
SECURE ASYNCHRONOUS SEARCH

MARIUS-CĂLIN SILAGHI, DJAMILA SAM-HAROUD, AND BOI FALTINGS

Swiss Federal Institute of Technology Lausanne

1015 Ecublens,Switzerland

{silaghi,haroud,faltings}@lia.di.epfl.ch

Distributed Constraint Satisfaction (DisCSP) is a general framework for modeling
distributed combinatorial problems. Practical distributed problems can involve
competitional situations among agents. In such cases not all agents are needed
for building a final solution and agents may try to hamper their competitors from
reaching a solution. This peculiarity cannot be modeled by current DisCSP for-
malisms. In particular, there is no mechanism for thwarting agents from dis-
seminating fake nogoods in order to impede their competitors from proposing or
reaching a good solution. In this paper we extend a DisCSP framework in order
to model competition. We adapt one of the most recent search algorithms to offer
agents means to check that received messages are legal.

1 Introduction

A wide variety of problems such as negotiation, resource allocation, design
or scheduling are inherently distributed. Importing techniques from a prob-
lem to another is easier when general frameworks are used. Distributed
Constraint Satisfaction (DisCSP) provides such a framework for static dis-
tributed combinatorial problems. A DisCSP is composed of a set of agents
A = {A1, A2, ...An} and a set of k variables V = {v1, v2, ...vk}, each of them
under the control of the agents interested in it. The variables in V are called
external variables. With each agent Ai is associated a set of external variables
Vi = {vi1, vi2, ..., vimi

}, Vi ⊆ V , and a set of constraints Ci = {ci1, ci2, ...ciki
}

such that any external variable constrained by a constraint in Ci is also con-
tained in Vi. The domain of a variable vi is Di. All the variables xj constrained
by constraints in Ci, and such that xj 6∈ Vi are said to be internal.

In problems with self-interested agents, the agents can actually be com-
peting for a resource or state and some agents can reach a solution without
the agreement of some others (e.g. with several clients or several providers).
The competitors are interested in concealing solutions they dislike. Often they
can do it by illegally generating nogood messages for solutions that normally
do not need their agreement. The existing distributed protocols for DisCSPs
do not offer the possibility to check these byzantine failures.

In this paper, we present an extended DisCSP framework that can model
these missing features. Since in practice competition between agents often

SAS: submitted to World Scientific on June 19, 2001 1

occurs in conjunction with negotiation problems, the extended framework
also enables the agents to attach preferences to their alternatives and to relax
their constraints. We assume that the sum of preferences in solutions has to be
minimized. The relaxation consists in either reducing values or, as proposed
in 1, in accepting new tuples of valuations. The new algorithms can prevent
agents neither from making coalitions, nor from byzantine failures that act
against themselves. However, the new technique helps agents to avoid being
cheated with the help of the distributed search protocol.

2 Dynamic DisCSPs

By dynamism we understand that the participation of an agent to the solu-
tion/search process is dynamically conditioned by certain value assignments.
The extended framework builds on the notion of Valued CSPs 2. First we de-
scribe the problem of an agent, Au, as a Negotiation Valued CSP, (NVCSPu).
NVCSPu consists of a minimal increment, ε, a set of external variables, V(u),
and an ordered set of global constraints, c1(u),...,cnu

(u). The domain of each
external variable contains a value, F , meaning unchanged and indifferent.
Each pair (valuation v, constraint ci(u)) has associated a tuple:

T v
i (u) = (feasiblev

i (u), preferencev
i (u)).

T v
i (u) is such that if nu≥i>j>0 then for any valuation v,

feasiblev
j (u)→feasiblev

i (u) and preferencev
i (u)≤preferencev

j (u). There ex-
ists a valuation, v, such that either feasiblev

i (u) 6= feasiblev
j (u), or otherwise

feasiblev
i (u) = feasiblev

j(u) = T and preferencev
i (u) + ε ≤ preferencev

j (u).
A Dynamic DisCSP (DyDisCSP) is defined by a set of agents A0,...,An.

