-
ficult problem: How to elicit the predicates in which
the participants are interested? Let us see a couple of
these predicates:

• Mr. A needs that the meeting place should be
reachable from his location with the 500$ avail-
able through his funding. He also needs an over-
head projector.

• Mr. B is supported by a funding paying only
national travels up to 300$.

• Mr. C works for a famous company that requests
his employees to sustain its image by only using
at least 3 stars hotels, but cannot pay more than
100$ per night and 900$ for transportation.

• Mr. E is the manager of a large chain of hotels
that cooperates with this conference. He wants
to make sure that he has the needed number of
rooms and that the price chosen for rooms does
not lead to financial losses.

2

• Mr. F would like to also cover a holiday at a sea
or a lake with the funding for the conference, for
which the ticket should anyhow be cheaper than
400$

• Mrs. E has no available funding but she can use
her United frequent flyer program, and she also
wants to avoid a conference during the academic
year.

As we can see from the examples before, some of the
constraints of the participants can be made public
easily (e.g. the requirement by Mr. A of having an
overhead projector). However, some of the require-
ments should (if possible) be concealed (e.g. Mr. F’s,
Mrs. E’s), while some must not be divulged (e.g. the
ones of Mr. C).

Two conclusions can be drawn from this example:

• The divulgence of some predicates should be
avoided. One has to keep track of who enforces
private information. To help hiding even the
presence of secrets (steganography) the assump-
tion will have to be that everybody has private
information. To ensure satisfaction of the pri-
vate requirements, the link between the identity
of the participants and the problem cannot be
lost.

• Some predicated can be easily elicited from par-
ticipants (e.g. Mr. A’s). It is efficient to elicit
such predicates and to use them in preprocess-
ing the problem. Such preprocessing can consist
of finding good cutting planes or of some local
consistency technique.

The first of the aforementioned conclusions states
that the identity of the participants generating the
problem should become a part of the problem de-
scription. This is the reason why DisCSPs must be
defined separately from simple constraint satisfaction
problems. A DisCSP P ′(A,X,D,C) is a finite con-
straint satisfaction problem P (X,D,C) where each
predicate c in C is known only to a single partici-
pant, Ai. Ai ∈ A where A is the set of all partici-
pants. Note that any predicate p(ε) can be seen as a
function p : X → {0, 1} where 0 stands for unsatisfied
and 1 stands for satisfied.

3 Public key cryptosystems

By cryptosystem (or cryptographic system or cipher)
one refers a system used for encryption and decryp-
tion of data. One always stresses that a cipher has
two distinct elements: encryption and decryption.
The cipher is also referred to as a pair of algorithms
E,D together with their keys, KE ,KD. The input
to an encryption algorithm is called plaintext and
the output is the ciphertext. Given a plaintext m,
we obtain the ciphertext by EKE (m). Decryption
retrieves the plaintext m = DKD (EKE (m)). A pub-
lic key cryptosystem is a cipher where the encryption
and decryption use different keys. Theoretically, such
asymmetric cryptosystems may still require that both
keys are secret, but particular importance is given to
ciphers where one of the two keys is public and the
other one is the secret of a single user. It should be
intractable to obtain the secret key from the public
key. When the encryption key is the private one then
the system can be used for generating digital signa-
tures. The exchange of secrets is achieved with public
key cryptosystems where the encryption key, KE , is
public.

The first published public key cryptosystem is
the Diffie-Hellman key exchange algorithm [DH76],
a version of which is also known under the form of
the ElGamal cryptosystem [ElG84]. Next developed
techniques, also known as knapsack cryptosystems,
were based on the well known intractability of the
Knapsack problem. Some knapsack cryptosystems
had other nice properties, we mean homomorphisms
of type ∃f, ∀m1,m2, f(EKE (m1), EKE (m2)) =
EKE (m1 + m2) which are of particular interest for
this work [MH78]. Unfortunately, many knapsack
algorithms were proven to be insufficiently secure.

3.1 Paillier cryptosystem

Our technique needs an encryption function EKE :
SP→SC (SP is the domain of the plaintext and SC
the domain of the ciphertext) that has the (+,×)-
homomorphic encryption property:

∀m1,m2 ∈ SP , EKE (m1)EKE (m2) = EKE (m1+m2).

3

This property is offered by the Paillier cryptosys-
tem [Pai99]. The Paillier cryptosystem uses modu-
lar arithmetic, mod n and mod n2, with n chosen
as product of two large primes n = pq (similar to
RSA). The prime numbers p and q have to be chosen
very large and approximatively of the same number
of digits. Primes can be found efficiently with ac-
ceptable factor of certitude by using the Miller-Rabin
algorithm [Knu98]. The recent technique of Agarwal
et.al. [ASK02] allows for an exact test with polyno-
mial cost for the primality of any given number.

We recall that ZZn is the set of residues mod n. For
the encryption of a plaintext m, m ∈ ZZn, Paillier
proposed to select a number g, to randomly chose a
number r ∈ ZZ∗n, and then to call the next function
returning the ciphertext c:

Eg,n : ZZn×ZZ∗n → ZZ∗n2 Eg,n(m, r)
def
= gmrn mod n2.

g’s order is a nonzero multiple of n (i.e. ∃α ∈
ZZ∗n2 , gαn ≡ 1 mod n2). The requirement1 on g is
needed in order to ensure that Eg,n is bijective (hav-
ing an inverse). For decryption of a ciphertext c,
c < n2, the computation is as follows:

m =
(cλ(n) mod n2)−1

n
(gλ(n) mod n2)−1

n

mod n

Carmichael’s lambda function at n, λ(n), is the
size of the largest cyclic subgroup of the multiplica-
tive group modulo n, ZZn. λ(n) returns therefore
the smallest number λ such that for any m with
gcd(m,n)=1 the congruence mλ mod n = 1 holds,
where gcd stands for greatest common divider. Its
definition for a number N with prime factoriza-
tion N = pa1

1 ...pakk is λ(N) = lcm[λ(pa1
1), ..., λ(pakk)],

where lcm stands for least common multiple and

λ(paii)
def
=

{
2ai−2 if pi = 2 and ai > 2,

pai−1
i (pi − 1) otherwise

For our case with n=pq, we get λ(n) = lcm(p−1, q−
1). The nth residuosity class of w with respect to g,

1It can be tested by checking that

gcd(g
λ(n)−1 mod n2

n
, n)=1.

denoted [[w]]g, is the unique integer x ∈ ZZn for which

∃y ∈ ZZ∗n, such that gxyn mod n2 = w (i.e. [[w]]g is
the decrypted w). The Composite Residuosity Class
Problem is the problem of computing [[w]]g given n and
its complexity was shown to depend neither on w nor
on g, but only on n. The complexity of the Composite
Residuosity Class Problem is proven higher than the
complexity of computing n-th residuosity modulo n2

(i.e. ∃y ∈ ZZ∗n2 with z = yn mod n2, for given z),
which is believed intractable [Pai99].

