
Consistency Maintenance for ABT

Marius-Călin Silaghi, Djamila Sam-Haroud, and Boi Faltings

Swiss Federal Institute of Technology (EPFL)
EPFL, CH-1015, Switzerland

{Marius.Silaghi,Djamila.Haroud,Boi.Faltings}@epfl.ch

Abstract. One of the most powerful techniques for solving centralized constraint
satisfaction problems (CSPs) consists of maintaining local consistency during
backtrack search (e.g. [11]). Yet, no work has been reported on such a combi-
nation in asynchronous settings1. The difficulty in this case is that, in the usual
algorithms, the instantiation and consistency enforcement steps must alternate
sequentially. When brought to a distributed setting, a similar approach forces the
search algorithm to be synchronous in order to benefit from consistency main-
tenance. Asynchronism [24, 14] is highly desirable since it increases flexibility
and parallelism, and makes the solving process robust against timing variations.
One of the most well-known asynchronous search algorithms is Asynchronous
Backtracking (ABT). This paper shows how an algorithm for maintaining con-
sistency during distributed asynchronous search can be designed upon ABT. The
proposed algorithm is complete and has polynomial-space complexity. Since the
consistency propagation is optional, this algorithms generalizes forward check-
ing as well as chronological backtracking. An additional advance over existing
centralized algorithms is that it can exploit available backtracking-nogoods for
increasing the strength of the maintained consistency. The experimental evalua-
tion shows that it can bring substantial gains in computational power compared
with existing asynchronous algorithms.

1 Introduction

Distributed constraint satisfaction problems (DisCSPs) arise when constraints and/or
variables come from a set of independent but communicating agents. Successful cen-
tralized algorithms for solving CSPs combine search with local consistency. Most local
consistency algorithms prune from the domains of variables the values that are locally
inconsistent with the constraints, hence reducing the search space. When a DisCSP is
solved by distributed search, it is desirable that this search exploits asynchronism as
much as possible. Asynchronism gives the agents more freedom in the way they can
contribute to search, allowing them to enforce individual policies (on privacy, computa-
tion, etc.). It also increases both parallelism and robustness. In particular, robustness is
improved by the fact that the search can still detect unsatisfiability even in the presence
of crashed agents. Existing work on asynchronous algorithms for distributed CSPs has
focused on one of the following types of asynchronism:

1 A preliminary version of this paper has been presented at the CP2000 Workshop on Distributed
CSPs[15]



a) deciding instantiations of variables by distinct agents. The agents can pro-
pose different instantiations asynchronously (e.g. Asynchronous Backtracking
(ABT) [24]).

b) enforcing consistency. The distributed process of achieving “local” consistency on
the global problem is asynchronous (e.g. Distributed Arc Consistency [25]).

Combining these two techniques is however not as easy as in the synchronous setting.
A straightforward mapping of the existing combination scheme cannot preserve asyn-
chronism of type a [21, 4]. The contribution of this work is to consider consistency
maintenance as a hierarchical nogood-based inference. This makes it possible to con-
currently i) perform asynchronous search and ii) enforce the hierarchies of consistency,
resulting in an asynchronous consistency maintenance algorithm. Since the consistency
propagation is optional, this algorithms generalizes forward checking as well as chrono-
logical backtracking. More general than existing centralized algorithms, our approach
can use any available backtracking nogoods to increase the strength of the maintained
consistency. As expected from the sequential case, the experiments show that substan-
tial gains in computational power can result from combining distributed search and
distributed local consistency.

