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Abstract. The original ADOPT-ng has three major versions, corre-
sponding to three different classes of feedback possibilities. The first ver-
sion is identical to the scheme of the original ADOPT, where messages
with feedback are communicated only to the variable of one’s parent
node in the DFS of the constraint graph. It is similar to the Graph-
Based Backjumping concept common in Constraint Satisfaction (CSPs),
except that the asynchronous computation paradigm makes the term
“backjumping” less intuitively accurate.
The second major version of ADOPT-ng communicates costs to higher
priority agents based on dependencies detected dynamically. The third
version combined dependencies detected dynamically with statically an-
alyzed constraint graph structure. These versions are related to Conflict-
Based Backjumping schemes in CSPs in the way conflicts are announced
to earlier variables. Here we discuss and experiment in more detail the
advantages and drawbacks of the different backjumping schemes and of
some of their variations. While past experiments have shown that sending
more feedback is better than sending the minimal information needed for
correctness, new experiments show that one should not exaggerate send-
ing too much feedback and that the best strategy is at an intermediary
point.

1 Introduction

Distributed Constraint Optimization (DCOP) is a formalism that can model
naturally distributed problems. These are problems where agents try to find as-
signments to a set of variables that are subject to constraints. Typically research
has focused on techniques in which reluctance is manifested toward modifications
to the distribution of the problem (modification accepted only when some rea-
soning infers it is unavoidable for guaranteeing that a solution can be reached).
This criteria is widely believed to be valuable and adaptable for large, open,
and/or dynamic distributed problems [17, 4, 9, 1, 12]. It is also perceived as an
alternative approach to privacy requirements [16, 7, 10].

ADOPT-ng [14] is a recent optimization algorithm for DCOPs using a type
of nogoods, called valued nogoods [3], that besides automatically detecting and
exploiting the DFS tree of the constraint graph coherent with the current order,
can exploit additional communication leading to significant improvement in ef-
ficiency. The examples given of additional communication are based on allowing



each agent to send feedback via valued nogoods to several higher priority agents
in parallel. The usage of nogoods is a source of much flexibility in asynchronous
algorithms. A nogood specifies a set of assignments that conflict with existing
constraints [15]. A basic version of the valued nogoods consists of associating
each nogood to a threshold, namely a cost limit violated due to the assignments
of the nogood.

We start by defining the general DCOP problem, followed by introduction
of the immediately related background knowledge consisting in the ADOPT al-
gorithm and the use of Depth-First Search trees in optimization. In Section 3
we present the ADOPT-ng algorithm that unifies ADOPT with the older Asyn-
chronous Backtracking (ABT). ADOPT-ng is introduced by first describing the
goals of its design in terms of the three backjumping schemes that it uses. We
provide a more detailed description of used data structures and of their func-
tion. Several different new and old variations mentioned during the description
are compared experimentally in the last section.

2 Distributed Valued CSPs

Constraint Satisfaction Problems (CSPs) are described by a set X of variables
and a set of constraints on the possible combinations of assignments to these
variables with values from their domains.

Definition 1 (DCOP). A distributed constraint optimization problem
(DCOP), aka distributed valued CSP, is defined by a set of agents A1, A2, ..., An,
a set X of variables, x1, x2, ..., xn, and a set of functions f1, f2, ...fi, ..., fn,
fi : Xi → IR+, Xi ⊆ X, where only Ai knows fi. We assume that xi can
only take values from a domain Di = {1, ..., d}.

Denoting with x an assignment of values to all the variables in X, the problem
is to find argmin

x

∑n

i=1 fi(x|Xi
).

For simplification and without loss of generality, one typically assumes that
Xi ⊆ {x1, ..., xi}.

By x|Xi
we denote the projection the set of assignments in x on the set of

variables in Xi.

3 ADOPT with nogoods

Asynchronous Distributed OPTimization with valued nogoods (ADOPT-ng) is
a distributed optimization algorithm. It exploits the increased flexibility brought
by the use of valued nogoods. The algorithm can be seen as an extension of both
ADOPT and ABT.

