
Meeting Scheduling Guaranteeing n/2-Privacy and Resistant to Statistical
Analysis (Applicable to any DisCSP)

Marius Călin Silaghi
Florida Institute of Technology, Computer Sciences Department

Abstract

Distributed problems raise privacy issues. The user
would like to specify securely his constraints (desires, avail-
ability, money) on his computer once. The computer is ex-
pected to compute and communicate for searching an ac-
ceptable solution while maintaining the privacy of the user.

Even without computers infested with spy viruses that
capture the interaction with the user, most agent based
approaches reveal parts of one agent’s secret data to its
partners in distributed computations [7]. Some crypto-
graphic multi-party computation protocols [1] succeed to
avoid leaking secrets at the computation of some functions
with private inputs. They have been applied to find the set
of all solutions for the meeting scheduling problem [3].

However, nobody yet succeeded to apply those tech-
niques for finding a random solution to the meeting schedul-
ing problem. Note that revealing all solutions, when you
only need a single one, leaks a lot of data about when oth-
ers are, or are not, available. Some answers were proposed
in our previous approaches to distributed constraint prob-
lems [4]. They guarantee that no agent can infer with certi-
tude a secret from the identity of the solution of the problem
(other than the acceptance of the solution), but guarantee
nothing about inference of probabilistic information about
secrets. Our new technique answers this problem, too.

1. Introduction

Meeting scheduling is an old, recurrent and easily de-
scribed problem that continues to fascinate researchers. An
important reason is the advent of some requirements like
privacy of user’s constraints, or availability of associated
resources. Informally, a set of agents want to meet. They
search for a convenable meeting place and time that satis-
fies the private constraints of each of them. There can also
exist some public constraints known by everybody, like the
impossibility of meeting somewhere on a certain date due
to known risks or legal considerations. One can add con-
straints on additional resources, such as needed material.

T W

Q

P
x1

x2

1 0

0 1

Figure 1. Constraint: 0s mark rejected tuples.

The meeting scheduling problem is strictly equivalent
to the so called distributed constraint satisfaction problem
(CSP), with two variables. Additional resources can typi-
cally be modeled with new variables. In our algorithm we
exploit the handiness of the CSP formalism.

CSP A constraint satisfaction problem (CSP) is defined
by three sets: (X , D, C). X = {x1, ..., xm} is a set
of variables and D = {D1, ..., Dm} is a set of domains
such that xi can take values only from Di = {vi1, ..., vidi}.
C = {φ1, ..., φc} is a set of constraints, φi involving an
ordered subset Xi = {xi1 , ..., xiki} of the variables in X ,
Xi⊆X , and constrains the legality of each combination of
assignments to the variables in Xi. An assignment is a pair
〈xi, vik〉 meaning that variable xi is assigned the value vik.

A tuple is an ordered set. The projection of a tuple ε of
assignments over a tuple of variables Xi is denoted ε|Xi . A
solution of a CSP (X ,D,C) is a tuple of assignments ε with
one assignment for each variable in X such that each φi∈C
is satisfied by ε|Xi .

For meeting scheduling, each agent has his own private
constraints and one has to also find an agreement for a solu-
tion, from the set of possible meeting places and dates, that
satisfies everybody. Distributed constraint satisfaction is a
handy formulation that can model these issues.

Definition 1 A Distributed CSP (DisCSP) is defined by five
sets (A,X,D,C,O). A={A1, ..., An} is a set of agents.
X , D, C and the solution are defined like in CSPs. Each
constraint φi is known only by one agent, being the secret
of that agent. There may exist a public constraint in C, φ0.

Example 1 Alice (A1), Bob (A2), and Carol (A3) want to
find a common place (x1) and time (x2) to meet. x1 is ei-
ther Paris (P ) or Quebec (Q), i.e. D1 = {P,Q}. x2 is



either Tuesday (T ) or Wednesday (W ), i.e. D2 = {T,W}.
Each of them has a secret constraint. Alice accepts only
{(P, T ), (P,W ), (Q,W )} which defines φ1. Bob accepts
either of {(P, T ), (Q, T ), (Q,W )}, defined by φ2. Carol
has φ3 = {(P, T ), (Q,W )}. φ3 is shown in Figure 1. There
is also a publicly known constraint, φ0, which due to an an-
nounced strike forbids a meeting in Paris on Wednesday,
φ0 = {(P, T ), (Q, T ), (Q,W )}. The problem is to publish
values for x1 and x2 satisfying all constraints and without
revealing anything else to Alice about φ2 and φ3, to Bob
about φ1 and φ3, or to Carol about φ1 and φ2.