Ak,k=[0,h),n≥h>0 are h agents called initiators. Each agent Aj owns a NVCSP,
NVCSPj . Given a valuation, v, for a set of external variables, S(v) is the set
of agents owning a variable not instantiated in v to F . By convention, the
initiators always belong to S(v). An agent is active if it belongs to the minimal
subset, A(v), of S(v) such that S(Πvars(A(v))v) ∩ (S(v) \ A(v)) = ∅.

Definition 1 (Acceptable valuation) A valuation v is acceptable if each
agent in S(v) proposes for v a feasible associated tuple (feasiblev

ki
(i) = T).

Definition 2 (Solution) A solution of a DyDisCSP is an acceptable valua-
tion v of all the external variables such that if each agent Ai in S(v) is active
and proposes for v an associated tuple (T, preferencev

ki
(i)), where ki ≤ ni,

then

v ∈ {b| b = argmin
a

(
∑

Ai∈S(v),i≥h

preferencea
ki

(i))}

SAS: submitted to World Scientific on June 19, 2001 2

and no agent Ai, i>0, wants to reveal a constraint cj , j>ki. The feasibility
condition is

∑
Ai∈S(v) preferencea

ki
(i) ≤ 0.

The feasibility condition verifies that the solution is acceptable to the
initiators. If v is a solution of a DyDisCSP, then S(v) is the solver set for v.

3 Extending AASR

In this section we introduce Secure Asynchronous Search (SAS) which is an
adaptation of Asynchronous Aggregation Search with Reordering (AASR) to
the DyDisCSP framework. First we recall the basic elements of AASR 4.

Definition 3 (Aggregate) An aggregate is a triplet (v, s, h) where v is a
variable, s a set of values for v and h a history of the pair (v, s).

A history h for an aggregate a = (v, s, h) proposed by an agent Ak takes
the form of a list of pairs |i : l| where i is the index of an ancestor of h that has
made a proposal on v and l is the value of a counter. An aggregate requests
higher priority agents to comply with a proposal, therefore it defines by itself
a nogood. Such nogoods are called nogoods entailed by the view.

Definition 4 An explicit nogood has the form ¬V . V is a list of aggregates.

The agents communicate via: ok, nogood, add-link and reorder mes-
sages. ok messages are sent from agent Aj to agent Ai, and have as parameter
a list of aggregates for variables in which Ai is interested. nogood messages
have as parameter an explicit nogood. add-link messages are sent from agent
Aj to agent Ai, informing Ai that Aj is interested in a set of variables, vars.
The agent on position i is denoted Ai. Ri is the agent that can reorder Ai+1

by sending reorder messages.4

3.1 Legal messages

In AASR, both ok and nogood messages transport some kind of nogoods.
These are the nogoods entailed by the view, respectively the explicit nogoods.
In order to allow the agents detect messages that are potentially harmful for
the quality of the computed solution, we introduce the notions of legal nogood
and legal aggregate. We want to prevent the agents from disturbing the search
by generating illegal messages. A message is illegal if it is generated by an
inactive agent. SAS requests agents to build messages in such a way that
their lawfulness can be proved.

Definition 5 (Legal explicit nogood) Any legal explicit nogood generated
by an agent Ai, where Ai is not an initiator, must contain at least one aggre-
gate (vj , s, h), vj ∈ V (i) such that s does not contain F .

SAS: submitted to World Scientific on June 19, 2001 3

Definition 6 (Justification) Each aggregate Ii generated by an agent Ai

that is not initiator needs a justification. The justification of the aggregate Ii

consists of a pair (v,h) built from an aggregate (v,s,h) that activates Ai.

The justification of an aggregate, a, corresponds to a relaxation of the
nogood entailed by the view given by a and is stored in the history of the
aggregate, attached to the pair corresponding to the agent that has generated
a. A history has now the form |i1,l1, j1|i2,l2, j2|... where ik is the index of an
agent, lk is the value of an instantiation counter and jk is the justification of
the corresponding instantiation.