2 Related Work

The first complete asynchronous search algorithm for DisCSPs is the Asynchronous
Backtracking (ABT) [23]. The approach in [23] considers that agents maintain distinct
variables. Nogood removal was discussed in [8, 14]. Other definitions of DisCSPs have
considered the case where the interest on constraints is distributed among agents [25,
20, 14, 7, 5]. [20] proposes algorithms that fit the structure of a real problem (the nurse
transportation problem). The Asynchronous Aggregation Search (AAS) [14] family of
protocols actually extends ABT to the case where the same variable can be instanti-
ated by several agents (e.g. at different levels of abstraction [12, 16]). An agent may
also not know all constraint predicates relevant to its variables. AAS offers the possibil-
ity to aggregate several branches of the search. An aggregation technique for DisCSPs
was then presented in [10] and allows for simple understanding of privacy/efficiency
mechanisms, also discussed in [6]. The use of abstractions, [16], not only improves on
efficiency but especially on privacy since the agents need to reveal less their details. A
general polynomial space reordering protocol is described in [13] and several heuristics
(e.g. weak commitment-like) are discussed in [18]. [3] explains how add-link mes-
sages can be avoided. A technique enabling parallelization and parallel proposals in
asynchronous search is described in [19]. Several algorithms for achieving distributed
arc consistency are presented in [9, 25, 2].

3 Preliminaries

In this paper we target problems with finite domains (we target problems with numeric
domains in [12, 16]). For simplicity, but here without loss of generality, we consider
that each agent Ai can propose instantiations to exactly one distinct variable, xi and



A2

A1 level 0

level 1 A2

A1 level 0

level 1

level 2 A3

A2

A1 level 0

level 1

level 2
A4 level 3

A3

Fig. 1. Distributed search trees in ABT: simultaneous views of distributed search seen by A2,
A3, and A4, respectively. Each arc corresponds to a proposal from Ai to Aj . Circles show the
believed state of an agent. Dashed circle and line show known state that may have been changed.

knows all the constraints that involve xi. Therefore each agent, Ai, knows a local CSP,
CSP(Ai), with variables vars(Ai). We present the way in which our technique can be
built on ABT, a simple instance of AAS for certain timings and agent strategies, but it
can be easily adapted to more complex frameworks and extensions of AAS. ABT al-
lows agents to asynchronously propose instantiations of variables. In order to guarantee
completeness and termination, ABT uses a static order ≺ on agents. In the sequel of the
paper, we assume that the agent Ai has position i, i ≥ 1, when the agents are ordered
according to ≺. If i>j then Ai has a lower priority than Aj and Aj has a higher priority
then Ai.2 Ai is then a successor of Aj , and Aj a predecessor of Ai.

Asynchronous distributed consistency: Most centralized local-consistency algorithms
prune from the domain of variables the values that are locally inconsistent with the
constraints. Their distributed counterparts (e.g. [25]) work by exchanging messages
on value elimination. The restricted domains resulting from such a pruning are called
labels. In this paper we will only consider the local consistencies algorithms which
work on labels for individual variables (e.g. arc-, bound-consistency). Let P be a Dis-
tributed CSP with the agents Ai, i∈{1..n}. We denote by C(P ) the CSP defined by
∪i∈{1..n}CSP(Ai).3 Let A be a centralized local consistency algorithm as just men-
tioned. We denote by DC(A) a distributed consistency algorithm that computes, by
exchanging value eliminations, the same labels for P as A for C(P ). When DC(A) is
run on P , we say that P becomes DC(A) consistent. Generic instances of DC(A) are
denoted by DC. Typically with DC [25], the maximum number of generated messages
is a2vd and the maximum number of sequential messages is vd (v:number of variables,
d:domain size, a:number of agents).

4 Asynchronous consistency maintenance

In the sequential/synchronous setting, the view of the search tree expanded by a consis-
tency maintenance algorithm is unique. Each node at depth k, corresponds to assigning
to the variable xk a value vi from its label. Initially the label of each variable is set to its
full domain. After each assignment xk=vi, a local consistency algorithm is launched
which computes for the future variables the labels resulting from this assignment.

2 They can impose first eventual preferences they have on their values.
3 The union of two CSPs, P1 and P2, is a CSP containing all the constraints and variables of P1

and P2.



In distributed search (e.g. ABT), each agent has its own perception of the distributed
search tree. Its perception on this tree is determined by the proposals received from its
predecessors. In Figure 1 is shown a simultaneous view of three agents. Only A2 knows
the fourth proposal of A1. A3 has not yet received the third proposal of A2 consistent
with the third proposal of A1. However, A4 knows that proposal of A2. In Figure 1
we suppose that A4 has not received anything valid from A3 (e.g. after sending some
nogood to A3 which was not yet received). The term level in Figure 1 refers to the depth
in the (distributed) search tree viewed by an agent.