Arithmetic Circuit The arithmetic circuits are a class of
functions that can be solved securely and are exploited in
our technique [1]. An arithmetic circuit is a function f , us-
ing solely the addition/subtraction and multiplication oper-
ations of a finite set F = [0..(ν−1)] modulus a prime num-
ber ν (Zν), f : F i → F j . An arithmetic circuit can be in-
tuitively imagined as a directed graph without cycles where
each node is described either by an addition/subtraction or
by a multiplication operator. Each source node is a (pub-
lic or secret) constant. The only outputs of the circuit are
the sinks of its graph (anything else can remain secret).∑e
i=b f(i) and

∏e
i=b f(i) are arithmetic circuits if b and

e are public constants and f(i) is an arithmetic circuit.

Intuition Consider a constraint in its multidimensional
matrix representation, where each element restricts the
compatibility of some values for distinct variables. Each el-
ement encoded as 0 (forbidden) or 1 (possible) is encrypted
with a shared key (it can be decrypted only when the ma-
jority of the agents agree). One can perform additions and
multiplications of such values, while they are encrypted.

The agents cooperate to generate a secret permutation of
the encrypted problem parameters, that cannot be manip-
ulated by any of them. To avoid that agents get a chance
to learn the final permutation by matching final encrypted
parameter values with the ones they generated, a random-
ization step is applied at each shuffling. Each agent applies
a randomization step on the encryption for each secret tuple
acceptance/rejection encoding. Because the secrets are en-
crypted, this randomization step exploits the homomorphic
properties of some encryption schemes.

We also give a fix (exponential) set of additions and mul-
tiplications that, applied on the constraints encrypted in the
aforementioned way, returns the encrypted assignments in a
solution picked according to a uniform distribution over the
set of possible solutions. The agents may show now their
share of the keys for the assignments in the solution. Each
agent learns only the assignments of interest to him.

Complexity To hide the secret parameters of the problem,
the distributed computation must not depend on those pa-
rameters. Since the problem is NP-complete, an algorithm
that does not exploit problem structure will be exponential,

as long as we do not prove P=NP. Therefore, the privacy re-
quirements leave us no alternative from an exponential cost.
The good news is that experiments show that problems with
acceptable size (10-50 alternatives) can be solved in a few
seconds.

Problem subtleties The subtlety is how to formalize the
meeting scheduling as an arithmetic circuit! An arithmetic
circuit whose outcome is the set of all solutions was de-
signed in [3]. If one tries to use that approach when only
one solution is needed, the result returned by the function
will reveal to everybody a lot more information than needed.
It will tell, for example, that everybody is available and can
reach the corresponding places on the days in the alternative
solutions. It also reveals that at least one person is busy on
each alternative that is not a solution. Some of this informa-
tion can lead to undesired leaks of privacy. The approach of
testing each alternative one by one has similar leaks.

In consequence, one needs to design arithmetic circuits
returning only one solution. There is still the problem of
which solution should be returned. It is possible to return
the first solution in the lexicographical order on the search
space [4]. However, knowing that the solution was com-
puted in this way leaks that the alternatives placed before it
in that lexicographical order are rejected by some agents.

Therefore, what we need is a probabilistic arithmetic cir-
cuit that returns a solution picked randomly among the pos-
sible solutions to the problem. MPC-DisCSP1 and MPC-
DisCSP2 [5], generate a secret permutation of domains (and
eventually variables) on an encrypted description of the
problem. The permuted encrypted problem is then input to
an arithmetic circuit that computes an encryption of the first
solution in lexicographic order. The solution is then trans-
lated with the inverse permutations to the initial problem
formulation, before being decrypted. The used permutation
guarantees to give each solution a chance to be returned, so
that no secret about meeting acceptance/rejection can be in-
ferred from the returned result. If there is no solution, this
will intrinsically reveal to everybody that each alternative is
constrained by some agent, but this leak is inherent to the
problem and not to the algorithm.