The proof of the correctnes of the Paillier de-
cryption is immediate based on the observations
that: [[w]]g2

≡ [[w]]g1
[[g2]]
−1
g1

mod n, [[g]]1+n ≡ [[1+n]]
−1
g

mod n, and wλ(n)−1 mod n2

n ≡ λ(n)[[w]]1+n mod n.
The (+,×)-homomorphic property of the Paillier
cryptosystem results from the fact that [[w1w2]]g ≡
[[w1]]g + [[w2]]g mod n. In consequence, ∀r1, r2, ∃r, such
that Eg,n(m1, r1)Eg,n(m2, r2) = Eg,n(m1 +m2, r).

Example 1 If p=5, q=3, then n=15, λ(n)=4,
n2=225, g can be 11 (114∗15 ≡ 1 mod 225). If
the encryption choses twice r=4 then E11,15(1, 4) =
164, E11,15(2, 4) = 4. Note that 164 ∗ 4 = 656 ≡
E11,15(1+2, 4∗4) mod 225.

In the following we only use Paillier encryption.
The Paillier encryption presented above returns a ci-
phertext whose size is double the size of the plaintext.
Paillier observed that the encryption being bijective,
one can reconstruct both m and r from Eg,n(m, r).
As a result, by splitting m into its quotient m1 and
residue m2 modulo n, one gets a second cryptosys-
tem,

E′g,n(m)
def
=

Eg,n(m1
def
= floor(mn),m2

def
= (m mod n)),

m∈ZZn2 where the ciphertext has the same size as the
maximum size of the plaintext. m2 is reconstructed
as m2=(E′g,n(m)g−m1 mod n)n

−1 mod λ(n) mod n.

3.2 Merritt’s election protocol

We randomize the extraction of the solution by let-
ting agents to jointly generate a secret reformulation
of the problem. In order to destroy the visibility of
the relations between the initial problem formulation

4

and the formulation actually used in computations
one can exploit random joint permulations that are
not known to any participant. Such permutations ap-
peared in Merritt’s vote counting protocols [Mer83].
Here we reformulate the initial problem by reorder-
ing the values and the variables. Several descriptions
and versions of Merritt’s election protocol exist. We
explain first this algorithm for values with one index.
We use the index notations described in [GB96] upon
the version used in [Gen95], with additional slight
rephrasing for the current application and notations.

Merritt’s election protocol was initially meant for
accounting the votes during electronic elections and
ensures the privacy of the relation vote-elector by
reordering (shuffling) the indexes of the votes. The
shuffling is obtained by a chain of permutations
(each being the secret of an election center) on the
encrypted votes. n agents, A1, ..., An, are ordered in
a chain (called in the following, Merritt chain). Each
agent Ai distributes 2 public encryption algorithms
Egi,ni and Eg.i,n.i , denoted for simplicity Ei, E

1
i , and

keeps corresponding private decryption functions
Di and D1

i . Similarly, E′gi,ni is denoted by E′i and
its decryption function by D′i. Sometimes we write
Ei(m) instead of Ei(m, r), to simplify the notation.
Each agent Aj that announces a value vj for an
index j chooses a random number hj and random
numbers r1,j , ..., rn,j and computes:

E1(E2(...En(E′1(E′2(...E′n−1(E1
n(vj , hj))...)), rn,j)...,

r2,j), r1,j) = y1,j .
Given a function q, let {q(k)}k denote the vec-

tor of values of q(k) taken in ascending order of
k. The y1,j values gathered in a vector {y1,j}j ac-
cording to their second index, j, are posted through
the chain of participants in order from A1 to An.
Each Ai choses a secret random permutation πi :

[1..n]→[1..n]. We also define πi({xk}k∈[1..n])
def
=

{xπ−1
i (k)}k∈[1..n]. After receiving {yi,j}j , Ai broad-

casts {yi+1,j′}j′=πi({Di(yi,j)}j) and discards all ri,j .
An broadcasts {yn+1,j(n)}j(n) :

yn+1,j(n) = E′1(E′2(...E′n−1(En(yn+1,j , hj))...))

Now values have been shuffled as the relation

(j,j(n)) was lost. The shuffled value can be found
immediately by an additional decryption round in
the order A1→A2→...→An. A1 sends {y′

2,j(n)}j(n) ,

y′
2,j(n) = D′1(D′1(yn+1,j(n))). Each agent Ai, 1<i<n

computes y′
i+1,j(n) = D′i(D

′
i(E
′
i−1(y′

i,j(n)))). An

broadcasts the pairs {vj , hj} = D1
n(E′n−1(y′

n,j(n)))).

Each Aj checks for the presence of its hj .

Here, each Ei must have a different modulus ni.
In the rest of this paper the algorithms work with
encryption functions having all the same modulus.

3.3 Shamir’s secret sharing

We intend to have the participants interact directly
(without intermediaries or trusted arbiters) to per-
form all the computations required for solving this
problem. But the parameters used in their computa-
tions and representing other agents’ problems should
be random numbers, otherwise secrets are leaked.

Let us give a simple example of such techniques.
Three faculty members, A0, A1, A2, want to compute
the average of their wages x0, x1, x2 without revealing
any one of them. Each professor Ai generates two
random numbers, ri,−1, ri,1. Ai sends each ri,j to
A(i+j) mod 3 through an encrypted channel. Each Ai
computes

ri = xi+r((i+1) mod 3),−1+r((i−1) mod 3),1−ri,−1−ri,1

and publishes ri. Their average wage is (r0+r1+r2)/3
and no particular wage is revealed except if commu-
nication is intercepted, or if two professors collude.
We show in this paper how such computations can
be extended to solve general CSPs. In the simple ex-
ample above, the secrets were shared among partici-
pants in the computation by using random numbers.
A slightly more careful secret sharing technique is fa-
mous due to its properties that allow for some more
general computations. This is Shamir’s secret sharing
that we present now.

Consider that a secret s should be split and shared
among n participants in such a way that any t of them
can reconstruct s but no t−1 participants could infer
anything. A classical example is the access to the
nuclear bombs in former USSR where allegedly out of

5

three political leaders, any two could have launched a
nuclear weapon but no single one could do anything.

The idea of Shamir comes from the observation
that a polynomial f(x) of degree t−1 with unknown
parameters can be reconstructed given the evalua-
tion of f in at least t distinct values of x. This can
be done using Lagrange interpolation. Instead, abso-
lutely no information is given about the value of f(0)
by revealing the valuation of f in any at most t−1
non-zero values of x.