Property 1 The space needed by an agent to store all the aggregates is O(nv),
where n is the number of agents and v is the number of variables.

Corolary 1 The size of an aggregate is O(nv).

Property 2 SAS has polynomial space complexity in each agent.

The proofs are given in 3. Besides generating illegal nogoods, the agents
can also generate illegal aggregates against their competitors.

Definition 7 (Legal aggregate) An aggregate is legal if its justification is
valid and the variable in the justification does not contain F in its instantia-
tion. By convention, any aggregate generated by an initiator is legal.

3.2 The SAS protocol

In SAS the messages must prove that their sender is active. Agents must
generate only legal nogoods. Any other nogood would be discarded. The
next rule shows how legal nogoods can be obtained.a

Rule 1 (Nogood generation) An agent Ai may compute an explicit no-
good N that is not legal, but the set in the newest aggregate it has received
for some variable vj from V (i) does not contain F . Ai should add the newest
aggregate of vj to N . If this is not possible, it should refrain from sending N

to other agents. This rule does not apply to initiators.

Rule 2 (Checking) The receiver of an explicit nogood ¬N should check that
¬N is legal. Also the receiver of any aggregate, should check that the new
aggregate is legal. Illegal information is discarded.

The justifications trigger add-link messages in the same conditions as the
aggregates received in an explicit nogood in AASR. Justified nogoods should
not be delivered to the agent and integrated in the other structures inherited
from AASR before the answer to eventual add-link messages is received.

aWhen illegal nogoods are made legal, they are in fact relaxed. Agents that must relax
nogoods can use heuristics for choosing the variable vj from V (i). (e.g. choosing the variable
for which the known aggregate was generated by an agent with the lowest position.)

SAS: submitted to World Scientific on June 19, 2001 4

Rule 3 (Justification change) Whenever the justification of an agent Ai

is modified, Ai has to send again all its aggregates.

Rule 4 (Justification invalidation) Whenever the justification J of a
stored aggregate a1 in Ai is invalidated by some incoming new aggregate a2,
Ai has to invalidate a1 and has to apply again this invalidation rule as if a
new aggregate of the variable in a1 would have been received.

Each proposal that activates or inactivates agents is broadcast to all agents
with higher positions.
Rule 5 (Next active) If possible, acting for Ri, each Ai, proposes new or-
ders to ensure that Ai+1 is active. R0 is an initiator.

Proposition 1 The Secure Asynchronous Search maintains the characteris-
tics of completeness, correctness, and termination of AASR.

SAS is an asynchronous protocol. A corresponding synchronous protocol
(SSS) can be obtained in an obvious way.

4 Conclusions

We present an approach to distributed problems with competition and
byzantine-failures. The concept of Dynamic Distributed Constraint Satisfac-
tion is proposed and we show how it allows for modeling complex characteris-
tics of such problems. As shown in 3, DyDisCSPs can easily model and solve
(Generalized) English Auctions. The presented algorithms and framework
inherit from Constraint Reasoning generality and flexibility in modeling.

References

1. K. Hirayama and M. Yokoo. Distributed partial constraint satisfaction
problem. In CP,LNCS 1330, pages 222–236, 97.

2. T. Schiex, H. Fargier, and G. Verfaillie. Valued constraint satisfaction
problems: hard and easy problems. In IJCAI, pages 631–637, 95.

3. M.-C. Silaghi, D. Sam-Haroud, and B. Faltings. Generalized En-
glish Auctions by relaxations in DyDisCSPs with private constraints.
TR #01/365, EPFL, 2001.

4. M.-C. Silaghi, D. Sam-Haroud, and B. Faltings. ABT wih asynchronous
reordering. IAT, 2001.

SAS: submitted to World Scientific on June 19, 2001 5