The remaining problem is that the permutation in [4]
does not guarantee that solutions are picked with a uniform
distribution over all solutions. Therefore, when an agent
uses his constraints in several such computations, some sta-
tistical information can be extracted about his secrets, be-
sides his acceptance of the solution. For example, if the re-
turned solutions often specify a meeting in Quebec on Tues-
day and rarely other alternatives, then it can be inferred that
“some agent can go to Quebec only Tuesday”, with higher
probability than what can be inferred by statistics ignorant
of the used permutation algorithm.

In this paper we analyze this leak and design a scheme,
MPC-DisCSP3, where the solutions are picked with a uni-



form distribution over the possible solutions. Repeated use
of the same constraint in different problems will still sug-
gest that a certain meeting is the only one possible, if it is
always returned. However, the likelihood of the inference
is lower than in the previous techniques and this time it is
inherent to the problem and not to the algorithm.

It is easy to extend the technique such that alternatives
known to be accepted by an agent are verified first, which
saves someone’s privacy in the detriment of the others.

2. Secure Arithmetic Circuit Evaluation

Secure evaluation of functions (arithmetic circuits) with
secret inputs is introduced in [1]. For randomizing the rep-
resentation of shuffled secrets we use (+,×)-homomorphic
encryption functions EKE : Zµ→Zµ2 , i.e. respecting:

∀m1,m2 ∈ Zµ : EKE (m1)EKE (m2) = EKE (m1 +m2).

Some encryption functions take a randomizing parameter r.
However, we write Ei(m) instead of Ei(m, r), to simplify
the notation. An example of a (+,×)-homomorphic scheme
with randomizing parameter is the Paillier encryption.

To destroy the visibility of the relations between the ini-
tial problem formulation and the formulation actually used
in computations we design random joint permutations that
are not known to any participant. Here we reformulate the
initial problem by reordering its parameters. Related per-
mutations appeared in Chaum’s mix-nets [2]. The shuffling
is obtained by a chain of permutations (each being the secret
of a participant) on the encrypted secrets.

The secure multi-party simulation of arithmetic circuit
evaluation proposed in [1] exploits Shamir’s secret shar-
ing. This sharing is based on the fact that a polynomial
f(x) of degree t−1 with unknown parameters can be re-
constructed given the evaluation of f in at least t distinct
values of x, using Lagrange interpolation. Instead, abso-
lutely no information is given about the value of f(0) by
revealing the valuation of f in any at most t−1 non-zero
values of x. Therefore, in order to share a secret number
s to n participants A1, ..., An, one first selects t−1 ran-
dom numbers a1, ..., at−1 that will define the polynomial
f(x) = s+

∑t−1
i=1(aix

i). A distinct non-zero number ki
is assigned to each participant Ai. The value of the pair
(ki, f(ki)) is sent over a secure channel (e.g. encrypted)
to each participant Ai. This is called a (t, n)-threshold
scheme. Once secret numbers are shared with a (t, n)-
threshold scheme, evaluation of an arbitrary arithmetic cir-
cuit can be performed over the shared secrets, in such a way
that all results remain shared secrets with the same secu-
rity properties (the number of supported colluders, t) [1].
For Shamir’s technique, one knows to perform addition and
multiplications when t ≤ (n− 1)/2.

2.1. All Possible Schedules

In [3] one computes for each possible meeting, ε, a
boolean circuit:

∧
φk∈C φk(ε|Xk ). The results of all these

boolean circuits are revealed. Everybody learns whether
each alternative meeting is possible or not. This is more
than what one may want to leak (see Introduction).

Some people desire to examine all solutions before
choosing one. Course-books claim that this may be a sign
of an ill set problem. One should formulate such a problem
as an optimization. In IAT2004 will appear an example of
how to extend our techniques to optimization.