A nogood, ¬N , specifies a set N of assignments that conflict with existing
constraints [15]. Valued nogoods have the form [SRC, c, N ] and are an extension
of classical nogoods. Each valued nogood has a set of references to a conflict
list of constraints SRC and a threshold c. The threshold specifies the minimal



weight of the constraints in the conflict list SRC given the assignments of the
nogood N [3, 14].

A valued nogood [SRC, c, N∪〈xi, v〉] applied to a value v of a variable xi is re-
ferred to as the cost assessment (CA) of that value and is denoted (SRC, v, c, N).
If the conflict list is missing (and implies the whole problem) then we speak of
a valued global nogood. One can combine valued nogoods by sum-inference and
min-resolution to obtain new nogoods [3]. If N = (〈x1, v1〉, ..., 〈xt, vt〉) where
vi ∈ Di, then we denote by N the set of variables assigned in N , N = {x1, ..., xt}.

Proposition 1 (min-resolution). Assume that we have a set of cost assess-
ments for xi of the form (SRCv, v, cv, Nv) that has the property of containing
exactly one CA for each value v in the domain of variable xi and that for all
k and j, the assignments for variables Nk ∩ Nj are identical in both Nk and
Nj. Then the CAs in this set can be combined into a new valued nogood. The
obtained valued nogood is [SRC, c, N ] such that SRC=∪iSRCi, c=mini(ci) and
N=∪iNi.

Proposition 2 (sum-inference). A set of cost assessments of type
(SRCi, v, ci, Ni) for a value v of some variable, where ∀i, j : i 6= j ⇒ SRCi ∩
SRCj = ∅, and the assignment of any variable xk is identical in all Ni where
xk is present, can be combined into a new cost assessment. The obtained cost
assessment is (SRC, v, c, N) such that SRC=∪iSRCi, c=

∑
i(ci), and N=∪iNi.

When an attempt to combine nogoods using sum-inference fails because their
SRCs have a non-empty intersection, one of the inputs is retained and the other
one is discarded.

As in ABT, agents communicate with ok? messages proposing new assign-
ments of the variable of the sender, nogood messages announcing a nogood, and
add-link messages announcing interest in a variable. As in ADOPT, agents can
also use threshold messages, but their content can be included in ok? messages.

For simplicity we assume in this algorithm that the communication channels
are FIFO (as enforced by the Internet transport control protocol). Attachment
of counters to proposed assignments and nogoods also ensures this requirement
(i.e., older assignments and older nogoods for the currently proposed value are
discarded).

3.1 Exploiting DFS trees for Feedback

Here we recall the feedback schemes of ADOPT-ng and introduce the new vari-
ants ADOPT-A and ADOPT-D . In ADOPT-ng, agents are totally ordered
as in ABT, A1 having the highest priority and An the lowest priority. The target
of a valued nogood is the position of the lowest priority agent among those that
proposed an assignment referred by that nogood. Note that the basic version of
ADOPT-ng does not maintain a DFS tree, but each agent can send messages
with valued nogoods to any predecessor. ADOPT-ng also has hybrid versions
that can spare network bandwidth by exploiting an existing DFS tree. It has
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Fig. 1. Feedback modes in ADOPT-ng. a) a constraint graph on a totally ordered
set of agents; b) a DFS tree compatible with the given total order; c) ADOPT-p :
sending valued nogoods only to parent (graph-based backjumping); d) ADOPT-d
and ADOPT-D : sending valued nogoods to any ancestor in the tree; e) ADOPT-a
and ADOPT-A : sending valued nogoods to any predecessor agent.

two ways of exploiting such an existing structure. The first is by having each
agent send its valued nogood only to its parent in the tree and it is roughly
equivalent to the original ADOPT. The other way is by sending valued nogoods
only to ancestors. This later hybrid approach can be seen as a fulfillment of a
direction of research suggested in [11], namely communication of costs to higher
priority parents.