Therefore, in order to share a secret s to n par-
ticipants A1, A2, ..., An, one first selects t−1 random
numbers a1, ..., at−1 that will define the polynomial
f(x) = s+

∑t−1
i=1(aix

i). A distinct non-zero number
ki is assigned to each participant Ai. Each partic-
ipant Ai is then communicated over a secure chan-
nel (e.g. encrypted with Ei) the value of the pair
(ki, f(ki)).

Let all the values of ai, s, ki, f(x) belong to a
field S. The previous claim about the security
of s given the valuation of f in less than t dis-
tinct points, f(kw1

)=l1, ..., f(kwt−1
)=lt−1 holds only

if ∀s∈S, ∃a1, ..., at−1∈S defining a polynomial f ′′

such that ∀i, 0<i<t, f ′′(kwi) = li. This condition
holds when S is a Galois Field. Note that on com-
puter implementations S cannot be the set of reals IR
since not all reals are representable in available float-
ing point representations. Therefore, at least when
the domain of the secret is finite, it is a good choice
to have S chosen as the finite field of order p, ZZp (aka.
GF (p)) for some prime p. We say that we achieved
a (t, n) secret sharing threshold scheme.

Multi-party computations Once secret numbers
are split and distributed with a (t, n) threshold
scheme, distributed computations of an arbitrary
agreed function (from a certain class) can be per-
formed over the distributed shares, in such a way that
all results remain shared secrets with the same secu-
rity properties (the number of supported colluders,
t−1) [Yao82]. For Shamir’s secret sharing [Sha79],
when the same distribution of ki is used for all se-
crets, the computation of the sum function can be
efficiently implemented as a sum of the shares for
corresponding samples. Consider two shared secrets,

s1 and s2, shared using the polynomials:

l(x) = s1+
t−1∑

i=1

((ai)x
i), (1)

g(x) = s2+

t−1∑

i=1

((bi)x
i), (2)

where each agent Ai knows l(ki) and g(ki). If each
agentAi adds the shares it has, l(ki)+g(ki), it obtains
a point on h(x) = l(x) + g(x), namely h(ki). The
secret values h(k1), ..., h(kn) define a valid sharing of
the secret s1+s2 with a (t,n) scheme:

h(x) = (s1+s2) +
t−1∑

i=1

((ai+bi)x
i), (3)

Multiplication of a shared secret s1 with a public
value k is easy. One only multiplies each share with
k. The n obtained shares are indeed the valuations
of

kl(x)=(ks1)+
t−1∑

i=1

((kai)x
i), (4)

in the points k1, ..., kn, and this is a valid (t, n) shar-
ing of the secret ks1.

Multiplication of two shared secrets is more com-
plex and recent research has focused on improving
its efficiency [HMP00]. Consider again the two shar-
ing of secrets in Equations 1 and 2. If each agent
Ai multiplies the shares it has, it obtains a point on
h(x) = l(x)g(x), namely h(ki).

h(x) = s1s2 +
2t−2∑

i=1

(cix
i), (5)

where ci = s1bi + s2ai +
∑i
y=1(aybi−y). No-

tice that whenever 2t−1≤n, then Equation 5 and
h(k1), ..., h(kn), is a valid (2t−1, n) sharing of the
secret s=s1s2. But what we want to get is a (t, n)
threshold scheme sharing. One noticed that the com-
putation needed to reconstruct s out of the secrets
h(k1), ..., h(kn) using Cramer’s rule involves only ad-
ditions of secrets and multiplications of secrets with
public values:

6

s = (

j=T∏

j=1

kuj)
i=T∑

i=1

(
h(kui)

kui
∏
m∈[1..i−1,i+1,...T](kum − kui)

)

(6)

where
∏
j(kj) and (−1)i

ki
∏

(m>n)∧(i=m∨i=n)(km−kn) are

public. Therefore, let each agent Ai share the se-
cret product it knows, h(ki), with a (t, n) thresh-
old scheme version of Shamir’s secret sharing. Then,
Equation 6 can be computed with repeated applica-
tions of the aforementioned techniques for sum and
multiplication with public values.

Any function based on additions and multiplica-
tions can therefore be compiled unto secure crypto-
graphic protocols. When a certain function has to
be computed on shared secrets, all its steps can be
performed using secure protocols for the correspond-
ing steps. This can be done in such a way that any
(<t) colluding participants that cannot directly find
the initial secrets, cannot find anything else than the
official output of the protocol. Techniques for compil-
ing protocols for honest parties when less than n/2
players cheat, and that are based on intractability
assumptions, are proposed in [GMW86, GMW87].
[CCD88a, CCD88b, BOGW88] show compiling tech-
niques for cases where less than n/3 players cheat
and that are secure without intractability assump-
tions. [BOGW88] details a quite efficient technique
resisting less than n/2 cheaters, when all participants
comply with the protocol.

Secret reconstruction A secret computed by
multi-party computations on a (t,n) Shamir sharing
can be reconstructed if t shares are revealed. In gen-
eral, revealing the t shares of the computed shared
secret does not allow to compute anything about the
shares of the initial secret parameters used in the
multi-party computation.

Nevertheless, specially for some techniques using
verifications of some partial results in the computa-
tion, revealing the secret shares of the partial secret
results may not be zero-knowledge. Now we show a
technique that allows to reconstruct a shared secret
without revealing any of its shares.

Let us consider the sharing (s1, ..., sn) of a secret

s where we want to reconstruct s. Let each agent Ai
participating in computation secretly generate a (t,n)
Shamir sharing of 0, (zi1, ...z

i
n) and distribute zij to

Aj on a secure (encrypted) channel. Each agent pro-
duces a zero-knowledge proof that his shares stand
for the secret 0, using one of the methods in the lit-
erature [Sta98, Gen95]. Each agent Ai computes then
si +

∑
k∈1..n z

k
i and publishes the result. The result

is a sharing of s, while the shares themselves lost any
relation to the initial shares.

4 Searching for the first solu-
tion

As mentioned in previous sections, any algorithm
that can be implemented solely with additions and
multiplications (without branching with conditions
on secrets) can be straightforwardly translated into
a secure protocol with threshold schemes. We show
such an algorithm for finding the first solution (given
a lexicographic order) of a general CSP. It translates
automatically to DisCSPs. Subsequent sections ex-
tend this algorithm to extract randomly a solution.

Imagine we want to solve the CSP P = (X,D,C)
where X is a set of variables x1, x2, ...xm, C is a set
of functions with results in the set {0, 1} (the con-
straints), and D a set of finite discrete domains for
X. The domain of xi is Di ∈ D, whose values are
vi1, v

i
2, ..., v

i
d (i.e. all domains are extended to d val-

ues). The solutions of P are the valuations ε (of type
〈(x1, v

1
ε1), ..., (xm, v

m
εm)〉) with

∑
c∈C c(ε|Vc) = |C|.