2.2. MPC-DisCSP1

MPC-DisCSP1 [4] is a multi-party computation tech-
nique. Former multi-party computation techniques can
solve securely only certain functions, one such class of
solved problems being the arithmetic circuits over finite
fields. A Distributed CSP is not a function. A DisCSP
can have several solutions for an input problem, or can even
have no solution. Two of the three reformulations of DisC-
SPs as a function (see [4]) are relevant here: i) A function
DisCSP1() returning the first solution in lexicographic or-
der, respectively an invalid valuation τ when there is no so-
lution. ii) A probabilistic function DisCSP() which picks
randomly a solution if it exists, respectively returns τ when
there is no solution. For privacy purposes only the 2nd alter-
native is satisfactory. DisCSP() only reveals what we usu-
ally expect to get from a DisCSP, namely some solution.
DisCSP1() intrinsically reveals more [4]. MPC-DisCSP1
implements DisCSP() in three phases:

1. The input DisCSP problem is jointly shuffled by re-
ordering values (and eventually variables) randomly by
composing secret permutations from each participant
agent, and randomizing secret shares.

2. A version of DisCSP1() where operations performed
by agents are independent of the input secrets, is com-
puted by simulating a certain arithmetic circuit evalu-
ation with the technique in [1].

3. The solution returned by the DisCSP1() at step 2 is
translated into the initial problem definition using a
transformation that is inverse of the shuffling at Step 1,
and randomizing secret shares.

At step 2, MPC-DisCSP1 requires a version of the
DisCSP1() function whose cost is independent of the in-
put since otherwise the users can learn things like: The re-
turned solution is the only one, being found after unsuc-
cessfully checking all other valuations, all other valuations
being infeasible. The DisCSP1() used by MPC-DisCSP1
is very complex, and MPC-DisCSP2 offers a simpler and
faster version, parts of which are reused here.



3. Uniformly Distributed Selection
MPC-DisCSP1 and MPC-DisCSP2 give a chance to each

solution to be returned [5]. The solution can be seen as a
random variable over the set of tuples ε that have p(ε) = 1.

p(ε) =
∏

φk∈C
φk(ε|Xk )

However, we have proven that none of the existing tech-
niques returns solutions according to a uniform distribution:

Theorem 1 Shuffling variables and domains for a CSP
does not guarantee that the first solution in the obtained
lexicographic order is selected according to a uniform dis-
tribution over the set of all solutions.

Proof. Consider the CSP induced by the DisCSP of Example 1,
without the constraints φ1 and φ3. Applying random permutation
of domains and eventually variables drawn from a uniform distri-
bution over the set of possible distributions:
• the solution (Q,W ) appears 3/8% of the times.
• the solution (Q, T ) appears 1/4% of the times.
• the solution (P, T ) appears 3/8% of the times.

The frequency with which a solution is drawn is inverse propor-
tional to the frequency of its values among other solutions.

Therefore, if an agent participates with the same con-
straints in several computations, statistical information can
be extracted concerning the occurrence of the values in
other solutions of the agent. Namely, a solution that oc-
curs very often indicates that some of its assignments are
rare. Let us now present a technique called MPC-DisCSP3
that is slightly more complex than MPC-DisCSP2 and that
returns solutions according to a uniform distribution.

Theorem 2 Consider the following process on a CSP:

• Create a (large) vector S ′ containing the values p(ε)
for all search space tuples ε, in lexicographic order.

• Shuffle the vector S ′ according to a permutation π
picked with a uniform distribution over the possible
permutations.

• Pick the first value of S ′ having p(ε) = 1. Choose ε as
the solution to be returned.

The tuple returned by these three steps is chosen accord-
ing to a uniform distribution over all solutions (equivalent
to picking it randomly from a set with all solutions).

Proof. For any sufficiently large number of applications of the
described procedure, the possible permutations π applied to S ′ are
drawn a relatively equal number of times, due to their uniform
distribution. Therefore, all obtained permutations of the values of
S′ will result a relatively equal number of times. By symmetry,
each ε with p(ε) = 1 will be placed an equal number of times
before all the other solutions. Therefore, the method defines its
outcome as a random variable with uniform distribution over the
set of all solutions.

function value-to-unary-constraint2(v, M )
{xi}0≤i≤M , x0=1, xi+1=xi ∗ (v−i)
{yi}0≤i≤M , yM=1, yi−1=yi ∗ (i−v)

uk = 1
k!(M−k)!

xkyk , where 0!
def
= 1.

return u.

