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Abstract

Constraint Satisfaction Problems (CSP) have been very successful in problem-solving tasks
ranging from resource allocation and scheduling to configuration and design. Increasingly,
many of these tasks pose themselves in a distributed setting where variables and constraints
are distributed among different agents.

A variety of asynchronous search algorithms have been proposed for addressing this
setting. We show how two techniques commonly used in centralized constraint satisfaction,
value aggregation and maintaining arc consistency can be applied to increase efficiency in
an asynchronous, distributed context as well, and report on experiments that quantify the
gains.

1 Introduction

Constraint Satisfaction Problems (CSP) have wide applicability to problem-solving
tasks ranging from resource allocation and scheduling to configuration and design.
A constraint satisfaction problem (CSP) is given by:

• a set of n variables X = {x1, ..., xn},
• a set of n domains, D = {d1, ..., dn}, for the variables,
• a set of t constraints, C = {c1 = (xi, xj, ...), ...,ct}, each of which is a subset of

the set of variables, linked with a relation, and
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• a set of t relations, R = {r1, ..., rt}. ri gives the allowed value combinations for
the corresponding constraint ci.

A solution to a CSP is an assignment of values from the corresponding domains
to each variable such that for all constraints, the combination of assigned values
is allowed by the corresponding relation. Many combinatorial problems, such as
resource allocation, scheduling and planning can be modeled as CSPs.

Distributed constraint satisfaction problems (DisCSPs) arise when constraints
and/or variables are controlled by a set of independent but communicating agents.
In the common definition of DisCSP [41], variables are distributed among agents
so that each variable can only be assigned values by a single agent. A DisCSP is
thus obtained from a CSP by adding:

• a set of m agents A = {A0, .., Am}
• an ownership mapping M : X ∪ C → P(A) that assigns each variable or con-

straint to the subset of agents that own it (in [41], the subset of agents owning
any given variable is supposed to contain exactly one agent). P(A) is a common
notation for the set of subsets of A.

The value of a variable can only be set by its owner. For simplicity, one often
assumes that each agent Ai owns exactly one variable xi. If in some application an
agent owns several variables, the same agent can take multiple roles in the protocol.

Constraint satisfaction problems are often solved by backtrack search. Protocols
have been proposed for carrying out such backtrack search as message exchanges
between agents. In particular, we are interested in asynchronous protocols where
agents can proceed independently without explicit synchronization. Asynchronism
gives the agents more freedom in the way they can contribute to search, allowing
them to enforce individual policies (on privacy, computation, etc.). It also increases
both parallelism and robustness. In particular, robustness is improved by the fact
that the search can still detect unsatisfiability even in the presence of withdrawn or
crashed agents. Similarly, the information an agent provided before withdrawing
may be sufficient to prove a solution. Distributed solutions also provide a certain
security against manipulation by a centralized solving agent. Several Asynchronous
Search (AS) algorithms have been developed that allow solving such problems
by exchanging messages about variable assignments and conflicts with constraints
(called nogoods) [41,23,1,4].

In centralized settings, the efficiency of backtrack search can be improved signifi-
cantly using a combination of techniques:

• aggregation of variable values into larger meta-values to reduce constraint checks
on individual values,

• consistency techniques to prune values that could not be part of any solution, and
to detect failure early.
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Fig. 1. Simplified trace of an asynchronous search process (for simplicity shown messages
are drawn as if delivered instantaneously). Each agent Ai is associated with a variable xi,
a set of constraints involving this variable and states represented by boxes. A state shows
either the assignment chosen for the owned variable or a conflicting situation (a nogood is
just being inferred). The arrows represent messages. Each message is prefixed by a number.

In this paper, we show how protocols for asynchronous search can be adapted to
include these techniques as well, and report on the efficiency gains that can be
empirically observed on random problems.

2 Basic Asynchronous Search Algorithm

This section introduces the basic asynchronous search algorithm into which we are
going to integrate the techniques we are proposing. It is the original ABT algo-
rithm of Yokoo et.al. [41]. We use the example shown in Figure 1 to illustrate the
concepts. We restrict our description to the case with unbounded nogood record-
ing ([41]) and where each agent has exactly one variable.

In this framework, each agent is responsible for maintaining the value of one vari-
able. It has a link toward any agent that owns (i.e. knows) a constraint involving
that variable. Agents are arranged in a fixed priority order �, and we assume that
Ai � Aj (Ai has higher priority than Aj) iff i < j (total order among agents). A
constraint is enforced by the agent which has the lowest priority among those that
are responsible for the variables in the constraint.

In our example, there are four agents, A1, A2, A3, A4 who control the variables
x1, x2, x3, x4, with identical domains d1=d2=d3=d4={0, 1, 2, 3}. Agents have the
following constraints:

• A1: c1(x1, x3), r1 = 3x1 + 1 > x3
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• A2: c2(x1, x2), r2 = x1 > x2 − 2
• A3: c3(x1, x3), r3 = x1 > x3 − 2
• A4: c4(x2, x3, x4), r4 = x2 + x3 − x4 ≥ 4

In order to solve this problem with conventional AS techniques, we first need to
assign a priority to each agent, then move certain constraints to the agent with the
lower priority. As Ai+1 has precedence over Ai, so that for example A1’s constraint
c1 has to be communicated to A3 which will be responsible for its enforcement.
Every constraint-evaluating agent will create communication links with the agents
controlling variables in that constraint.

At every moment in the search, every agent maintains an agent view that describes
its local view of the search space. The agent view consists of:

• the current assignments it knows for its own variable as well as for all variables
of agents with higher priority that it has a constraint with,

• the currently valid nogoods involving its own variable. An agent can either
choose to store all nogoods that it has ever received, entailing potentially ex-
ponential growth in memory requirements, or only those that are valid given the
assignments in its agent view. In the latter case, nogoods might need to be red-
erived.

Each agent will start by randomly assigning to its variable a value from its domain
(0 in our example). As detailed in Algorithm 1, when a value has to be chosen for
its variable, the local search space for each agent is determined by its local con-
straints along with the restrictions imposed by the other agents via ok? and nogood
messages. When an agent assigns a value v to its variable x, it sends an ok?(x=v)
message to all the lower-priority agents having a link with it. These agents then
evaluate their constraints on that variable. If these constraints are satisfied by the
new assignment, given all the known values for the other variables, they do nothing,
otherwise they try a new value for their variable. If any of them finds no available
value, it generates a nogood message, sent to the lowest priority agent generating a
culprit assignment. The agent receiving this nogood message will then have to in-
corporate the information in its local search space and change the faulty assignment
or generate other nogoods, accordingly. Hence, constraints are always evaluated by
lower-priority agents and values always changed by higher priority ones.