Let P be a Distributed CSP with the agents Ai, i∈{1..n}, A be a centralized local
consistency algorithm and DC(A) one of its distributed counterparts. Suppose that the
instantiation order of the variables in C(P ) is determined by the order of the agents in
P . In order to guarantee that with DC(A) one maintains for the variables of agents Ai

of P the same labels, L, than with A in C(P ), one can simply impose that:

1. Ai must have received the proposals of all its predecessors before launching
DC(A),

2. Ai cannot make any proposal with values outside L, computed by DC(A).

This approach [21, 4] is synchronous. Alternatively, we propose to handle consistency
maintenance as a hierarchical task. We show that Ai can then benefit from the value
eliminations resulting from the proposals of subsets of its predecessors, as soon as
available. More precisely, if Ai has received proposals from some of its k first pre-
decessors, we say that it can benefit from value elimination (nogoods) of level k. Such
nogoods are determined by instantiations of xt, t≤k (known proposals), DC process
at level k or inherited from DCs at previous levels along the same branch. A DC pro-
cess of level k is a process which only takes into account the known proposals of the k

first agents. The resulting labels are said to be of level k. When the nogoods defining
labels are classified according to their corresponding levels, and when they are coher-
ently managed by agents as shown here, the instantiation decisions and DCs of levels k

can then be performed asynchronously for different k with polynomial space complex-
ity and without loosing the inference power of DC(A). Moreover, backtrack-nogoods
involving only proposals from agents Ai,i≤k can be used by DC at level k. Since the
use of most nogoods is optional, many distinct algorithms result from the employment
of different strategies by agents.

5 The DMAC-ABT protocol

This section presents DMAC-ABT (Distributed Maintaining Asynchronously Consis-
tency for ABT), a complete protocol for maintaining asynchronously consistency. Since
it builds on ABT, we start by recalling the necessary background and definitions.

5.1 ABT

In asynchronous backtracking, the agents run concurrently and asynchronously. Each
agent instantiates its variable and communicates the variable value to the relevant



agents. As described for AAS [14], since we do not assume (generalized) FIFO chan-
nels, in the polynomial-space requirements description given here a local counter, C i

xi
,

in each agent Ai is incremented each time a new instantiation is chosen. The current
value of Ci

xi
tags each assignment made by Ai for xi.

Definition 1 (Assignment). An assignment for a variable xi is a tuple 〈xi, v, c〉 where
v is a value from the domain of xi and c is the tag value (value of C i

xi
).

Among two assignments for the same variable, the one with the higher tag (attached
value of the counter) is the newest.

Rule 1 (Constraint-Evaluating-Agent) Each constraint C is evaluated by the lowest
priority agent whose variable is involved in C. This agent is denoted CEA(C).

The set of constraints enforced by Ai are denoted ECSP(Ai) and the set of variables
that are involved in ECSP(Ai) is denoted evars(Ai), where xi∈evars(Ai). Each agent
holds a list of outgoing links represented by a set of agents. Links are associated with
constraints. ABT assumes that every link is directed from the value sending agent to the
constraint-evaluating-agent.

Definition 2 (Agent View). The agent view of an agent, Ai, is a set, view(Ai), con-
taining the newest assignments received by Ai for distinct variables.

Based on their constraints, agents perform inferences concerning the assignments
in their agent view. By inference the agents generate new constraints called nogoods.

Definition 3 (Explicit Nogood). An explicit nogood has the form ¬N where N is a set
of assignments for distinct variables.

The following types of messages are exchanged in ABT:

– ok? message transporting an assignment is sent to a constraint-evaluating-agent to
ask whether a chosen value is acceptable.

– nogood message transporting an explicit nogood. It is sent from the agent that infers
an explicit nogood ¬N , to the constraint-evaluating-agent for ¬N .