Algorithm 1: Transforming secret value v ∈
{0, 1, 2, ...,M} to a shared secret unary constraint.

4. MPC-DisCSP3

Now let us present MPC-DisCSP3, a multiparty compu-
tation simulating securely the method of the Theorem 2.

MPC-DisCSP3 starts by sharing the encoded constraints
with the Shamir secret sharing scheme. Then, a vector S ′ of
size Γ =

∏m
k=1 dk is computed by evaluating for each tuple

ε compatible with φ0, the arithmetic circuits p(ε). Each p(ε)
is placed in the vector S ′ on the position defined by the
lexicographical order on ε. Each agent applies on its shares
of S’ a common permutation π:

π : [1..Γ]→ [1..Γ].

that moves the tuples rejected by φ0 to the end of S′.
π can be the permutation defined by a sort algorithm that

scans S’ from low indexes and exchanges each empty el-
ement, S′[i] with the last non-empty element S ′[j]. If the
last obtained i and j are stored such that scanning avoids to
repeat tests and ends when i = j, then the cost of building
the permutation π is O(Γ). The number of tuples that are
not rejected by φ0 is denoted by Θ. Alternatively, S ′[1..Θ]
can be obtained as the value of p(ε) in all solutions ε′ of φ0,
as found by a deterministic (backtracking) search techique.

The problem is now shuffled and the shares are random-
ized with a mix-net. One actually shuffles only the first Θ
elements of the vector S ′. Details are given later. Let εk
denote the kth tuple in the lexicographic order. We define:

h1(P ) = 1

hi(P ) = hi−1(P ) ∗ (1− S′[i− 1])

The index of the lexicographically first solution can be com-
puted by accumulating the weighted terms of the h series:

id(P ) =

Θ∑

i=1

i ∗ p(εi) ∗ hi(P ) (1)

A result of 0 means that there is no solution. The cost of
this computation is (c+ 1)Θ multiplications of secrets, like
for MPC-DisCSP2. After computing id(P ) with the arith-
metic circuit in Equation 1, the vector S is computed with
Equation 2, which calls Algorithm 1.

S=value-to-unary-constraint2(id−1,Θ−1) (2)



The vector S is now decoded by traversing the mix-net
in the inverse direction and with the inverse permutations,
randomizing the shares as at shuffling. π−1 is applied to
S. Any index after the end of S, is considered by π−1 to be
empty (they were rejected by φ0). The value of the uth vari-
able in the tth tuple of the search space is ηu(t), computed
with Equation 3. In the end, the values in the solution are
computed with the arithmetic circuits in Equation 4.

ηu(t) = b(t− 1)/
u−1∏

k=1

dkc mod du (3)

fi(P ) =
Θ∑

t=1

(ηi(t) + 1) ∗ S′[t−1] (4)

Each variable xi is assigned in the solution to the value in
Di at index given by the functions fi, and can be revealed.
MPC-DisCSP3’s mix-net for reordering vectors of
shared secrets. Each agent Ai chooses a random secret
permutation πi, picked with a uniform distribution over the
set of possible permutations: πi : [1..Θ]→ [1..Θ].

Each agent chooses a pair of keys for a (+,×)-
homomorphic public encryption scheme and publishes the
public key. The secret shares, of the non-empty values
computed in the vector S’, are encrypted by each Ai with
her public key and are serialized. The serialized encrypted
vectors are sent to A1. A1 shuffles the serialized vectors
according to her permutation π1, then passes them to A2

which applies π2, etc., until the agent An which applies πn.
An sends each vector to the agent that originated it.