The versions of ADOPT-ng are differentiated using the notation ADOPT-
XYZ. X shows the destinations of the messages containing valued nogoods. X
has one of the values {p, a, A, d, D} where p stands for parent, a and A stand
for all predecessors, and d and D stand for all ancestors in a DFS trees. The
difference between the upper and lower case versions is further explained in
Section 3.2. Y marks the optimization criteria used by sum-inference in selecting
a nogood when the inputs have the same threshold and their SRC intersect. For
now we use a single criterion, denoted o, which consists of choosing the nogood
whose target has the highest priority. Z specifies the type of nogoods employed
and has possible values {n, s}, where n specifies the use of valued global nogoods
(without SRCs) and s specifies the use of valued nogoods (with SRCs).

The different schemes are described in Figure 1. The total order on agents is
described in Figure 1.a where the constraint graph is also depicted with dotted
lines representing the arcs. Each agent (representing its variable) is depicted with
a circle. A DFS tree of the constraint graph which is compatible to this total
order is depicted in Figure 1.b. ADOPT gets such a tree as input, and each agent
sends COST messages (containing information roughly equivalent to a valued



global nogood) only to its parent. As mentioned above, the versions of ADOPT-
ng that replicate this behavior of ADOPT when a DFS tree is provided are
called ADOPT-p , where p stands for parent and the underscores stand for any
legal value defined above for Y and Z respectively. This method of announcing
conflicts based on the constraint graph is depicted in Figure 1.c and is related
to the classic Graph-based Backjumping algorithm [5, 8].

In Figure 1.d we depict the nogoods exchange schemes used in ADOPT-d
and ADOPT-D where, for each new piece of information, valued nogoods are
separately computed to be sent to each of the ancestors in the known DFS tree.
As for the initial version of ADOPT, the proof for ADOPT-d and ADOPT-D
shows that the only mandatory nogood messages for guaranteeing optimality in
this scheme are the ones to the parent agent. However, agents can infer from
their constraints valued nogoods that are based solely on assignments made by
shorter prefixes of the ordered list of ancestor agents. The agents try to infer
and send valued nogoods separately for all such prefixes.

Figure 1.e depicts the basic versions of ADOPT-ng, when a DFS is not known
(ADOPT-a and ADOPT-A ), where nogoods can be sent to all predecessor
agents. The dotted lines show messages, which are sent between independent
branches of the DFS tree, and which are expected to be redundant. Experi-
ments have shown that valued nogoods help to remove the redundant dependen-
cies whose introduction would otherwise be expected from such messages. The
provided proof for ADOPT-a and ADOPT-A shows that the only mandatory
nogood messages for guaranteeing optimality in this scheme are the ones to the
immediately previous agent. However, agents can infer from their constraints
valued nogoods that are based solely on assignments made by shorter prefixes
of the ordered list of all agents. As in the other case, the agents try to infer and
send valued nogoods separately for all such prefixes.

3.2 Levels of Conflict differentiating ADOPT-a and ADOPT-d from
ADOPT-A and ADOPT-D

The valued nogood computed for the prefix A1, ..., Ak ending at a given prede-
cessor Ak may not be different from the one of the immediately shorter prefix
A1, ...., Ak−1. Sending that nogood to Ak may not affect the value choice of Ak,
since the cost of that nogood applies equally to all values of Ak. Exceptions ap-
pear in the case where such nogoods cannot be composed by sum-inference with
some valued nogoods of Ak. The new versions ADOPT-D and ADOPT-A
correspond to the case where optional nogood messages are only sent when the
target of the payload valued nogood is identical to the destination of the mes-
sage. The versions ADOPT-d and ADOPT-a correspond to the case where
optional nogood messages are sent to all possible destinations each time that the
payload nogood has a non-zero threshold. I.e., in those versions nogood mes-
sages are sent even when the target of the transported nogood is not identical
to the destination agent but has a higher priority.
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Fig. 2. Schematic flow of data through the different data structures used by an agent
Ai in ADOPT-ng.

3.3 Data Structures

Each agent Ai stores its agent-view (received assignments), and its outgoing links
(agents of lower priority than Ai and having constraints on xi). The instantiation
of each variable is tagged with the value of a separate counter incremented each
time the assignment changes. To manage nogoods and CAs, Ai uses matrices
l[1..d], h[1..d], ca[1..d][i+1..n], th[1..i], lr[i+1..n] and lastSent[1..i-1] where d is
the domain size for xi. crt val is the current value Ai proposes for xi. These
matrices have the following usage.