Figure 1 shows a simplified trace of message passing obtained for our example
using the asynchronous backtracking algorithm described in [41]. Each agent starts
by assigning the value 0 to its variable. Agent A1 then sends an ok? message to A2

andA3 and agentsA2 andA3 both send ok? messages toA4. AgentsA2 andA3 both
find the value received fromA1 to be compatible with their constraints. Hence, they
do not react. However, A4’s constraint is violated and this agent returns a nogood
message (4) to A3.
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when received (ok?,〈xj, dj〉) do
add 〈xj, dj〉 to agent view;
check agent view;

when received (nogood,Aj ,¬N ) do
when 〈xk, dk〉, where xk is not connected, is contained in ¬N

send add-link to Ak;
add 〈xk, dk〉 to agent view;

put ¬N in nogood-list;
old value← current value;
check agent view;
when old value = current value

send (ok?,〈xi, current value〉) to Aj;

procedure check agent view do
when agent view and current value are not consistent

if no value in Di is consistent with agent view then
backtrack;

else
select d ∈ Di where agent view and d are consistent;
current value← d;
send (ok?,〈xi, d〉) to lower priority agents in outgoing links;

procedure backtrack do
nogoods← {V | V = inconsistent subset of agent view};
when an empty set is an element of nogoods

broadcast to other agents that there is no solution;
terminate this algorithm;

for every V ∈ nogoods do
select 〈xj, dj〉 where xj has the lowest priority in V ;
send (nogood,Ai,V ) to Aj;
remove 〈xj, dj〉 from agent view;

check agent view;

Algorithm 1: Procedures of Ai for receiving messages in ABT.

3 Value aggregation: from ABT to AAS

Asynchronous Aggregation Search (AAS) is an extension of ABT where con-
straints can be private data of some agents and several agents are allowed to si-
multaneously propose instantiations for the same shared variable. Coupled with the
fact that AAS allows aggregating ranges of tuples, we obtain efficiency gains over
the existing asynchronous backtracking algorithms. The evaluation is done using
three different implementations, based respectively on full, partial and no nogood
recording.
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Fig. 2. Trace of a search with AAS. The states of the agents can be represented by the
current solution to the local CSP defined by their constraints. The pairs |a, b| included in
the messages are used for message ordering.

In AAS, each agent maintains valuation proposals for the set of variables in which
it is involved. Thus, A1 maintains valuation proposals for x1 and x3, A2 for x1

and x2, A3 for x1 and x3, and A4 for all of x2, x3 and x4 (see Figure 2). AAS
differs from ABT in the fact that the valuation proposals are not just individual
assignments, but sets of aggregated alternative assignments [17] to different vari-
ables. More precisely, an ok? proposal is a list of domains, one for each involved
variable, which represent all the tuples of their Cartesian product. The proposal
ok?(x1 = {0..3}, x2 = {0, 1}), for example, will say that all the tuples of the
Cartesian product {0..3}×{0, 1} satisfy the sending agent given its current agent-
view. Similarly, the result of the search is no longer a list of individual assignments,
but a set of domains whose Cartesian product contains only solutions.

Figure 2 illustrates the behavior of AAS on our small example. Agent A1 first se-
lects the valuation proposals {x1 = {0..3}}, {x3 = {0}}, whose Cartesian product
satisfies it, and sends an ok? message with the needed parts of this information (as
defined by existing links) to A2, A3 and A4 who manage constraints sharing vari-
ables withA1. The algorithm now works in exactly the same manner as ABT, except
that messages refer to sets of alternative valuations, called aggregates. Agents also
reason in terms of sets of alternative (partial) solutions represented with Cartesian
products rather than solely about isolated partial assignments. More specifically,A4

finds that the addition to its initial constraint of the unary constraints {x2 ∈ {0, 1}}
and {x3 ∈ {0}} defined by its agent view leads to an insatisfiable problem. This is
the same as saying that no extension of any combination in the Cartesian product
{x2 = {0, 1}} × {x3 = {0}} defined by its agent view is compatible with its con-
straint. It therefore generates a nogood for these received proposals causing A2 to
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select the next proposal (defining another Cartesian product). Note that since this
change selects a subrange of the values allowed by the knowledge of A2 for x1, it
is not necessary to verify this change with A1. If it were not possible to find such
a subrange, a nogood would be generated and sent to A1 in order to try another
Cartesian-product there.

There are several ways in which the agents can build the aggregations. Aggregation
algorithms guaranteeing a complete and non-redundant covering of the solution
space determined by local constraints are given in [17,14,32]. The choice of exactly
which of these algorithms should be used depends also on other decisions. For
example, if one decides to restrict the domain representations to ranges, then the
algorithms in [32] may be preferred, otherwise the algorithms in [17] are the right
choice. Actually, the applications we target with our techniques (i.e. negotiation)
cannot allow global policies to be enforced at this level, but they are dictated by
private considerations of the agent. For this reason we considered that it was not
warranted to work on optimizing aggregation policies, but just to enable agents to
use aggregations.

In the following we only assume that the aggregation technique we use terminates
in a finite time, that it is sound (i.e. all the elements of the Cartesian product it
returns are solutions), and that it is complete (i.e. it returns a solution whenever it
exists). For the reader that wants a simple example, Chronological Backtracking is
such a technique where each Cartesian product contains a single element.

3.1 AAS Algorithms

In this section we will present three versions of a distributed backtrack search algo-
rithm based on aggregation. We start by giving the necessary definitions. Similarly
to the ABT algorithm of [41], the agents are assigned priorities. We assume that
the agent Ai has priority over another agent Aj if i < j. An agent Ai is interested
in all variables that it controls or that are involved in constraints that it enforces.
It has a link with every agent that controls a variable it is interested in. When two
agents Ai and Aj are related by a link and i < j, thus Ai � Aj , the link is directed
from the higher priority agent Ai to Aj . Ai is called the predecessor of Aj and Aj
is called the successor of Ai. The end agents are those without incoming links. For
tests/bootstrap purposes we employ a system agent, a special agent that receives
the subscriptions of the agents for the search. It decides the order of the agents,
initializes the links and announces the termination of the search.

Definition 1 (Assignment) An assignment is a triplet (xj, setj, hj) where xj is a
variable, setj a range of values for xj and hj a history of the pair (xj, setj).

The history provides the information necessary for a correct message ordering. It
determines if a given assignment is more recent than another and will be described
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in more details later. Let a1 = (xj, setj, hj) and a2 = (xj, set
′
j, h
′
j) be two assign-

ments for the variable xj . a1 is newer than a2 if hj is more recent than h′j .

Definition 2 An aggregate is a list of assignments.

Definition 3 (Explicit nogood) An explicit nogood has the form ¬V , where V is
an aggregate.

The agents communicate using channels without message loss via:

• ok? messages which have as parameter an aggregate. They represent proposals
of domains for a given set of variables and are sent from agents with higher pri-
orities to agents with lower priorities. An agent sends ok? messages containing
only domains of variables in which the target agent is interested. He does not
send messages with any assignment of a variable x which does not modify the
domain of the most recent assignment that he already knowns for x. If he has
not just discarded a recent applicable nogood 1 , then he sends only the domains
for which he proposes a new modification now. ok? messages are also sent as
answers to add-link messages.

• nogood messages which have as parameter an explicit nogood. A nogood mes-
sage is sent from an agent with lower priority to an agent with higher priority,
namely to the agent with the lowest priority among those that have modified an
assignment in the parameter.

• add-link(vars) messages: sent from agent Aj to agent Ai (with j > i). They
inform Ai that Aj is interested in the variables vars.

Each agent Ai owns a set of local constraints. The current solution space of Ai,
denoted as CAi , is described by the local constraints, a list of nogoods and a view.

Definition 4 (View) The view of an agentAi is an aggregate V containing received
assignments for variables Ai is interested in.

A view imposes restrictions on the original search space defined by the local con-
straints of an agent. It contains for each variable, the newest received assignment
via incoming messages. Each assignment (xj, setj, hj) found in the view of Ai

defines an entailed unary constraint: {xj∈setj}.