To avoid that agents get a chance to learn the final per-
mutation by matching final shares with the ones that they
encrypted, a randomization step is also applied at each shuf-
fling. Each agent applies a randomization step on the set
of shares for each element of S ′, by adding corresponding
shares of zero. Since operands are encrypted, to be able to
perform this summation we propose to exploit the (+,×)-
homomorphic properties of some encryption schemes. For
each secret in S′, a 0’s Shamir shares are computed, and
∀i, i≤n, the 0′s ith share is encrypted with the public key of
Ai, then it is multiplied to the correspondingAi’s encrypted
share of the secret (resulting in resharing the secret). This
assumes µ>ν(n+1), for the decryption to be correct in Zν .
Example 2 Let us see an example of how MPC-DisCSP3 is
applied to the Example 2. p(P,W ) is not computed (φ0).
p(P, T )=1, p(Q, T )=0, p(Q,W )=1.
S’=(1,0, ,1): After applying π = (0, 1, 4, 3), S’=(1,0,1, )
Shuffle (1,0,1), (assume it remains unchanged)
h1(P )=1, h2(P )=0, h3(P )=0.
The index of the solution is computed with Equation 1,
yielding id(P)=1. This is used according to Equation 2 to
generate the vector S={1,0,0}.
Unshuffle S=(1,0,0): Apply π−1 = (0, 1, 4, 3), S=(1,0,0, )
The vector S is used to compute the values of the variables
in the solution, using Equations 3 and 4:

η1(1)=0, η1(2)=1, η1(3)=0, η1(4)=1. η2(1)=0, η2(2)=0,
η2(3)=1, η2(4)=1. f1(P )=1, f2(P )=1.

This signifies that the solution chosen by this arithmetic
circuit is x1=Paris and x2=Tuesday.
Analysis and Conclusions When compared with clas-
sical agent approaches to solving distributed meeting
scheduling and CSPs [7], the advantages and drawbacks of
MPC-DisCSP3 are the ones defined by t-privacy [1], and
highlighted in [6] (i.e. no collusion of less than t partici-
pants can learn anything, but the final solution with its qual-
ity, and what can be inferred from it).

The main advantage of MPC-DisCSP3 over its previous
alternatives MPC-DisCSP1 and MPC-DisCSP2, is that it
offers the solutions picked according to a uniform distribu-
tion over the total set of solutions, as guaranteed by the The-
orem 2. From the space requirements point of view, it has
the same exponential complexity as MPC-DisCSP2, namely
O(dm), since it uses the same data structures (having to
store and manipulate the whole vector S). The only ad-
ditional structures, namely the permutations π and πi have
the same size as S, and do not change the complexity. From
this point of view MPC-DisCSP3 is clearly inferior to MPC-
DisCSP1 which has polynomial space requirements.

In terms of time complexity, its worst performance
(namely when Γ=Θ) can be worse than the one of MPC-
DisCSP2. This is due to the fact that the messages for shuf-
fling are larger and the shuffling involves more computa-
tions, given by the size of S ′. Compared to MPC-DisCSP1,
which is O(dm) times slower than MPC-DisCSP2, MPC-
DisCSP3 will be faster. This is because MPC-DisCSP1 re-
quires passing more than just the vector S.

When Γ >> Θ, MPC-DisCSP3 can be much faster then
competitors, which do not exploit public constraints.

References

[1] M. Ben-Or, S. Goldwasser, and A. Widgerson. Complete-
ness theorems for non-cryptographic fault-tolerant distributed
computating. In STOC, pages 1–10, 1988.

[2] D. Chaum. Untraceable electronic mail, return addresses, and
digital pseudonyms. Communications of the ACM, 24(2):84–
88, 1981.

[3] T. Herlea, J. Claessens, G. Neven, F. Piessens, B. Preneel, and
B. Decker. On securely scheduling a meeting. In Proc. of IFIP
SEC, pages 183–198, 2001.

[4] M. Silaghi. Solving a distributed CSP with cryptographic
multi-party computations, without revealing constraints and
without involving trusted servers. In IJCAI-DCR, 2003.

[5] M. Silaghi and V. Rajeshirke. The effect of policies for se-
lecting the solution of a DisCSP on privacy loss. In AAMAS,
2004.

[6] M. C. Silaghi and B. Faltings. A comparison of DisCSP algo-
rithms with respect to privacy. In AAMAS-DCR, 2002.

[7] R. Wallace and M. Silaghi. Using privacy loss to guide deci-
sions in distributed CSP search. In FLAIRS’04, 2004.