Here ε|Vc denotes the projection of ε to the vari-
ables in Vc. All constraints are extended (e.g. with
redundant variables) to obtain a constraint hyper-
graph [Tsa93] that is symmetric (in worst case each
constraint will involve all variables, and constraints
of a given agent can be composed).

Definition 1 The first solution of P given a to-
tal order ≺1 on its variables X, and a total order
on its values ≺2 is the first among solution tuples
when these are ordered with the lexicographical order
induced by ≺1 and ≺2.

Often, one has to restrict a problem by adding ad-
ditional constraining functions. We define the union

7

between a problem P = (X,D,C) and a function
c (c : X ′ → {0, 1}, X ′ ⊆ X) as the problem
P = (X,D,C ∪ {c}).

(X,D,C) ∪ c def
= (X,D,C ∪ {c})

Let us imagine that we have available a function
satisfiable:CSP→{0,1}with the next property (an
example is given later):

satisfiable(P)
def
=

{
1 if P has a solution
0 if P is infeasible

We will design now a set of functions: f1, f2, ..., fm,
fi : CSP→IN, such that each fi will return the index
of the value of xi in the first solution (between 1 and
d), or 0 if no solution exists.

fi(P)
def
=

{
k if P has the first solution for xi = vik
0 if P has no solution

Therefore, we first design the functions
gi,1, gi,2, ..., gi,d. gi,j : CSP → {0, 1}.

gi,j(P)
def
=

{
1 if (P ∪

k<i
Λ∗k,P) has solution for xi = vij

0 if (P ∪
k<i

Λ∗k,P) is infeasible for xi = vij

gi,j(P) is 1 if and only if the problem obtained by
adding to the CSP P the function

Λji (ε)
def
=

{
1 if xi = vij in valuation ε
0 if xi 6= vij in valuation ε

(7)

that selects the value vij for xi, and ∀k, 0<k<i, the
functions Λ∗k,P

Λ∗k,P (ε)
def
=

{
1 if xk = vkfk(P) in valuation ε

0 if xk 6= vkfk(P) in valuation ε
(8)

instantiating previous variables to their values in the
first solution, is satisfiable. vkfk(P) is the fk(P)th

value of xk, the value that xk takes in the first so-
lution. Namely, a simple implementation of gi,j is:

gi,j(P) = satisfiable(P ∪ Λji ∪
k<i

Λ∗k,P) (9)

This is a recursion and is possible by first comput-
ing the value of the first variable in the first solution,
f1, based on g1,j as described next. Based on the
result one can compute all g2,j . Then, one can now
compute f2. The recursion continues with all gi,j that
help in computing fi for all i up to m.

To help computing fj , we define the functions
tj,1, tj,2, ..., tj,d, tj,i : CSP → {0, 1}. tj,k(P)=1 if and
only if in a chronological backtracking search tree no
satisfiable subtree exists under any node xj=v

j
k, k<i,

when previous variables are assigned according to the
values in the first solution:

tj,i(P) =
∏

0<k<i

(1− gj,k(P)) (10)

Functions tj,i are obtained incrementally as fol-
lows:

tj,1(P) = 1 (11)

tj,i(P) = tj,i−1(P) ∗ (1− gj,i−1(P)) (12)

Once tj,i have been computed for all i, one can
compute the index of the value of xj in the first so-
lution, namely fj :

fj(P) =

d∑

i=1

i ∗ (gj,i(P) ∗ tj,i(P)) (13)

Lemma 1 The functions g and f given by Equa-
tions 9 and 13 correspond to their definition.

Proof The properties can be checked recursively
starting with g1,k and f1. After computing gi,k and
fi one can check gi+1,k followed by fi+1, etc...

Implementing satisfiable(): Let SS(P) be the
ordered set of all tuples in the Cartesian-product of
the domains of P = 〈X,D,C〉. Each function c
in the set of constraints C can be transformed (by
adding redundant parameters and reordering them)
to a function, Gc : SS(P) → {0, 1}. The secret pa-
rameters of the computation are the various values
c(ε) where ε are tuples in the domain on which the
corresponding c is defined. Let us define the function
p, p : SS(P)→ {0, 1}, defined as p(ε) =

∏
c∈C Gc(ε).

8

procedure satisfiable(P) do

1. ε=first tuple; a=0; b=1;

2. loop: a = a+ p(ε) ∗ b
3. if (problem space exhausted), then terminate and

return a.

4. b = b ∗ (1− p(ε))
5. ε=next tuple;

6. goto loop

Algorithm 1: satisfiable(P).

function value-to-unary-constraint1(v, M)

1. Jointly, all agents build a vector u,
u = 〈u0, u1, ..., uM 〉 with 4M−2
multiplications of shared secrets by computing:
1. the shared secret vector: {xi}0≤i≤M , x0=1,
xi+1=xi ∗ (v−i)
2. the shared secret vector: {yi}0≤i≤M , yM=1,
yi−1=yi ∗ (i−v)

then, uk = 1
k!(M−k)!

(v−k+1)xkyk, where 0!
def
= 1.

2. Return u.

Algorithm 2: Transforming secret value v ∈
{0, 1, 2, ...,M} to a shared secret unary constraint.
This is a multi-party computation using the shares
of secret v.

Now we can finally design an implementation for
satisfiable (see Algorithm 1).

satisfiable(P) =
∑

εi∈SS(P)

(p(εi)
∏

k<i

(1− p(εk)))

Proposition 1 Given the previous definitions of the
functions p, satisfiable, gi,j , and fi, and a problem
P , the vector {vifi(P)}i∈[1..m] defines a solution of P

(the first one).

Proof Immediate from the definition of the func-
tions f .

To avoid storing all the tuples in memory, the
function satisfiable is computed similarly with the
functions gi,j , namely by using two temporary values.

Remark 1 The computation of each fi(P) requires
only additions and multiplications of the secrets.
There exist some branches in loops but they do not
involve evaluations of secrets (they are equivalent to
completely unfolded versions).

Remark 2 Whenever an element of the vector
{fi(P)}i∈[1..m] is 0, the computation can be stopped
since P is infeasible (Algorithm 3, step 2).

procedure SecureSatisfaction do

1. Securely distribute to each agent Aj (e.g. by en-
cryption) Shamir shares of the feasibility of each

local tuple εik of Ai: (εik, s
j
i,k). sji,k is Aj ’s share of

the secret c(εik).

2. Jointly compute satisfiable(P) (using Algo-
rithm 1 compiled into a multi-party computation).
If P is not satisfiable (result 0), terminate with fail-
ure.

3. j = 1

4. Compute in parallel all gj,k (Eq. 9). Functions Λkj
are public, therefore one simply sets p(ε) to 0 when
Λkj (ε) is 0, and disregards Λkj otherwise.

Compute tj,k(P) for all k, from 1 to d (Eq. 11).