– l[k] stores a CA for xi = k, which is inferred solely from the local constraints
between xi and prior variables.

– ca[k][j] stores a CA for xi = k, which is obtained by sum-inference from
valued nogoods received from Aj .

– th[k] stores nogoods coming via threshold/ok? messages from Ak.
– h[v] stores a CA for xi=v, which is inferred from ca[v][j], l[v] and th[t] for

all t and j.
– lr[k] stores the last valued nogood received from Ak.
– lastSent[k] stores the last valued nogood sent to Ak.

The names of the structures were chosen by following the relation of ADOPT
with A* search [13]. Thus, h stands for the “heuristic” estimation of the cost
due to constraints maintained by future agents (equivalent to the h() function in
A*) and l stands for the part of the standard g() function of A* that is “local”
to the current agent. Here, as in ADOPT, the value for h() is estimated by



aggregating the equivalent of costs received from lower priority agents. Since the
costs due to constraints of higher priority agents are identical for each value,
they are irrelevant for the decisions of the current agent. Thus, the function f()
of this version of A* is computed combining solely l and h. We currently store
the result of combining h and l in h itself to avoid allocating a new structure for
f().

The structures lr and th store received valued nogoods and ca stores interme-
diary valued nogoods used in computing h. The reason for storing lr, th and ca is
that change of context may invalidate some of the nogoods in h while not inval-
idating each of the intermediary components from which h is computed. Storing
these components (which is optional) saves some work and offers better initial
heuristic estimations after a change of context. The cost assessments stored in
ca[v][j] of Ai also maintain the information needed for threshold messages,
namely the heuristic estimate for the value v of the variable xi at successor Aj

(to be transmitted to Aj if the value v is proposed again).
The array lastSent is used to store at each index k the last valued nogood

sent to the agent Ak. The array lr is used to store at each index k the last
valued nogood received from the agent Ak. Storing them separately guarantees
that in case of changes in context, they are discarded at the recipient only if
they are also discarded at the sender. This property guarantees that an agent
can safely avoid retransmitting to Ak messages duplicating the last sent nogood,
since if it has not yet been discarded from lastSent[k] then the recipients have
not discarded it from lr[k] either.

3.4 Data flow in ADOPT-ng

The flow of data through these data structures of an agent Ai is illustrated in
Figure 2. Arrows ⇐ are used to show a stream of valued nogoods being copied
from a source data structure into a destination data structure. These valued
nogoods are typically sorted according to some parameter such as the source
agent, the target of the valued nogood, or the value v assigned to the variable
xi in that nogood (see Section 3.3). The + sign at the meeting point of streams
of valued nogoods or cost assessments shows that the streams are combined

using sum-inference. The
+
⇐ sign is used to show that the stream of valued

nogoods is added to the destination using sum-inference, instead of replacing the
destination. When computing a nogood to be sent to Ak, the arrows marked with

<k restrict the passage to allow only those valued nogoods containing solely
assignments of the variables of agents A1, ..., Ak. Our current implementation
recomputes the elements of h and l separately for each target agent Ak by
discarding the previous values.

The pseudocode is described in Algorithm 1. The min resolution(j) function
applies the min-resolution over the CAs associated to all the values of the variable
of the current agent, but uses only CAs having no assignment from agents with
lower priority than Aj . More exactly it first re-computes the array h using only
CAs in ca and l that contain only assignments from A1, ..., Aj , and then applies



min-resolution over the obtained elements of h. As mentioned above, in the
current implementation we recompute l and h at each call to min resolution(j),
and such a call is separately performed for each ancestor agent Aj .

The order of combining CAs matters. The array h is computed only using
cost assessments that are updated solely by sum-inference. To compute h[v]:

1. a) When maintaining DFS trees, for each value v, CAs are combined sepa-
rately for each set s of agents defining a DFS sub-tree of the current node:
tmp[v][s]=sum-inferencet∈s(ca[v][t]).
b) Otherwise, with ADOPT-a and ADOPT-A , we act as if we have a
single sub-tree:
tmp[v]=sum-inferencet∈[i+1,n](ca[v][t]).