Definition 5 (Entailed nogood) Let V1 be the view of a given agent, T be the set of
tuples disabled from the original solution space by the entailed unary constraints
of the assignments in V1. We say: The nogood V1→¬T is entailed by the view V1.

A tuple is contained in the current solution space of agent Ai if it satisfies the local
constraints and is not contained in the explicit or entailed nogoods of CAi . The

1 This refers to nogoods discarded, as described later, since the last instantiation, within
the reset CL of AAS0
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current instantiation of an agent Ai is a Cartesian product such that all its tuples
are contained in CAi . The list of nogoods, respectively the view, of an agent Ai is
updated by the nogood, respectively ok? messages it receives.

We now propose the following three distributed backtrack search algorithms based
on aggregation:

• AAS2: is based on full nogood recording similarly to the ABT algorithm of [40].
• AAS1: proceeds similarly to dynamic backtracking [11]. It removes the nogoods

depending on the instantiation of the modified variables, allowing for guarantees
of polynomial space complexity.

As at most one valid nogood is stored for each issued proposal, the exact
space required is a polynomial function in the size of the local search space of
the agent, sn2. But this size, s, is given by the maximal number of variables that
the agent can instantiate and when this number is not bounded, as in the general
case considered so far, we end up with an exponential function in the number of
variables, n2dn, where d is the domain size.

Two solutions exist to this problem. One is to renounce to generality and to
arbitrarily decide on an upper-bound in the number of variables that can be as-
signed by an agent (e.g. see the upper-bound of one set in [4]). Such an upper-
bound brings no other difference in the algorithms and therefore will not receive
additional attention in this paper. A more radical alternative is the next version.

• AAS0: is a modification of AAS1 with less nogood recording. AAS0 is a novel
algorithm which merges all the nogoods maintained by each agent of AAS1 into
a single nogood using the relaxation rule:

V1 ∧ V2 → ¬T1

V1 ∧ V3 → ¬T2

⇒V1 ∧ V2 ∧ V3 → ¬(T1 ∨ T2),

where V1, V2 and V3 are aggregates of assignments generated by other agents,
obtained by grouping the elements of the nogoods, such that they have no vari-
able in common. Each agent maintains a single explicit nogood which integrates
each new incoming explicit nogood using the relaxation rule.

In the case of AAS0, the right part of the nogood description corresponds to
the expanded tuples and the left one is referred to as the conflict list (CL).

The core backtrack procedure that we used in our experiments for each agent is the
same for the three algorithms, and is as expected exponential in the arity of the con-
straints of the agent. The AAS algorithm obtained from ABT with the extensions
proposed here is described by the pseudocode of Algorithm 2 and Algorithm 3.
Each agent Ai stores the newest history received for each variable xk, history(xk),
as well as a counter, C i

xk
, of the number of assignments sent for xi. The conse-

quence of a nogood ¬N from the point of view of Ai, consequencei(¬N ), is the
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when received (ok?,〈xj , sj, hj〉) do
if(history(xj) invalidates hj) return;
add(〈xj, sj, hj〉) to agent view;
reconsider stored and invalidated nogoods according to AAS0/AAS1/AAS2;
check agent view;

when received (nogood,Aj ,¬N ) do
add new assignments for already connected variables from ¬N to agent view;
if (((Ai knows ¬M) ∧ (consequencei(¬N ) covered by consequencei(¬M)) ∧

¬(better ¬N than ¬M))
∨ invalid(¬N )) then
if (AAS2) //(i.e. I do not want to discard ¬N then

when 〈xk, sk, hk〉, where xk is not connected, is contained in ¬N
send add-link(xk) to modifiers(xk);
add 〈xk, sk, hk〉 to agent view;

store ¬N ;

else
when 〈xk, sk, hk〉, where xk is not connected, is contained in ¬N

send add-link(xk) to modifiers(xk); add 〈xk, sk, hk〉 to agent view;

put ¬N in nogood-list;
reconsider stored and invalidated nogoods according to AAS0/AAS1/AAS2;
old aggregate← current inst aggregate;
check agent view;
for all oa = ca; (oa∈old aggregate)∧(ca∈current inst aggregate) do

send (ok?,〈var(ca), set(ca), history(ca)|i:C i
var(ca)|〉) to Aj;

Algorithm 2: Responses of agent Ai for receiving messages in AAS.

Cartesian product of the assignments of Ai found in ¬N . The set of predecessors
that can make proposals about a variable xk is denoted by modifiers(xk), the vari-
able of an assignment a by var(a), its set of alternative valuations by set(a), and its
history by history(a). The initial constraints of Ai are denoted by CSP(Ai).

The procedure for reacting to a message of a given type is denoted by the under-
lined name of the type. At the beginning, each agent Ai is in the state Searching
where it tries to generate a current instantiation from CAi . At any time in the state
Searching, an agent can transit into the state Accepting where it accepts ok?
or nogood messages. These cause the agent to execute the procedures Ok, respec-
tively Nogood (see Algorithm 2) which update the local search space (i.e the views,
the nogoods lists and eventually the other structures of the employed technique
used for searching satisfying Cartesian-products for the agent’s problem) accord-
ing to the content of the messages. When, in the state Searching, its CAi is
found empty, the agent Ai announces a nogood (and removes the assignments of
the agent target of the nogood). When, on the contrary, a local solution is found
(i.e. a set of tuples can be extracted from CAi), the agent announces the instanti-
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procedure check agent view do
when agent view and current inst aggregate are not consistent

if no aggregate, V, in CAi is consistent with agent view then
backtrack;

else
select V ⊆ CAi where agent view, CSP(Ai) and V are consistent;
clean(current inst aggregate);
for all a ∈ V do

if (need multicast(a)) then
xk ← var(a); C i

xk
++;

history(a)← append(history(xk),|i:C i
xk
|);

send (ok?,〈xk, set(a), history(xk)|i:C i
xk
|〉) to lower priority

agents in outgoing links(xk);
current inst aggregate← current inst aggregate ∪ a;

else
3.1 if (needed(a)) then

current inst aggregate← current inst aggregate ∪ a;

procedure backtrack do
...
for every V ∈ nogoods do

select Ak, the lowest priority agent proposing assignments in V ;
send (nogood,Ai,V ) to Ak;
remove from agent view all assignments proposed by Ak ;
reconsider stored and invalidated explicit nogoods;

check agent view;

Algorithm 3: Procedures of agent Ai in AAS.

ation by sending ok? messages to the concerned agents and transits into the state
Solution. The current instantiation of the agent is known as long as it remains
in the state Solution. The three algorithms differ by the actions undertaken in
the procedures Ok and Nogood, respectively described in Algorithm 2.

The procedure Ok treats incoming ok? messages. The parameter of such a message
is an aggregate. We say that a received assignment (xj, setj, hj) is obsolete if the
view of the receiving agent contains a newer assignment for xj . The procedure
Ok starts by filtering the obsolete assignments and then proceeds to updating the
set CAi according to the remaining valid assignments. Suppose that one of these
assignments offers a new possibility of valuation for an external variable xj with
respect to the current view. In AAS2 or AAS1 all the nogoods which do not take
the new possibility into account will be disabled. In AAS1 this means that they
will be removed. In AAS2 they will be marked and kept for an eventual further
usage. In AAS0, if the nogood obtained by the relaxed inference rule contains such
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a variable but does not take the new value into account, the conflict list will be reset,
i.e. removing the nogood obtained by the relaxation rule. Resetting CAi means that
all the tuples allowed by the current nogoods and view are introduced in CAi . In the
end, the previous instantiation can be updated and renewed.