5. Compute fj(P) (Eq. 13).

6. The shared secret fj(P) will be transformed
in a unary constraint extensively represented
by a vector f ′j of size d. The fj(P)th ele-

ment denoted f ′j [fj(P)] is 1 and all the other
elements are 0. This is achieved by the
call value-to-unary-constraint1(fj (P)−1,d−1).
The function value-to-unary-constraint1 doing
this is shown in Algorithm 2.
f ′j is used to evaluate Λ∗j,P (ε) in future steps 4 by

returning the k-th element of the vector, f ′j [k], for

a parameter tuple ε having xj = vjk.

7. if j = m, then terminate algorithm:

7a For all k, let fk(P) be revealed to the owners
of the xj variable (agents that have functions
involving xj). This is done by reconstructing
the corresponding secrets from their shares
with Shamir’s technique.

8. j = j + 1

9. goto step 4

Algorithm 3: Algorithm performed by each agent Ai
for finding a solution satisfying conditions where g
functions are computed in parallel. It is possible
to also compute them sequentially with lower space
complexity.

Remark 3 To compute the whole vector
{fi(P)}i∈[1..m], some constraints based on se-
crets also have to be dynamically shared according to

9

Shamir’s technique (see Equations 7, 8, 9). This is
done according to Algorithm 2.

The secure algorithm obtained by compiling the
computation of {vifi(P)}i∈[1..m] to a secure multi-

party computation with threshold schemes (see previ-
ous section) is referred to as SecureSatisfaction. The
steps that any agent has to follow here are given in
Algorithm 3.

Algorithm 4 is just a small optimization of Algo-
rithm 3, but we will see soon while this optimization
is useless given some extensions.

Example 2 Take a DisCSP with n=3, d=2,
and m=2. A1 (secretly) does not want
((x1=v1

1), (x2=v2
1)) and A2 (secretly) does not

want ((x1=v1
2), (x2=v2

2))... For simplicity, 0 is
always shared as 3x+0 and 1 as 4x+1, mod 7. A
tuple ((xi=v

i
a), (xj=v

j
b)) is denoted in the following

by (ia
j
b).

During step 1 in Algorithm 3, A2 gener-
ates: ((1

1
2
1), E1(3)), ((1

1
2
2), E1(5)), ((1

2
2
1), E1(5)),

((1
2
2
2), E1(5)), that he sends to A1. A2 also gener-

ates for itself, ((1
1
2
1), 6), ((1

1
2
2), 2), ((1

2
2
1), 2), ((1

2
2
2), 2),

and for A3: ((1
1
2
1), E3(2)), ((1

1
2
2), E3(6)), ((1

2
2
1), E3(6)),

((1
2
2
2), E3(6)).
A1 generates for itself: ((1

1
2
1), 5), ((1

1
2
2), 5), ((1

2
2
1), 5),

((1
2
2
2), 3), and also the shares to be delivered to A2

and A3,
((1

1
2
1), E2(2)), ((1

1
2
2), E2(2)), ((1

2
2
1), E2(2)),

((1
2
2
2), E2(6)),

((1
1
2
1), E3(6)), ((1

1
2
2), E3(6)), ((1

2
2
1), E3(6)),

((1
2
2
2), E3(2))...
During step 2 in Algorithm 3 the agents jointly

compute by multi-party multiplication (see Section 3)
a sharing of the following secrets: p((1

1
2
1)) = 0,

p((1
1
2
2)) = 1, p((1

2
2
1)) = 1, p((1

2
2
2)) = 0. They are

used in Algorithm 1 where we have four loops with
the following states in its step 3: (a = 0, b = 1);
(a = 1, b = 1); (a = 1, b = 0); (a = 1, b = 0).

Now Algorithm 3 enters a cycle that will be run two
times: In step 4 the agents compute jointly shares
of the secrets: g1,1 = 1, g1,2 = 1. The agents also
compute sharing of secrets: t1,0 = 1, t1,1 = 0.

Agents can now compute at step 5 in Algorithm 3:
f1(P) = 1 ∗ 1 ∗ 1 + 2 ∗ 0 ∗ 0 = 1.

procedure SecureSatisfaction1 do

1. Securely distribute to each agent Aj (e.g. by en-
cryption) Shamir shares of the feasibility of each

local tuple εik of Ai: (εik, s
j
i,k). sji,k is Aj ’s share of

the secret c(εik).

2. Jointly compute satisfiable(P) (using Algo-
rithm 1). If P is not satisfiable (result 0), terminate
with failure.

3. j = 1

4. Compute in parallel all gj,k (Eq. 9). The functions

Λkj are publicly known, therefore one simply sets

p(ε) to 0 when Λkj (ε) is 0, and disregards Λkj other-
wise.

Compute tj,k(P) for all k, from 1 to |Dj | (Eq. 11).

5. Compute fj(P) (Eq. 13).

6. if j = m, then terminate algorithm:
6a For all k, let fk(P) be revealed to the owners

of the xj variable (agents that have functions
involving xj). This is done by reconstructing
the corresponding secrets from their shares
with Shamir’s technique.

7. The shared secret fj(P) will be transformed
in a unary constraint extensively represented
by a vector f ′j of size d. Its fj(P)th el-

ement f ′j [fj(P)] is 1 and all the other ele-
ments are 0. This is achieved by the call
value-to-unary-constraint(fj (P)−1,d−1), fol-
lowed by multiplying each element of the returned
vector by 1

((−1)
σj (σj !)2)

where σj = (d−1). The

function value-to-unary-constraint doing this is
shown in Algorithm 2. The obtained vector is used
to evaluate Λ∗j,P (ε) in future steps 4 by returning
the k-th element of the vector for a parameter tuple
ε having xj = vjk.

8. j = j + 1

9. goto step 4

Algorithm 4: Algorithm followed by each agent Ai for
finding a solution satisfying conditions where g func-
tions are computed in parallel. It is possible to also
compute them sequentially with lower space complex-
ity.

At step 6 in Algorithm 3 one applies Algorithm 2:
value-to-unary-constraint(1-1,2-1) that translates the
shared secret f1(P) into a vector of shared secrets:
〈1, 0〉 by first computing 〈0,−1〉, then in a second step
〈1 ∗ (−1) ∗ 1, (−1 + 1) ∗ (−1− 1) ∗ (−1 + 1)〉 obtaining

10

〈−1, 0〉 and at the end by scalarly dividing with σ1 =
−1. This shares Λ∗1,P .

In the following a new loop is started with step
4 by computing shared secrets: g2,1 = 0, g2,2 = 1.
The agents also compute sharing of secrets: t1,0 = 1,
t1,1 = 1.

Agents can compute at step 5 in Algorithm 3:
f2(P) = 1∗0∗1+2∗1∗1 = 2. Now the solution is re-
covered unto interested agents: f1(P) = 1, f2(P) = 2.