2. CAs from step 1 (a or b) are combined:
In case (a) this means: ∀v, s; h[v]=sum-inference∀s(tmp[v][s]).
Note that the SRCs in each term of this sum-inference are disjoint and
therefore we obtain a valued nogood with threshold given by the sum of the
individual thresholds obtained for each DFS sub-tree (or larger).

For case (b) we obtain h[v]=tmp[v]. This makes sure that at quies-
cence the threshold of h[v] is at least equal to the total cost obtained at the
next agent.

3. Add l[v]: h[v]=sum-inference(h[v], l[v]).
4. Add threshold: h[v]=sum-inference(h[v], th[*]).

3.5 Optimizing valued nogoods

Both for the versions of ADOPT-ng using DFS trees, as well as for the version
that does not use such DFS tree preprocessing, if valued nogoods are used for
managing cost inferences, then a lot of effort can be saved at context switching
by keeping nogoods that remain valid [6]. The amount of effort saved is higher if
the nogoods are carefully selected (to minimize their dependence on assignments
for low priority variables, which change more often). We compute valued nogoods
by minimizing the index of the least priority variable involved in the context. At
sum-inference with intersecting SRCs, we keep the valued nogoods with lower
priority target agents only if they have better thresholds. Nogoods optimized in
similar manner were used in several previous DisCSP techniques [2]. A similar
effect is achieved by computing min resolution(j) with incrementally increasing
j and keeping new nogoods only if they have higher thresholds than previous
ones with lower targets.

3.6 Example

Now we give a detailed example of a run of ADOPT-ng basic versions ADOPT-
aos and ADOPT-Aos. Let us take the problem in Figure 3. Note that in this
simple case the two versions do not differ since any optional nogood message
can only leave from A3 to A1. Such a message is sent in ADOPT-aos only if
it has a non-zero threshold, which happens only when A1 is a target of the



when receive ok?(〈xj , vj〉, tvn) do

integrate(〈xj , vj〉);
if (tvn no-null and has no old assignment) then

k:=target(tvn); // threshold tvn as common cost;
th[k]:=sum-inference(tvn,th[k]);

check-agent-view();

when receive add-link(〈xj , vj〉) from Aj do

add Aj to outgoing-links;
if (〈xj , vj〉) is old, send new assignment to Aj ;

when receive nogood(rvn, t) from At do

foreach new assignment a of a linked variable xj in rvn do

integrate(a); // counters show newer assignment;

if (an assignment in rvn is outdated) then

if (some new assignment was integrated now) then

check-agent-view();

return;

foreach assignment a of a non-linked variable xj in rvn do

send add-link(a) to Aj ;

lr[t]:=rvn;
foreach value v of xi such that rvn|v is not ∅ do

vn2ca(rvn, i, v) → rca (a CA for the value v of xi);
ca[v][t]:=sum-inference(rca,ca[v][t]);
update h[v] and retract changes to ca[v][t] if h[v]’s cost decreases;

check-agent-view();

procedure check-agent-view() do

for every Aj with higher priority than Ai (respectively ancestor in the DFS tree,
when one is maintained) do

for every(v ∈ Di) update l[v] and recompute h[v];
// with valued nogoods using only instantiations of {x1, ..., xj};

if (h has non-null cost CA for all values of Di) then

vn:=min resolution(j);
if (vn 6= lastSent[j]) then

if (target(vn) == j) then

send nogood(vn,i) to Aj ;
lastSent[j] = vn;

crt val=argminv(cost(h[v]));
if (crt val changed) then

send ok?(〈xi, crt val〉, ca2vn(ca[crt val][k]),i)
to each Ak in outgoing links;

procedure integrate(〈xj , vj〉) do

discard elements in ca, th, lastSent and lr based on other values for xj ;
use lr[t]|v to replace each discarded ca[v][t];
store 〈xj , vj〉 in agent-view;

Algorithm 1: Receiving messages of Ai in ADOPT-ng
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Fig. 3. A DisCOP with three agents and two inequality constraints. The fact that
the cost associated with not satisfying the constraint x1 6= x2 is 2, is denoted by the
notation (#2). The cost for not satisfying the constraint x1 6= x3 is 1.