A new assignment of Ai is not of interest for successor agents if it does not modify
in any way the previous newest assignment proposed by either Ai or its predeces-
sors. Therefore we denote by need multicast(a) a predicate telling when assignment
a is of interest for one’s successors. At line 3.1, needed(a) succeeds when a has the
same set as some assignment b for var(a), found in old aggregate, and b is still
valid. Then, a inherits the history of b, history(a)←history(b). clean() removes the
invalidated assignments from current inst aggregate.

The procedure Nogood treats incoming nogood messages. The argument, ¬N , of
such a message is an explicit nogood. Let V be the view of the receiving agent.
Suppose that there exists in N , respectively in V , an assignment a1, respectively a2

for the variable xj such that a1 is newer than a2. We will say that the nogood gives
a new view for the variable xj . In this case, the agent has to update its view (and
perform all the operations for the receipt of an ok? message). An explicit nogood is
valid if it contains only valid assignments and concerns (i.e. invalidates) the current
instantiation of the agent. If the received nogood is stored and if it contains variables
that are unknown in the current view of the agent Ai, the procedure Add links will
establish new links with all the agents Aj, j<i, for which these variables are local.
The relation better between two nogoods can be defined by the user according to
any heuristic. Typical heuristics, at each agent Ai, that have been used in the past
are: the nogoods that after removing Ai’s assignments should be sent to higher
priority agents are better (in the experiments on ABTR [33]), and nogoods with
less variables are better.

3.2 Solution Detection

Recall that a solution is a valuation of each variable such that all the constraints of
each agent are satisfied.

Remark 1 If a set of several solutions are proven at once, the returned solution is
picked randomly among the proven ones.

In the existing asynchronous search algorithms, solutions are only detected upon
quiescence 2 . This state is usually recognized using a general purpose distributed
mechanism [5]. We have noticed that in the particular case of asynchronous search,
solutions can be detected before quiescence. This means that termination can be
inferred earlier and that the number of messages required for termination detection

2 end of ok?, nogood and add-link messages

12



can be reduced. We have introduced a system message (not considered in the notion
of quiescence and not interfering with the search) called accepted which informs
the sender of an ok? message of the acceptance of its proposal:

• accepted messages are sent from an agent to the lowest priority predecessor
initially linked. Such a link is called acceptance link. If the agent has been an
end-agent (agent initially having no incoming link), it sends an accepted to the
system agent,

• an accepted message has as parameter a set of assignments obtained by comput-
ing the union of the ones in the current proposal of the sender with the parameters
of the last accepted messages received from all its outgoing acceptance links and
replacing all assignments for the same variable with a single assignment obtained
by intersecting the corresponding sets of alternative valuations,

• an accepted message is sent by an agent only when its parameter is non empty
(i.e does not contain empty domains), all the outgoing acceptance links have
presented an accepted message, and the agent is in the state Solution,

• the agents checks whether to send accepted messages when they reach the state
Solution or when they receive accepted messages.

accepted messages are FIFO ordered (e.g. using counters for each acceptance link).

Let Di be the subgraph induced by the agents Aj with j > i such that Aj can be
reached fromAi along the directed acceptance links initialized by the system agent.

Proposition 1 If a given agent Ai receives an accepted(Sk) message from all its
outgoing acceptance links and if ∀k,⋂Sk 6= ∅, then Ai can infer that

⋂
Sk is a

solution for the partial CSP defined by the agents of Di.

Proof.Di is a directed tree. If a given nodeAj of this tree receives an accepted(Sk)
message from all its k direct successors such that

⋂
Sk 6= ∅, it is obvious that

the k successors have found an agreement on all the elements of
⋂
Sk. Following

the definition of accepted messages, the agent Aj can in turn send an accepted
through its incoming acceptance link and the process be repeated recursively. The
proposition is therefore simply proved by induction on Di.

Corollary 1 A correct solution is detected when the system agent receives an
accepted(Si) message from each initial end agent Ai and when

⋂
i Si 6= ∅.

The termination algorithms can be classified in two families [25]: a) techniques
based on a system agent launching termination-detection-rounds at regular time in-
tervals, launching termination-detection-rounds by any agent that suspects termina-
tion, and b) having continuous processes that monitor the global state by following
the active subsets of agents.

Lemma 1 The highest number of messages for termination detection by any prob-
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ing mechanism with termination-detection-rounds is exponential for AAS.

Proof. AAS has an exponential time complexity (considering a worst case with
no aggregations, and a single constraint forbidding everything and enforced by the
last agent), therefore probing at any regular time intervals leads to an exponential
number of termination-detection-rounds.

In AAS (or ABT), each agent suspects termination after the handling of any re-
ceived message if it requires no sending of new messages. This happens an expo-
nential number of times e.g. when the order of the agents is the DFS order of [7].
Therefore launching termination-detection-rounds by any agent that suspects ter-
mination also leads to an exponential number of rounds (in worst case).

Lemma 2 The highest number of messages for termination detection with methods
that monitor the global state by following the active subsets of agents is exponential
for AAS.

Proof. In AAS, the active agents cannot be localized in topologic groups as links
can be added between each pair of agents. Given any temporary grouping, this can
change an exponential number of times due to backtrack with nogoods.

The previous two lemmas state that any of the classical termination detection algo-
rithms requires (in worst case) an exponential number of messages. Our solution
detection algorithm is an adapted version of one of the best termination-detection
techniques known in distributed systems (see the Channel counting method [25]).
While techniques based on probing at vary large intervals of time may need less
messages, they also delay the solution detection to multiples of the time intervals.

3.3 Message ordering

In asynchronous backtrack search (ABT), the messages must respect a FIFO chan-
nel order of delivery to ensure correct termination [41]. Our algorithm requires a
stronger condition to hold since the channel for each variable is no longer a star
but a graph. This means that several messages can arrive to the same agent, for
changing the value of the same variable, through different paths of the graph. For
example, in Figure 2 agent A3 can receive messages concerning variable x1 from
bothA1 andA2. An order must therefore be established between these kind of mes-
sages. In ABT it is sufficient to maintain a counter, for the emitter, and include its
value within each message sent in order to obtain a FIFO order of delivery. In our
algorithm, we include an additional such counter for each agent that modified a
given domain in the message. The history of changes is built by associating a chain
of pairs |a : b| to each variable of a message (see Figure 2). Such a pair means that a
change of the variable’s domain was performed by the agent with index a when its
counter for the corresponding variable had the value b. The local counters are reset
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to 0 each time an incoming ok? changes the known history of the corresponding
variable. It is incremented each time the agent proposes a change to the domain of
that variable. To ensure correct termination, we use the following convention: The
history of changes where the agent with the smaller index or the counter with the
larger value occurs first is the most recent. If a history is the prefix of the other, then
the longer one is more recent.

3.4 Correctness, Completeness, Termination

Proposition 2 AAS0 is correct, complete, and terminates.

Summary of the Proof. 3 Correctness is an immediate consequence of Corollary 1.

The proof that quiescence is reached is close to the one given for ABT in [41],
using the additional knowledge that only ok? messages could remove nogoods of
the agent with the least priority among those involved in the hypothetical infinite
loop.