Alternative Implementation of satisfiable

Let q(ε)=
∑
c∈C c(ε). A solution of a CSP (X,D,C)

is a valuation ε with q(ε)=|C|. So, one can (less
efficiently) compute:

p(ε) = (q(ε)−|C|+1)
∏|C|−1
i=0 (q(ε)−i)
|C|! .

To find a solution where exactly x0 constraints are
satisfied:

p(ε) = (q(ε)−x0+1)

∏x0−1
i=0 (q(ε)−i)∏|C|i=x0+1(i−q(ε))

x0!(|C| − x0)!
.

(14)
Notably, to find a solution where the maximum num-
ber of constraints are satisfied, one can insert in X
a variable x0 with domain |C|..1 and use its current
value in Eq. 14.

Theorem 2 The described technique offers t-privacy
(No collusion of less than t attackers can learn any-
thing else than the final solution, and whatever can
be inferred from it).

Proof The technique is based on the evaluation
of a set of functions consisting solely of additions
and multiplication. It has been proven in [Yao82,
GMW86, GMW87, CCD88a, CCD88b, BOGW88]
that the compilation to multi-party computations of
such a technique is t-private.

5 Secure search of a randomly
chosen solution

With CSPs one is often not interested in getting the
first solution given some order on variables and val-
ues, but rather in getting any solution. Note that
finding the first solution ε0 reveals two distinct things:

• ε0 is a solution (or at least that the elements
communicated to each participant are part of a
solution ε0).

• there exists no solution lexicographically ordered
before ε0.

But this is more information than what we want
to reveal! We only want to find a solution while the
information that in a certain search space there ex-
ists no solution is redundant and can be used by ad-
versaries to infer details on secret constraints. The
remaining question is how could one modify the pre-
vious technique to return a randomly chosen solution
rather than the first solution.

Let us approach this problem by agreeing on an
acceptable definition of a randomly chosen solution.

Definition 2 We will say that a solution ε is ran-
domly chosen if no agent can infer based on it the
density of solutions in some other search sub-space.

Surely, if it is found that the whole problem is un-
satisfiable, then this information cannot be hidden.
The basic observations exploited in this subsection
are that:

• It is sufficient to choose random orders on vari-
ables and values in order to get a random solu-
tion with a deterministic protocol returning the
first solution.

• If we succeed to hide the amount of effort and
the orderings used by the deterministic first-
solution-returning solver, then participants can-
not infer anything on the characteristic of other
search subspaces.

5.0.1 Adapting Merritt’s reordering protocol

In Section 3.2 we have seen how a random hidden re-
ordering can be obtained using a version of the Mer-
ritt’s election protocol. Merritt’s protocol can use
a set of trusted parties as election centers or, as in
our algorithm, the function of the election centers is
taken by the n participants in the DisCSP ordered in
a predefined chain, e.g. A1, A2, ..., An.

Assume that each agent Ai has to share a set of
secrets {sik} where indexes k, are taken from disjoint

11

sets for distinct agents (∀sik1
, sjk2

, (i6=j)⇒(k1 6=k2)).
The value of k, 0<k≤K, is not transmitted un-
changed in the Merritt chain, making sure that the
source and identity of the secret becomes hidden to
everybody.

A pair (εk, vk), where vk ∈ {0, 1} is the evaluation
of a constraint of Ai for the tuple εk, is called an
atomic predicate. Each agent Ai submits to A1 all its
atomic predicates, namely all information that each
(partial) valuation is or is not feasible. For each (par-
tial) valuation εk = ((xk1

, vk1

k1), ..., (xkt , v
kt
kt)), having

Aj ’s share of the secret feasibility value vk ∈ {0, 1}
equal to sjk, the submission takes the form:

〈〈(kl, kl)〉l∈[1..t], k, Ej(s
j
k), j〉

All the submissions are made to A1, the first in the
chain of permutation agents. Assuming the total
number of submitted atomic predicates is K, each
agent Ai generates Z=K+mn sets of Shamir secret
shares of 0, {zkj |j ∈ [1..n], zkj=

∑t−1
u=1 ak,u(kj)

u}}, for
some ak,u, k∈[1..Z], and secret permutations:

π : [1..m]→ [1..m], (for variables)

π1, ..., πm : [1..d]→ [1..d], (for domains)

π0 : [1..K]→ [1..K]. (for atomic predicates)

When A1 or a subsequent Ai re-
ceives (all the elements of) a vector
{〈{(kl, kl)}l∈[1..t], k, Ej(s

j
k), j〉}k∈[1..K], it gen-

erates a permutation wk and the vector

π0({〈{(π(kwk(l)), πkwk(l)
(kw

k(l)))}l∈[1..t], π0(k),

Ej(s
j
k)Ej(z

k
j), j〉}k∈[1..K]), which is sent to Ai+1.

The position of pairs inside each valuation are
randomly shuffled according to wk. An distributes
the vectors to corresponding Aj .

Example 3 Take a DisCSP with n=3, d=2, and
m=2 (for n≤2, the achieved privacy is irrelevant).
A1 (secretly) does not want ((x1=v1

1), (x2=v2
1)), A2

(secretly) does not want ((x1=v1
2), (x2=v2

2)), and A3

(secretly) does not want ((x1=v1
1), (x2=v2

1)). Con-
sider for simplicity that 0 is always shared as 3x+0
and 1 as 4x+1, mod 7. ((xi=v

i
a), (xj=v

j
b)) is de-

noted in the following: (ia
j
b).

A2 sends to A1: 〈((1
1
2
1), 1, E1(3), 1), ((1

1
2
2), 2, E1(5), 1),

((1
2
2
1), 3, E1(5), 1), ((1

2
2
2), 4, E1(5), 1)〉, and A2 also

sends to A1 with target A2, and A3

〈((1
1
2
1), 1, E2(6), 2), ((1

1
2
2), 2, E2(2), 2),

((1
2
2
1), 3, E2(2), 2), ((1

2
2
2), 4, E2(2), 2)〉,

〈((1
1
2
1), 1, E3(2), 3), ((1

1
2
2), 2, E3(6), 3),

((1
2
2
1), 3, E3(6), 3), ((1

2
2
2), 4, E3(6), 3)〉.

A1 submits to itself: 〈((1
1
2
1), 5, E1(5), 1),

((1
1
2
2), 6, E1(5), 1), ((1

2
2
1), 7, E1(5), 1),

((1
2
2
2), 8, E1(3), 1)〉, and shares to be transmitted

to A2, and A3

〈((1
1
2
1), 5, E2(2), 2), ((1

1
2
2), 6, E2(2), 2),

((1
2
2
1), 7, E2(2), 2), ((1

2
2
2), 8, E2(6), 2)〉,

〈((1
1
2
1), 5, E3(6), 3), ((1

1
2
2), 6, E3(6), 3),

((1
2
2
1), 7, E3(6), 3), ((1

2
2
2), 8, E3(2), 3)〉...