1. A1 ok?〈x1, 1〉 → A2, A3

2. A2 nogood[|F, T, F |, 2, 〈x1, 1〉]→ A1

3. A1 ok?〈x1, 2〉 → A2, A3

4. A3 nogood[|F, F, T |, 1, 〈x1, 2〉]→ A1, A2

5. A1 ok?〈x1, 3〉 → A2, A3

6. A2 nogood[|F, F, T |, 1, 〈x1, 2〉]→ A1

Fig. 4. Trace of ADOPT-aos and ADOPT-Aos on the problem in Figure 3

message, which means that it will also be sent in ADOPT-Aos. A trace is shown
in Figure 4 where identical messages sent simultaneously to several agents are
grouped by displaying the list of recipients. The agents start selecting values for
their variables and announce them to interested lower priority agents. A3 has no
constraint between x3 and x2; therefore the first exchanged messages are ok?
messages sent by A1 to both successors A2 and A3 and proposing the assignment
x1=1.

After receiving the assignment from A1, the best (and only) assignment for
A2 is x2=1 at a cost of 2 due to the conflict with the constraint x1 6= x2. Similarly
A3 instantiates x3 with 2 and with a local cost of 0.

Since the best local cost of A2 is not null, A2 performs a min-resolution. Since
a single value exists for A2 and ca is empty, this min-resolution simply obtains a
valued nogood defined by the existing local nogood: h[1] = l[1] = [C1,2, 2, 〈x1, 1〉].
In our implementation we decide to maintain a single reference for each agent’s
secret constraints. SRCs are represented as Boolean values in an array of size n. A
value on the ith position in the array SRC equal to T signifies that the constraints
of Ai are used in the inference of that nogood. A2 also stores the sent valued
nogood in lastSent[1] such that it avoids resending it without modification as
a result of receiving other messages. A1 stores this received valued nogood in



lr[2], from where it is used to update ca[1][2], by sum-inference. Since ca[1][2] is
empty, it becomes equal to this valued nogood.

Agent A1 now updates its h[1] by setting it to ca[1][2] (since l[1] and ca[1][3]
are empty). Since the threshold of h[1] becomes 2 and is higher than the threshold
of the other two values, {2,3}, in the domain of x1, A1 changes the assignment
of x1 to one of them, here 2. This is announced through another ok? message
to A2 and A3.

On the receipt of the ok? messages, the agents update their agent-view with
the new assignment. Each agent tries to generate valued nogoods for each prefix
of its list of predecessor agents: {A1} and {A1, A2} respectively. This time it is
A2 whose only possible assignment leads to a non-zero local cost. Based on
its agent-view and constraints, A2 generates a corresponding valued nogood
[C1,3, 1, 〈x1, 2〉] with threshold 1 due to the weight 1 of its constraint. This valued
nogood is sent to the agent A1 whose assignment is involved in this nogood.
To guarantee optimality the nogood is also sent to its immediate predecessor,
namely the agent A2, making sure that at quiescence all the costs of its children
are summed.

After receiving this second nogood, A1 stores it in lr[3], used further by sum-
inference to set ca[2][3], and finally used to update h[2]. As a result, A1 now
switches its assignment to its value that has the lowest threshold in h, namely
the value 3. The new assignment is again sent by ok? messages to its successors.
Meanwhile, the agent A2 also processes the valued nogood received from A3

storing it in its own lr[3], ca[2][3] and h[2]. The nogood is not changed by sum
inference or min-resolution at this agent; it is sent on to A1 which stores it in
lr[2] and ca[2][2]. However, it does not lead to any modification in the h[2] of A1

since the SRCs of ca[2][2] and ca[2][3] have a nonempty intersection.

After receiving the third assignment from A1, the other two agents reach qui-
escence with cost 0; thus an optimal solution is found. Note that the existence of
message 6 depends on whether the message 5 (with the last assignment from A1)
reaches A2 before or after the nogood from A3, that the message 5 invalidates.
The solution is found in 5 half-round-trips of messages (a logic time of 5).