Quiescence can correspond to failure or solution, but it can correspond as well to
deadlock. In order to prove that AAS0 cannot lead to deadlock, we shown that if the
system reaches quiescence without having detected a solution or failure, a correct
solution will be detected in finite time afterwards.

After receiving the last ok? message and performing the subsequent search, either
each agent Ai has a final instantiation that is consistent with its view, or failure is
detected.

At quiescence, the view of each agent Ai consists of the intersection of the instan-
tiations of all instantiated agents Aj, j < i, for the variables it is interested in. This
intersection corresponds, for each variable, to the newest received assignment.

From the previous steps it follows that in a finite time after quiescence, the inter-
section of the instantiations of all agents Aj, j ≤ i is nonempty and consistent with
all the constraints in the agents Aj, j ≤ i, for all i. Consequently, the last accepted
messages sent by an agent to its predecessors are such that at receiver,

⋂
Sk 6= ∅.

This is true for all the agents, which means that the accepted messages needed for
solution detection will reach the system agent.

For completeness, we have proven that failure cannot be announced by AAS0 when
a solution exists. A nogood is a redundant constraint with respect to the CSP to
solve. Since all the additional nogoods are generated by logical inference, an empty
nogood cannot be inferred when a solution exists.

3 The detailed proof is available in [38].

15



Proposition 3 AAS1 and AAS2 are correct, complete and terminate.

Proof. Immediate consequence of the fact that AAS1 and AAS2 only add redun-
dant constraints to AAS0 (under the form of nogoods) and of Proposition 2.

The optimisations to local processing proposed in [22,12] (e.g. forward checking of
labels) can also be applied. However, we did not make any effort at this level. We
mention that an integration of approximation techniques into ABT has also been
described in [16]. A synchronous approach close to AAS2 has been proposed for
solving design problems (see [8]).

4 Asynchronous consistency maintenance

Maintaining consistency through constraint propagation is one of the most im-
portant techniques in centralized constraint programming. We now present a new
distributed algorithm, called Maintaining Hierarchical Distributed Consistency
(MHDC), that incorporates distributed consistency into asynchronous backtrack-
ing. One of its main characteristics is to consider consistency maintenance as a
hierarchical task. Enforcing the hierarchies of consistency and performing search
can then be done with a high degree of asynchronism. This gives the agents more
flexibility and freedom in the way they can contribute to search, and increases par-
allelism. As expected, the experimental results show that substantial gains in com-
putational power can result from combining distributed search and distributed local
consistency algorithms.

4.1 Distributed Bound-Consistency

Bound-consistency is a simple form of arc-consistency that for each variable main-
tains only a pair of outer bounds that enclose the consistent values when the domain
is ordered. Centralized algorithms for maintaining bound-consistency on discrete
and continuous problems are presented in [32,21].

For integrating distributed bound consistency with Asynchronous Aggregation
Search (AAS), we now present an algorithm called Distributed Hierarchical Con-
sistency (DHC), that builds on AC3 [24] and is similar to DAC [42,27]. In DHC,
we consider a DisCSP with m agents, and call the constraints and variables owned
by an agent Ai its local CSP CSP (Ai). V ar(Ai) denote the variables in CSP (Ai).

Each agent Ai maintains a stack Si of labelings for its local variables. The stack’s
entry Si(k) of level k, with k varying from 0 to i, contains the labeling based on the
known assignments of all agentsAt, t ≤ k. By construction, the domain allowed by
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Si(k) for a variable v is contained in the domain for v in S i(k−1) (see Figure 3).
The reason for maintaining a stack of labels is that this allows easily adjusting the
labeling when a variable of agentAj changes value: it will require discarding labels
of level j and higher. We define:

Definition 6 (Label) A label generated by the agent Ai at consistency level k for
the variable x, and denoted by labelik(x), is a triplet (x, rik(x), contextik(x)).
rik(x) is a range of values giving the label of level k for the variable x. contextik(x)
is the context in which rik(x) is generated.

We denote by DHCik a process executed by the agent Ai and enforcing distributed
bound consistency on the labelings Si(k). The context is an aggregate which con-
tains all the assignments involved in the computation of rik(x) by DHCik. It is used
for updating the local information of the receiving agent, checking the validity of
the propagated nogood and inferring nogoods after search or a consistency main-
tenance process has detected domain wipe out. It will be described in more details
later. The context, contextik(x), of a label (x, rik(x), contextik(x)) is simply the
subset of the view of Ai used for computing rik(x) using a DHCik process. It is used
to explain the result. Explained nogoods have been used so far in dynamic arc-
consistency [3], and in maintainance of consistency in dynamic backtracking [18].

To compute the context, the local consistency algorithm employed to revise the
local constraints of an agent is extended by keeping a separate explanation for each
variable. This explanation is initialized with the current context of the label for that
variable at the corresponding level. Each time a revision of a constraint between xi
and xj removes a value of the variable xi, the explanation of xj is merged into the
explanation of xi.

We note that with bound consistency this can be refined to keep a separate expla-
nation for each bound (two explanations for a variable/label). In this case, on the
reduction of a bound b of xi with a set of values Db one adds to the explanation of
b only the explanations of the bound(s) of xj removing any of the initials supports
of Db. Similarly, with arc consistency one can maintain a separate explanation for
the removal of each value. In these cases, on the removal of a value of xi, only
the explanations of its initial supports need to be merged together to explain the
removal.

Recall that an assignment (xj, rj, hj) received by an agentAi is obsolete if the view
of Ai contains a newer assignment for xj . Similarly, we define:

Definition 7 (Valid label) A label sent in a propagate() message is valid if and
only if its context contains no obsolete assignment.

Definition 8 (Labeling) A labeling generated by the agent Ai at consistency level
k, and denoted labelingik, is a list of labels labelik(x).
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Fig. 3. The local labeling stack maintained by agent Ai for variable x.

We define a label of level k as a label computed by (bound) consistency using the
proposals of agents At, t≤k (stored as shown in Figure 3).

4.2 Maintaining Distributed Bound-Consistency

In a centralized framework, consistency algorithms are run whenever a variable
is assigned a value. This could be implemented in a distributed environment as a
synchronous mechanism, which we call synchronous MDC. However, it lacks par-
allelism, requires complex termination tests for detecting the convergence of each
local propagation, and has all the previously mentioned drawbacks of the synchro-
nism. We therefore propose to maintain consistency in a parallel and asynchronous
process. To achieve this goal, we consider bound-consistency maintenance as a hi-
erarchical task where each agent runs up tom separate processes that each maintain
a label of a different level.

DHCi0 is the particular DHC process that can be launched by agent Ai when it has
no information about the instantiation of other agents. DHCi0 corresponds to the el-
ementary level where the original global CSP is brought bound-consistent. DHCik,
with i>k>0, is the DHC process of level k that can be launched by Ai.

The agents communicate by sending propagate messages. The argument of a
propagate message is a list of labels. We denote by propagateik() the message
sent by the agent Ai at level k. A propagateik() message can only be sent by an
agent Ai with i > k to agents Aj with j≥k. It informs the concerned agents about
nogoods (domain reductions) inferred by a DHCik process. The agent Ai can run a
DHCik process, k>0, as soon as it has received an ok? message from the agent Ak or
a propagatejk() message from any agent Aj with j > k.

The labels, {(xk, rk, ck)|k∈V ar(Ai)∩V ar(Aj)}, sent as an argument by Aj to Ai
only contain variables xk whose rk has just been modified by Aj and that are local
variables common to Ai and Aj .