A1 applies permutations π=(2, 1), π1=(1, 2),
π2=(2, 1), π0=(3, 5, 2, 7, 1, 8, 4, 6, 10, 12, 9, 11), and
adds new random shares of zero: for simplicity
always 2x mod 7. A2 receives from A1:
〈((2

1
1
2), 1, E1(0), 1), ((1

2
2
2), 2, E1(0), 1),

((2
1
1
2), 3, E1(5), 1), ((2

2
1
2), 4, E1(0), 1),

((2
1
1
1), 5, E1(0), 1), ((2

2
1
1), 6, E1(5), 1),

((2
2
1
1), 7, E1(0), 1), ((2

1
1
1), 8, E1(0), 1), ...〉,

〈((2
1
1
2), 1, E2(6), 2), ((1

2
2
2), 2, E2(6), 2),

((2
1
1
2), 3, E2(3), 2), ((2

2
1
2), 4, E2(6), 2),

((2
1
1
1), 5, E2(6), 2), ((2

2
1
1), 6, E2(3), 2),

((2
2
1
1), 7, E2(6), 2), ((2

1
1
1), 8, E2(6), 2), ...〉...

A2 and A3 perform permutations in a similar way as
A1. A3 distributes the atomic predicates for launch-
ing the search with SecureSatisfaction.

Decoding solutions After SecureSatisfaction is
run, the shares of the results of functions f have to
be revealed without revealing the permutation. The
vectors {〈{Ej(f ′i j [t])}t∈[1..d], j〉}i∈[1..m], for each j,
are sent backward through the chain of agents, where
f ′i
j
[t] is Aj ’s share for f ′i [t] (see step 6 in Algorithm 3).

When Ak receives {〈{Ej(f ′i j [t])}t∈[1..d], j〉}i∈[1..m],
it generates and sends to Ak−1 the vector

π−1({〈π−1
π−1(i)({Ej(f ′i

j
[t])Ej(z

K+(i−1)(t−1)+1
j)}t∈[1..d]),

j〉}i∈[1..m]). A1 broadcasts them.

Hiding shares To avoid that everybody learns all
the secret shares, these are sent encrypted with the
public key of their destination participant (see Algo-

12

procedure SecureRandomSolution do

1. Each agent Ai generates for each agent Aj and for
each of the tuples tk in its predicates a secret share
sjk. Agents have disjoint sets of indexes k.

2. (tk, k, Ej(s
j
k), j) is submitted through the chain of

agents according to our version of Merritt’s refor-
mulation protocol.

For each k, Ai generates a new random set
of Shamir shares of 0, 〈z1

k, z
2
k, ..., z

n
k 〉. Each

of these shares are encrypted with the pub-
lic keys of the corresponding agents obtaining
〈E1(z1

k), E2(z2
k), ..., En(znk)〉. The operation · is ap-

plied on this vector and on the encrypted shares
received for the secret k.

3. After the chain of encryptions and permutations,

each obtained atomic predicate (t
(n)
k′ , k

′, Ej(s
′j
k), j)

is sent by An to Aj . Aj decrypts s′jk and learns it
as its share for the secret k′ of a predicate on the

tuple t
(n)
k′ .

4. The SecureSatisfaction algorithm (Algorithm 3
without the steps 1 and 7a) is now applied to get
the first solution of the reformulated CSP.

5. The secret shares of the solution to the CSP are
submitted through the chain of participants in re-
verse direction undoing the permutations. To allow
unshuffling secret indexes of values, they are trans-
mitted via the unary constraint representation of
each fj , namely f ′j computed in Algorithm 3.

6. Each participant in the Merritt chain, applies the
same procedure as described in step 2 with the
sole difference that the permutations are reversed
(but still random shares of 0 are added to en-
crypted shares of the solution). After unshuffling,
the encrypted shares are opened by their destina-
tion agents, and the owners of each resource are
communicated the shares defining the allocation in
the obtained solution.

Algorithm 5: Algorithm to find a random solution of
a distributed CSP

rithm 5 steps 1 and 2). What can happen if one would
simply shuffle the shares before using Algorithm 3 or
the decoding is that the agents that receive back their
own solution shares for the problem can match these
against the values that they sent for themselves and
retrieve part of the overall permutation of the shuf-
fling. This has been avoided as seen before. Let us
explain this in more detail.

Each agent Ai in the Merritt chain generate ran-

dom sets of n shares for 0 with the technique of
Shamir. The jth share in the kth set is denoted by
zkj . Whenever Ai performs a shuffling/unshuffling of

a set of encrypted secret shares 〈E1(s1
k), ..., En(snk)〉,

Ai uses a new set of shares for 0 and multiplies the
corresponding encrypted shares with the point prod-
uct.

〈E1(s1
k), E2(s2

k), ..., En(snk)〉 ·
〈E1(z1

k), E2(z2
k), ..., En(znk)〉

=
〈E1(s1

k)E1(zk1), E2(s2
k)E2(zk2), ..., En(snk)En(zkn)〉

= 〈E1(s1
k + zk1), E2(s2

k + zk2), ..., En(snk + zkn)〉.
Therefore, since we use Paillier encryption, the ob-

tained shares represent the sum of the secret sk with 0
and is a re-sharing of the secret defined by 〈s1

k, ..., s
n
k〉.

Theorem 3 The SecureRandomSolution algorithm
(Algorithm 5) is correct and no coalition of less than
n/2 passive attackers can find anything except what
can be inferred solely from the solution and from their
previous knowledge.

Proof In this paper we proposed a CSP solver
that has all the properties needed for compilation
into a secure protocol with the claimed character-
istics [Yao82, GMW86, CCD88b]. The only prob-
lem after the previous section remained how to se-
cretly reformulate the problem (permuting variables
and values) to hide the space searched before finding
the first solution. We have just shown how a slight
adaptation of Merritt’s protocol offers exactly what
we needed. A related technique appears in [BT94].

Decoding solutions is similar with the Encoding
(see Example 3), just that the permutations are re-
versed and all the unshuffled atomic predicates are
unary.

Synchronization The agents perform all these
multi-party computations in rounds. A computa-
tion round consists of an eventually empty contiguous
sequence of additions and multiplications of secrets
with public values, ending with the (re-)sharing of
a secret. As noted in Algorithm 3 at step 4, the
technique can be optimized by performing several
unrelated operations in the same round in parallel

13

(e.g. computations of gj,ks). Round starts are syn-
chronized by any synchronization technique at imple-
mentation’s choice. For example, agents can keep a
counter of the current round number, and the round
number tags each generated (re-)sharing message.
For flow control, the (re)-sharing of round ri is not
sent before all messages of round ri−b, b>0, were re-
ceived from all other agents. This limits the buffer
requirements to the messages of 2b rounds.