4 Experiments

The algorithms are compared on the same problems that are used to report
ADOPT’s performance in [11]. To correctly compare our techniques with the
original ADOPT, we have used the same order (or DFS trees) on agents for each
problem. The impact of the existence of a good DFS tree compatible with the
used order is tested separately by comparison with a random ordering. The set
of problems distributed with ADOPT and used here contains 25 problems for
each problem size. It contains problems with 8, 10, 12, 14, 16, 18, 20, 25, 30,
and 40 agents, and for each of these numbers of agents it contains test sets with
density .2 and with density .3. The density of a (binary) constraint problem’s
graph with n variables is defined by the ratio between the number of binary



Agents ADOPT aos Aos dos Dos

8 922.2 429.48 427.92 429.2 427.76
10 779.84 354.12 365.76 351.16 357.48
12 1244.56 544.76 562.96 544.24 552.88
14 1591 674.56 704.96 656.24 669.44
16 2453.8 839.92 852.6 814.76 845.48
18 4666.4 1777.44 1815.6 1727.84 1765.16
20 *6264.71 1711.84 1701.6 1718.36 1703.88
25 *33919.5 7499.32 7498.12 7434.96 7276.4
30 *58459.1 16707.48 17618.48 16097.36 17154.4
40 * 96406.76 90747.6 93678.76 90951.56

Fig. 5. Longest causal chain of messages (cycles) used to solve versions of ADOPT
using CAs, averaged over problems with density .3. Table entries containing * specify
that the corresponding algorithm did not manage to solve all instances of that size in
2 weeks, and the eventually present value is based on the subset of problems solved in
that time.

Agents ADOPT aos Aos dos Dos

8 45.2 31.4 31.4 31.32 31.32
10 60.2 30.92 29.56 30.24 30.44
12 69.12 39.32 39.6 39.48 39.52
14 75.64 42.32 42.8 42.44 42.72
16 97.84 44.24 46.2 44.04 45.16
18 162.16 75.08 75.36 73.08 74.8
20 71.8 36.48 35.16 36.48 34.84
25 221.44 83.12 83.96 80.64 84.2
30 433.92 112.68 122.64 112.52 114.84
40 720.04 117.28 108.4 107.64 112.24

Fig. 6. Longest causal chain of messages (cycles) used to solve versions of ADOPT
using CAs, averaged on 25 problems with density .2.

constraints and n(n−1)
2 . Results are averaged on the 25 problems with the same

parameters.

The length of the longest causal (sequential) chain of messages of each solver,
computed as the number of cycles of our simulator and averaged on problems
with density .3, is given in Figure 5. Results for problems with density .2 are
given in Figure 6. It took more than two weeks for the original ADOPT imple-
mentation to solve one of the problems for 20 agents and density .3, and one
of the problems for 25 agents and density .3 (at which moment the solver was
interrupted). Therefore, it was evaluated using only the remaining 24 problems
at those problem sizes.



Nodes aos Aos dos Dos pon

14 21981.96 14696.88 15760.4 12427.52 16869.40
16 35710.8 22057.12 24552.24 19553.64 28375.24
18 93368.6 50861.08 64610.96 44328.36 58243.40
20 116468.8 56852.32 85127.44 49630.32 81116.80
25 863145.12 350337.6 602437.08 291927.8 630519.00
30 3640811.3 1137317 1853420 881049.7 830616.88
40 49802812 9046121 22413986.4 7141719

Fig. 7. Total number of messages used by versions of ADOPT-ng, averaged on problems
with density .3.

Nodes Aos aos dos Dos

16 18 33 19 15
18 56 111 70 45
20 74 161 115 61
25 674 1615 1198 539
30 2889 8474 4907 2101

Fig. 8. Total number of seconds used on a simulator by versions of ADOPT-ng, on the
25 problems with density .3.