Each agent Ai starts by enforcing bound-consistency on its own local CSP,
CSP (Ai). This computation initializes the labels of DHCi0 which are then sent
to all the agents interested in the same variables. When Ai receives a new la-
bel (var,new-dom) via a propagate message, it combines this label with the
corresponding entry (var,old-dom) of S i. Such a combination is done by do-
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Fig. 4. A simple problem where running search and consistency maintenance asyn-
chronously helps. Crossed combinations are feasible.

main intersection and if it results in a reduction of old-dom, all the constraints of
CSP (Ai) involving var are reinserted in a revision queue, used for re-enforcing
bound-consistency on CSP (Ai). The resulting modified labels, if any, are further
broadcast to the concerned agents. The process has converged when no further mes-
sages are generated. Following the complexity of AC3, the maximum number of
generated messages ism2nd and the maximum length of a chain of sequential mes-
sages accountable by logical clocks [20] is nd (n:number of variables, d:maximum
domain size, m:number of agents). There can be m2 simultaneous messages.

In a synchronous algorithm synchronous MDC, each agent Ai would only launch
the process DHCii when the DHCkj have reached convergence for all k and for all
j < i. However, we can enable the DHCij’s, with 0≤j≤i, to run asynchronously in
Ai for different j’s, together with the asynchronous backtracking of AAS. This is
simpler and can lead to much faster execution, as shown by the following example
with two agents handling a single constraint each. The constraints involve the same
variables x1 and x2 and are shown in Figure 4.

Figure 5 compares the traces of message passing for this example between the syn-
chronous and asynchronous variants of maintaining distributed consistency. The
basic algorithm behaves as AAS except that, in addition to the ok? and nogood
messages, it also sends propagate messages which inform the agents about domain
reductions computed by the DHC processes. In Figure 5, propagate(k):x={a..b}
is a message informing the receiver that the domain reduction [a, b] has been com-
puted by a process DHC of level k for the variable x. The cost refers to the length
of the longest chain of sequential messages encountered before this message could
be generated (also known as the logic clock of the message [20]). In synchronous
MDC four sequential messages are exchanged before the convergence of DHC.
Still, the same amount of search remains to be done. Figure 5b shows that the
whole search space can be exhausted with the same number of messages by AAS
performed in parallel with DHC in asynchronous MHDC. In both cases, the mes-
sages for termination detection are not taken into account. The synchronous MDC
creates longer causal chains of messages, since it requires to wait for the detection
of the termination of distributed consistencies.
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8:nogood{}

0:propagate(0):x1={0..2}

1:propagate(0):x2={0..2}

2:propagate(0):x1={0..1}

3:propagate(0):x2={0..1}

4:ok:x1={1}|0:0|×x2={0}|0:0|

6:ok:x1={0}|0:1|×x2={1}|0:1|

7:nogood{x1={0}|0:1|×x2={1}|0:1|}

5:nogood{x1={1}|0:0|×x2={0}|0:0}|

4:nogood{}

0:propagate(0):x1={0..2}

0:ok:x1={1}|0:0|×x2={0}|0:0|

1:propagate(0):x2={0..2}

1:nogood{x1={1}|0:0|×x2={0}|0:0|}

2:propagate(0):x1={0..1}

2:ok:x1={0}|0:1|×x2={1}|0:1|

3:nogood{x1={0}|0:1|×x2={1}|0:1|}

3:propagate(0):x2={0..1}
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Fig. 5. Traces of messages for the example in Figure 4. Both solutions require the same
number of messages but they are exchanged simultaneously in the asynchronous version.

4.3 The MHDC algorithm

We now give the MHDC algorithm and its interaction with AAS. The notions of
assignment, aggregate and explicit nogoods are defined as in AAS. The current
solution space of Ai, denoted as CAi , is described by the local constraints, the entry
Si(i), a list of explicit nogoods, and a view.

A tuple is contained in the current local search space of agent Ai if it satisfies the
local constraints and is not contained in the explicit or entailed nogoods of CAi .
The current instantiation of an agent Ai is a set of assignments such that all tuples
it allows are contained in CAi . Figure 3 schematizes the set of labels maintained by
agents for each variable.

Definition 9 (Nogood entailed by consistency) Let T be the set of tuples disabled
from the original solution space by the labeling L of S i(k). We say that the nogood
L→ ¬T is entailed by consistency.
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We define a set {labelingik → ¬T ik} with labelingik ∈ Si(k) and k ∈ {0, . . . , i}
that contains all the nogoods entailed by consistency for a given agent Ai. As with
the merging of explicit nogoods in AAS0, several labels of the same variable and
level in MHDC can be merged into a single label by applying the relaxation rule on
the nogoods they entail.

4.3.1 The consistency maintenance procedure

A new type of messages is introduced, namely propagate messages. They are used
by an agent Ai to send labels of level k to all interested agents Ai, i≥k. The agents
Ai use the most recent proposals of the agents Aj, j≤k when they compute consis-
tent labels.Ai may receive valid consistency nogoods of level k with aggregate-sets
for the variables vars, vars not in vars(Ai). As shown in Algorithm 4, Ai must then
send add-link messages to all agents Ak′ , k

′≤k not yet linked to Ai for all their
variables in vars.

To keep track of the order in which labels are generated by each agent, each agent
Ai stores for each variable xu that it owns a counter ctxu(i) incremented as shown in
Algorithm 4 at line 4.1, whose value tags each sent label of xu. The labels of each
xv in Si(k) are denoted by cnkxv(i).

The problem of level k on which Ai runs a local consistency algorithm with ex-
planations is: Pi(k) := CSP(Ai) ∪ (∪xcnkx(i)) ∪NVi(V

i
k ) ∪ CLi

k . Here NVi(V ) is
the nogood entailed to Ai by the view V . CLi

k is the set of all nogoods known by
Ai and having the form V→¬T where V is a set of aggregates proposed by agents
with positions lower or equal to k and T is a set of tuples in CSP(Ai). CLi

k may
contain the CL of Ai (introduced with AAS0). An agent can manage to maintain
one CL for each instantiation level and the space requirements do no change.

A consistency nogood (e.g. obtained by composing several consistency nogoods,
and where the label becomes an empty set), is an explicit nogood, and in this case,
the conflict set is composed of the variables in the context.

In this version we choose to not enforce all the levels of consistency all the time
at an agent Ai, but only those up to a value cLi it stores. cLi corresponds to the
first level where an explicit nogood is found. Other small changes to the other
procedures of AAS consist in calling maintain consistence whenever the views
change.