Proof If all round ri−b shares were sent, it means
that everybody got and processed all round ri−2b

shares.

6 Conclusions and Alternatives

DisCSPs are a very active research area. Privacy
has been recently stressed in [SSHF00, MJ00, WF02,
SF02, YSH02] as an important goal in algorithm de-
sign. For problems with very small domains, it is
possible to use instead of the Paillier cryptosystem a
version of ElGamal where discrete logarithms have
to be computed [Gen95], which is intractable. A
similar algorithm based only on (×,×)-homomorphic
public key cryptosystems is possible but much more
expensive and complex. We know to develop some
cheaper cryptographic techniques but they would of-
fer weaker security, e.g. variable running time that
together with the solution can reveal additional se-
crets.

A similar algorithm based only on (×,×)-
homomorphic public key cryptosystems can also be
developed. That is nevertheless with orders of mag-
nitude more expensive, as additions of shares with
shared ’Zero’ have to be replaced by multiplications
with shared ’One’. This can be achieved by starting
locally with the computation of the point product
as we did here, achieving a (2t, n)-threshold scheme
distribution of the product. But then one has at
each such multiplication to distribute each product
of shares to the owners of the corresponding secret
keys. This has to be done in a random order of
the secrets such that the participants cannot track
their shares. Those agents have to complete the re-
sharing of the result from the (2t, n)-scheme back to
the (t, n)-scheme, as it is typically done for multipli-

cation. Then the results are sent back to the corre-
sponding agent in the Merritt chain, encrypted with
the sender’s public key.

The described version is not robust when partici-
pants do not behave according to the protocol. While
we work on techniques that may provide such ro-
bustness, as for other multi-party computations, they
were not addressed in this discussion (notably see
(t,n) threshold schemes with t<n/3) [BOGW88].

We presented a technique where agents that need
to cooperate and whose problems can be modeled as
CSPs can find a random solution without any leak of
additional information about their constraints. It is
the first such technique requiring no need of trusted
servers (To be noted that this cherished property was
the historically claimed driving force behind the de-
velopment of public key cryptography [DH76]). It is
assumed that all adversaries are passive (they follow
the protocol) and that only a minority of the partic-
ipants may be corrupted by any attacker. It is also
assumed that the set of variables involved in the CSP
of each agent are public knowledge, requirement that
can be by-passed if each agent declares a single con-
straint involving all variables. Most of these assump-
tions can be relaxed with different trade-offs and this
is an important research field.

References

[ASK02] M. Agarwal, N. Saxena, and
N. Kayal. Primes is in P. In
www.cse.iitk.ac.in/primality.pdf, August
2002.

[BOGW88] M. Ben-Or, S. Goldwasser, and
A. Widgerson. Completeness theorems
for non-cryptographic fault-tolerant
distributed computating. In Proc. 20th
ACM Symposium on the Theory of
Computing (STOC), pages 1–10, 1988.

[BT94] Josh Benaloh and D. Tuinstra. Receipt-
free secret ballot elections. In 26th ACM
Symposium on Theory of Computing,
pages 544–533, 1994.

14

[CCD88a] D. Chaum, C. Crépeau, and I. Damg̊ard.
Multiparty unconditionally secure proto-
cols. In Proc. CRYPTO 87, LNCS 293,
page 462, 1988.

[CCD88b] D. Chaum, C. Crépeau, and I. Damg̊ard.
Multiparty unconditionally secure proto-
cols. In Proc. 20th ACM (STOC), pages
11–19, Chicago, 1988.

[DH76] W. Diffie and M. Hellman. Multiuser
cryptographic techniques. IEEE Trans-
actions on Information Theory, 1976.

[ElG84] T. ElGamal. A public key cryptosystem
and a signature scheme based on discrete
logarithms. In Crypto’84, volume 196 of
LNCS, 1984.

[GB96] S. Goldwasser and M. Bellare. Lecture
notes on cryptography. MIT, 1996.

[Gen95] R. Gennaro. 6.915 computer and net-
work security, lecture 24, Dec 1995.

[GMW86] O. Goldreich, S. Micali, and A. Wigder-
son. Proofs that yield nothing but their
validity and a methodology of crypto-
graphic protocol design. In Proc. of 27th
IEEE FOCS, pages 174–187, Toronto,
1986.

[GMW87] O. Goldreich, S. Micali, and A. Wigder-
son. How to play any mental game — a
completeness theorem for protocols with
honest majority. In STOC, pages 218–
229, 1987.

[HMP00] Martin Hirt, Ueli Maurer, and Bartosz
Przydatek. Efficient secure multi-party
computation. In Advances in Cryptol-
ogy - ASIACRYPT’00, volume 1976 of
LNCS, pages 143–161, 2000.

[Knu98] D. Knuth. The art of computer program-
ming, volume 2. A-W, 1998.

[Mer83] M. Merritt. Cryptographic Protocols.
PhD thesis, Georgia Inst. of Tech., Feb
1983.

[MH78] R. Merkle and M. Hellman. Hiding infor-
mation and signatures in trapdoor knap-
sacks. IEEE Transactions on Informa-
tion Theory, 24:525–530, 1978.

[MJ00] P. Meseguer and M. Jiménez. Dis-
tributed forward checking. In DCS, 2000.

[Pai99] P. Paillier. Public-key cryptosystems
based on composite degree residuosity
classes. In Eurocrypt’99, volume 1592 of
LNCS, pages 223–238, 1999.

[SF02] M. C. Silaghi and B. Faltings. A com-
parison of discsp algorithms with respect
to privacy. In 3rd DCR-02 Workshop,
Bologna, July 2002.

[Sha79] A. Shamir. How to share a secret.
Comm. of the ACM, 22:612–613, 1979.

[SSHF00] M.-C. Silaghi, D. Sam-Haroud, and
B. Faltings. Asynchronous search with
private constraints. In Proc. of AA2000,
pages 177–178, Barcelona, June 2000.

[Sta98] M. Stadtler. Publicly verifiable secret
sharing. In Proc., 1998.

[Tsa93] E. Tsang. Foundations of Constraint
Satisfaction. Academic Press, 1993.

[WF02] R.J. Wallace and E.C. Freuder.
Constraint-based multi-agent meeting
scheduling: Effects of agent heterogene-
ity on performance and privacy loss. In
DCR, pages 176–182, 2002.

[Yao82] A. Yao. Protocols for secure computa-
tions. In FOCS, pages 160–164, 1982.

[YSH02] M. Yokoo, K. Suzuki, and K. Hirayama.
Secure distributed constraint satisfac-
tion: Reaching agreement without re-
vealing private information. In CP, 2002.

15