Agents 16 18 20 25 30 40

ADOPT-aos 839.92 1777.44 1711.84 7499.32 16707.48 96406.76
no threshold 849.76 1783.6 1763.6 7641.84 16917.72 96406.64

ADOPT-dos 814.76 1727.84 1718.36 7434.96 16097.36 93678.76
no threshold 847.76 1779.6 1741.28 7500.04 16958.28 98932.72

Fig. 9. Impact of threshold valued nogoods on the longest causal chain of messages
(cycles) for versions of ADOPT-ng, averaged on problems with density .3.

Agents 16 18 20 25 30 40

DFS compatible 839.92 1777.44 1711.84 7499.32 16*103 96*103

random order 461*103 1.5*106 3.7*106 48*106 128*106 —

Fig. 10. Impact of choice of order according to a DFS tree on the longest causal chain
of messages (cycles) for versions of ADOPT-ng, averaged on problems with density .3.

The use of valued nogoods in ADOPT-ng brought an improvement of ap-
proximately 7 times on problems of density 0.2, and an approximately 5 times
improvement on the problems of density .3.

Figure 5 shows that, with respect to the number of cycles, the use of SRCs
practically replaces the need to maintain the DFS tree since ADOPT-aos and
ADOPT-Aos are comparable in efficiency with ADOPT-dos and ADOPT-Dos.



SRCs bring improvements over versions with valued global nogoods, since SRCs
allow detection of dynamically obtained independence.

Versions using DFS trees require fewer parallel/total messages, being more
network friendly, as seen in Figure 7. Figure 7 shows that refraining from sending
too many optional nogoods messages, as done in ADOPT-Aos and ADOPT-
Dos, is comparable to ADOPT-pon in terms of total number of messages, while
maintaining the efficiency in cycles comparable to ADOPT-aos and ADOPT-dos.

A comparison between the total times required by versions of ADOPT-ng on
a simulator is shown in Figure 8. It reveals the computational load of the agents,
which, as expected, is proportional to the total number of exchanged messages.

A separate set of experiments was run for isolating and evaluating the con-
tribution of threshold valued nogoods. Figure 9 shows that the contribution of
threshold nogoods is higher when a DFS tree is maintained, but still it is no
more than 5%.

Another experiment, whose results are shown in Figure 10, is meant to eval-
uate the impact of the guarantees that the ordering on agents is compatible
with some short DFS tree. We evaluate this by comparing ADOPT-aos with
an ordering that is compatible with the DFS tree built by ADOPT, versus a
random ordering. The results show that random orderings are unlikely to be
compatible with short DFS trees and that verifying the existence of a short DFS
tree compatible to the ordering on agents to be used by ADOPT-ng is highly
recommended.

Figure 5 clearly show that the highest improvement in number of cycles is
brought by sending valued nogoods to other ancestors besides the parent. The use
of the structures of the DFS tree makes slight improvements in number of cycles
(when nogoods reach all ancestors) and slight improvements in total message
exchange. To obtain a low total message traffic and to reduce computation at
agent level, we found that it is best not to announce any possible valued nogoods
to each interested ancestor. Instead, one can reduce the communication without
a penalty in number of cycles by only announcing valued nogoods to the highest
priority agent to which they are relevant (besides the communication with the
parent, which is required for guaranteeing optimality).

5 Conclusions

ADOPT-ng detects and exploits dynamically created independence between sub-
problems. Such independence can be caused by assignments. Previous experi-
mentation with ADOPT-ng has shown that it is important for an agent to infer
and send in parallel several valued nogoods to different higher priority agents.
New experiments show that exaggerating this principle by sending each valued
nogood to all ancestors able to handle it produces little additional gain while
increasing the network traffic and the computational load. Instead, each inferred
valued nogood should be sent only to the highest priority agent that can handle
it (its target).



We isolated and evaluated the contribution of using threshold valued nogoods
in ADOPT-ng, which was found to be at most 5%. In addition, we determined the
importance of precomputing and maintaining a short DFS tree of the constraint
graph, or at least of guaranteeing that a DFS tree is compatible with the order
on agents, which is almost an order of magnitude in our problems. Choosing a
strategy of medium aggressiveness for sending valued nogoods to predecessors
brings slight improvements in terms of length of longest causal chain of messages
(measured as number of cycles of the simulator). It brings an order of magnitude
improvements in the total number of messages.
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