A theoretically remarkable version called DMAC and analysed in the following
maintains all the last labels for each level from all agents. Therefore, each agent
has to store a structure of the type cnkxv(i) for each other participant. However,
DMAC is slightly less efficient in our experiments when compared to MHDC.
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when received(propagate,Aj ,k,ckxv(j),V→(xv 6∈l)) do
when have higher tag ckxv(j, i)≥ckxv(j) then return;
ckxv(j, i)← ckxv(j); when any 〈x, s, h〉 in V is invalid (old h) then return;
when 〈xu, su, hxu〉, where xu is not connected, is contained in V

send add-link to agents proposing assignments for xu;
add 〈xu, su, hxu〉 to agent view;

add other new assignments in V to agent view; eliminate invalidated nogoods;
merge cnkxv(i) with {V→(xv 6∈l)} using the inference rule proposed in AAS0;
maintain consistency(minimal level that is modified);
check agent view; //only satisfies consistency nogoods of levels t, t<cLi;

procedure maintain consistency(minT) do
if (minT > cLi) then return;
for (t←minT; t≤i; t++)

new-cns← consistency nogoods for all vars(Ai) after local consistency
on Pi(t);

when (domain wipe out by computing explicit nogoods nogoods)
for every V ∈ nogoods;

if V is an empty nogood, then anounce failure and terminate;
select 〈xj, sj, hxj〉 where hxj is generated by the agent Au with

the lowest priority among those generating assignments in V ;
send (nogood,Ai,V ) to Au; eliminate invalidated explicit nogoods;

cLi ←t;
break;

forall new-cn← consistency nogood for any variable xu in new-cns
when new-cn shrinks label of xu (obtained from ∪k≤tcnkxu(i))

4.1 cntxu(i)← new-cn; ctxu(i)++;
send (propagate,Ai,t,ctxu ,new-cn) to agents Aj, j≥t, xu∈vars(Aj);

Algorithm 4: Procedures of agent Ai with position i in MHDC.

4.4 DMAC

MHDC builds on AAS which is proven to be correct and complete and terminates.
MHDC is AAS with the inference and transmission of the additional nogoods gen-
erated by bound-consistency maintenance. As argued for AAS1 and AAS2, the use
of additional nogoods in the local decisions maintains the correctness, termination
and completeness properties.

To insure that the strength of the consistency maintained in MHDC and syn-
chronous MDC are strictly equivalent, agents using MHDC need to maintain all
the last valid nogoods entailed by consistency that they have received for each level
and variable from each agent. That version is called DMAC.

Proposition 4 The minimum space an agent needs with DMAC for ensuring main-
tenance of the highest degree of consistency achievable with arc consistency is
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when init do
cost[k]← 0 for all k ∈ [0..K];

when received(message,new cost) do
cost[0]← max(cost[0], new cost[0] + 1);
cost[k]← max(cost[k], new cost[k] + 5(k − 1)) for all k ∈ [1..K];
call procedure when received(message);

when local constraint check do
cost[k]← cost[k] + 1 for all k ∈ [1..K];

procedure send(message) do
send(message, cost);

Algorithm 5: Procedures of an agent for measuring performance on the MELY
platform.

O(nm2(n+ d)) where n is the number of variables, m the number of agents and d
the domain size. With bound consistency, the required space is O((nm)2).

Proof. The agents need to maintain at most m levels, each of them dealing with
maximum n variables, for each of them having at mostm last consistency nogoods.
Each consistency nogood refers at most n assignments in premise and stores at most
d values in label. The stack of labels requires therefore O(nm2(n+ d)).

5 Experiments

Our experiments were run with an implementation using a language based on state
machines that we developed, where each of the local consistency processes at dif-
ferent levels in each agent are run concurrently with different priorities. We ran two
sets of experiments with random binary CSPs: the first on problems of more or less
constant difficulty with the purpose of verifying the gains achieved by aggregation
in an asynchronous setting. The second set of experiments varied the difficulty of
CSP in order to test the influence of consistency on the number of messages.

5.1 The measurements taken by our experimentation platform

For each solving instance, our platform measures a vector cost[k], k ∈ [0..K] of
costs (aiming to obtain similar graphs with the ones based on rounds, in [40]). How-
ever, we have a real implementation and not a simulator. We therefore computed
equivalent constraint checks for messages using the framework of logic clocks [20],
which with null costs for local events is also known as the longest chain of causal
(sequential) messages [28]. The obtained measurement procedure implemented by
the used platform (MELY) in an agent is given in Algorithm 5. As an exception, ac-
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cepted messages are considered to belong to the infrastructure, and do not trigger
the procedures in Algorithm 5. However, at the end of the computation the platform
reports the cost vector built by the system agent from received accepted messages
(see Section 3.2), according to Algorithm 5.

The first four results graphs are built by using the values of cost[k], k ∈ [1..K], K =
9. For each abscisae x ∈ {5x|x ∈ [0..K − 1]} we plot the value cost[1 + (x/5)],
representing the equivalent constraint checks when a message is considered to cost
as much as x constraint checks. This results in a curve that has a slope proportional
to cost[0], reason for which we did not draw cost[0] separately.

Note that the value for cost[0] is the length of the longest chain of causal messages.
Lamport’s logic clock measurement as well as the usage of cost[1] (the intersection
with the 0y axes) were recently ’independently reinvented’ and recommended un-
der the name of concurrent constraint check (CCC) and are used as such in several
works. However, even if we employed these techniques in our work on AAS [31]
in order to be comparable with the work in [40], we do not particularly recommend
any of these measurement values as sufficient. Our experience has shown that in
real settings, only the size of the longest causal chain of messages (measured by
cost[0]) was somewhat proportional with the execution time in seconds (for differ-
ent algorithms, running on the Internet). Therefore this is the only measure that we
used in evaluating our most recent work, like MHDC.

5.2 Experiments to quantify aggregation behavior in AAS

AAS0, 1 and 2 have been evaluated on randomly generated problems with 15 and
20 agents, situated on distinct computers on a LAN. The constraints have been
distributed to the agents in the same way that they would have been enforced in
ABT so that they can be compared. As a consequence, the number of variables
equals the number of agents. The size of domains is of 5 values and the problems
are generated near the peak of difficulty [6] (for 15 agents) with a density of 30%
and a tightness of constraints of 45%. Each test is averaged over 50 instances.

An evaluation of distributed algorithms has to take into account both the cost of
messages and the cost of local computation. The relative cost of a message vs. a
constraint check may be very low if agents are running in different threads on the
same computer, or very high if they are communicating through the internet. To
show how the algorithms will behave in different environments, it is customary
in distributed algorithms to show the cost for different ratios between the cost of
a message and the cost of a local operation, in this case a constraint check. As
in [40], the logic cost of a local event (constraint check) is fixed to 1 and the logic
cost of a message varies between 0 (agents are threads on a computer) and 40.
Constraint checks are measured by the highest logic clock of the computation [20],
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Fig. 6. The average number of checks on randomly generated problems. Abscissae select
the relative time needed for sending a message divided by the time for a constraint check.

i.e. the longest sequence of interdependent steps in the computation. To evaluate
aggregation, we implemented three versions of ABT that have similar behavior to
AAS0/AAS1/AAS2 in treating nogoods, by simply disabling aggregation in the
implementation of AAS. The three obtained versions are denoted AS0, AS1, re-
spectively AS2.

We show the results as graphs that plot this measure against the cost ratio of mes-
sages/constraint checks:

• the slope of the curves approximatively corresponds to the number of messages.
For example, in Figure 6, at a relative cost of 20 checks/message, AS2 requires
about (430′000 − 80′000)/20 = 17′500 messages, while AAS2 requires about
(110′000− 60′000)/20 = 2′500 messages.

• the intercept with the y-axis gives the number of constraint checks without con-
sidering messages. For example, in Figure 6, AS2 requires about 80’000 checks
and AAS2 about 60’000 checks.

The fact that the curves are almost straight lines shows that the number of messages
does not vary much with the speed at which messages are delivered.

AAS2 versus AS2. AAS2 performs slightly better than its version without aggre-
gation, AS2 (see Figure 6). There are specific cases where AS2 performs better for
finding the first solution. However, for discovering that no solution exists AAS2 al-
ways performs better than AS2 since the whole search space needs to be expanded.
AAS2 also reduces the longest sequence of messages, as well as the number of
nogoods stored.

AAS0 versus AAS1. AAS1 needs more messages than AAS2, and AAS0 even
more (see Figure 7). However, they do not present memory problems.
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Fig. 7. The average number of checks on randomly generated problems. Abscissae select
the relative time needed for sending a message divided by the time for a constraint check.
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Fig. 8. The average number of checks on randomly generated problems. Abscissae select
the relative time needed for sending a message divided by the time for a constraint check.
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Fig. 9. The average number of checks on randomly generated problems. Abscissae select
the relative time needed for sending a message divided by the time for a constraint check.

AAS0 vs. AS0 and AAS1 vs. AS1. We have tested the usefulness of the ag-
gregation by comparing AAS0 and AAS1 against our versions of AS where the
equivalent nogood policies are used (AS0 respectively AS1). It saves 95% of the
messages. If space is available, it seems useful to store some additional nogoods.

These experiments reveal a close connection between the storage of nogoods and
the usefulness of aggregation. Beside its intrinsic gain, aggregates can provide an
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Fig. 10. Results averaged over 500 problems per point.

opportunity to replace the efficiency of some nogoods with a bounded space alter-
native. During traces, we noticed that in versions with full nogood storage, nogoods
for single proposals can disable a large part of an aggregate, reducing the usefulness
of the last one. The need to remove nogoods increases the importance of adding ag-
gregation to this type of discrete problems. As shown later, due to the treatment of
intervals, aggregation is necessary for problems with large or continuous domains.

5.3 Experiments to quantify behavior of consistency in MHDC

In this second experiment, we vary the tightness of the problems with the goal
of comparing the gain in complexity achieved through consistency techniques as
implemented in MHDC.

Since the complexity of random centralized problems is well studied, we have cho-
sen to generate our distributed problems starting from centralized problems with
known complexities. More precisely, we generate random centralized problems
(CP) with n variables. We then circularly distribute the constraints to each agent,
one constraint at a time.

In order to choose the constraint to be attributed to an agent, we pick randomly
a constraint from the remaining ones of CP. We allow a number τ1n of trials to
pick one constraint that had both its variables in the current agent. On failure we
allow a number τ2n trials for picking one constraint that had at least one of its
variables in the current agent. If this second chance has failed, then we simply pick
a constraint at random. Once a constraint has been chosen for the current agent, we
add it to the local CSP of that agent and remove it from CP. Thus we have two new
parameters for the complexity of the obtained distributed problems, namely τ1 and
τ2. These parameters quantify the effort for clustering the variables within agents.
High values for τ1 and τ2 lead to groups of constraints among a limited number
of variables, (choosing cliques in each agent). Instead, low values for τ1 and τ2

lead to agents being interested in most of the variables. In our experiments we used
2τ1 = τ2 = 1.

The experiments show that the overall performance of asynchronous search with
consistency maintenance is significantly improved compared to that of asyn-
chronous search that does not maintain consistency.
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The techniques used in our experimental evaluation maintains bound-consistency.
In each agent, computation at lower levels is given priority over computations at
higher levels. We generated randomly problems with 15 variables of 8 values and
graph density of 20%. Their constraints were randomly distributed in 20 subprob-
lems for 20 agents. Figure 10 shows their behavior for variable tightness (percent-
age of forbidden tuples in constraints), averaged over 500 problems per point. We
tested two versions of MHDC, A1 and A2. A1 asynchronously maintains bound
consistency at all levels. A2 is a relaxation where agents only compute consistency
at levels where they receive new labels or assignments, not after reduction inher-
itance between levels. In both cases, the performance of MHDC is significantly
improved compared to that of AAS, whose curve leaves the plot area (Figure 10)
already at a tightness of 80. Even for the easy points where AAS requires less
than 2000 sequential messages, MHDC proved to be more than 10 times better in
average. A2 was slightly better than A1 on average (excepting at tightness 85%),
perhaps due to the fact that inheriting levels often will be soon modified by updated
assignments. In these experiments we have stored only the minimal number of no-
goods. The nogoods are the main gain of parallelism in asynchronous distributed
search. Storing additional nogoods was shown for AAS to strongly improve per-
formance of asynchronous search. As future research topic, we foresee the study of
new nogood storing heuristics [15,36].

6 Related Work

The first complete asynchronous search algorithm for DisCSPs is Asynchronous
Backtracking (ABT) [40]. The approach in [40] considers that agents maintain dis-
tinct variables. Nogood removal was discussed in [15]. Other definitions of DisC-
SPs have considered the case where the interest on constraints is distributed among
agents [42,35,13,9]. [35] proposes algorithms that fit the structure of a real problem
(the nurse transportation problem). The Asynchronous Aggregation Search (AAS)
family of protocols actually extends ABT to the case where the same variable can
be instantiated by several agents (e.g. at different levels of abstraction [30]). An
agent may also not know all constraint predicates relevant to its variables. The
privacy achieved for constraints is further analyzed in [37,29]. An extension solv-
ing problems where some constraints may not be known to anybody is introduced
in [34]. AAS offers the possibility to aggregate several branches of the search. An
aggregation technique for DisCSPs was then presented in [26] and allows for sim-
ple understanding of privacy/efficiency mechanisms, also discussed in [10]. The
use of abstractions not only improves on efficiency but especially on privacy since
the agents need to reveal less details. A general polynomial space reordering proto-
col and several heuristics (e.g. weak commitment-like [39]) are discussed in [33].
In [4] it is explained how add-link messages can be avoided. Several algorithms
for achieving distributed arc consistency are presented in [19,42,2].
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7 Conclusions

Asynchronous search algorithms for distributed CSP so far have taken little ad-
vantage of the techniques that have led to highly efficient centralized algorithms
for CSP. We have shown how two well-known techniques, value aggregation and
arc consistency, can be used to very significantly improve the performance of dis-
tributed asynchronous search algorithms.

We have presented the AAS algorithm which uses value aggregation to significantly
reduce the number of messages that have to be sent during search. Empirical evalu-
ation shows that execution time is significantly reduced, particularly when the time
required for sending messages is high relative to the time required per constraint
check.

We have then presented MHDC, a new distributed search technique which allows
maintaining distributed consistency with a high degree of parallelism and with-
out resorting to intermediate termination detection. The preliminary evaluation has
been done with a version based on AAS0 which, consequently, maintains a minimal
number of nogoods. The experiments have shown that the overall performance of
MHDC is significantly improved compared to that of AAS. MHDC has much po-
tential in practice. It accommodates a higher number of agents than AAS, requires
a bounded local space, reduces the number of messages needed for termination de-
tection, and improves parallelization compared to synchronous MDC. MHDC fully
exploits the aggregation capability of AAS. If built on AAS0, MHDC guarantees
polynomial space complexity.

In other work, we have also experimented with variable reordering, but have not
been able to achieve any significant efficiency gains. This is in strong contrast to
centralized settings where dynamic variable ordering is crucial to achieving effi-
cient search performance. We speculate that with known heuristics this cannot yet
be achieved in the distributed case because of the large amount of asynchronous
search effort that has to be discarded every time variables are reordered and of the
size of the problems that can be addressed in experiments with the state of the art
techniques.
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