– add-link message announcing Ai that the sender Aj owns constraints involving xi.
Ai inserts Aj in its outgoing links and answers with an ok?.

The agents start by instantiating their variables concurrently and send ok? messages
to announce their assignment to all agents with lower priority in their outgoing links.
The agents answer to received messages according to the Algorithm 1 (given in [13]).

Definition 4 (Valid assignment). An assignment 〈x, v1, c1〉 known by an agent Al is
valid for Al as long as no assignment 〈x, v2, c2〉, c2>c1, is received.

A nogood is valid if it contains only valid assignments. The next property is a
consequence of the fact that ABT is an instance of AAS.

Property 1 If only one valid nogood is stored for a value then ABT has polynomial
space complexity in each agent, O(dv), while maintaining its completeness and termi-
nation properties. d is the domain size and v is the number of variables.



when received (ok?,〈xj, dj , cxj
〉) do

if(old cxj
) return;

add(xj ,dj ,cxj
) to agent view;

eliminate invalidated nogoods;
check agent view;

when received (nogood,Aj ,¬N ) do
when any 〈x, d, c〉 in N is invalid (old c) then

send (ok?,〈xi, current value, Ci
xi
〉) to Aj ;

return;
when 〈xk, dk, ck〉, where xk is not connected, is contained in ¬N

send add-link to Ak;
add 〈xk, dk, ck〉 to agent view;

when 〈xi, d, c〉∈N , then put ¬N in nogood-list for xi=d;
add other new assignments to agent view;

1.1 eliminate invalidated nogoods;
old value← current value;
check agent view;
when old value = current value

1.2 send (ok?,〈xi, current value, Ci
xi
〉) to Aj ;

procedure check agent view do
when agent view and current value are not consistent

if no value in Di is consistent with agent view then
backtrack;

else
select d ∈ Di where agent view and d are consistent;
current value← d; Ci

xi
++;

send (ok?,〈xi, d, Ci
xi
〉) to lower priority agents in outgoing links;

procedure backtrack do
nogoods← {V | V = inconsistent subset of agent view};
when an empty set is an element of nogoods

broadcast to other agents that there is no solution, terminate this algorithm;
for every V ∈ nogoods;

select (xj ,dj ,c) where xj has the lowest priority in V ;
send (nogood,Ai,V ) to Aj ;
eliminate invalidated explicit nogoods;
remove (xj ,dj ,c) from agent view;

check agent view;

Algorithm 1: Procedures of Ai for receiving messages in ABT with nogood removal.



when received(propagate,Aj ,k,ck
xv

(j),V→(xv 6∈l)) do
2.1 when have higher tag ck

xv
(j, i)≥ck

xv
(j) then return;

ck
xv

(j, i)← ck
xv

(j); when any 〈x, d, c〉 in V is invalid (old c) then return;
when 〈xu, du, cu〉, where xu is not connected, is contained in V

send add-link to Au; add 〈xu, du, cu〉 to agent view;
2.2 add other new assignments in V to agent view; eliminate invalidated nogoods;

cnk
xv

(i, j)← {V→(xv 6∈l)}; maintain consistency(minimal level that is modified);
check agent view; //only satisfies consistency nogoods of levels t, t<cLi;

procedure maintain consistency(minT) do
if (minT > cLi) then return; //cLi is the current inconsistent level (initially i+1);

2.3 for (t←minT; t≤i; t++)
2.4 new-cn← consistency nogood for xi after local consistency on Pi(t);

when (domain wipe out by computing the explicit nogoods N )
for every V ∈ N ;

select 〈xj , dj , cxj
〉 where xj has the lowest priority in V ;

send (nogood,Ai,V ) to Aj ; eliminate invalidated explicit nogoods;
remove 〈xj , dj , cxj

〉 from agent view;
2.5 cLi ←t; break;

when new-cn shrinks label of xi (obtained from ∪k≤tcn
k
xi

(i, i))
2.6 cnt

xi
(i, i)← new-cn; Ct

xi
++;

send (propagate,Ai,k,Ct
xi

,new-cn) to agents Aj , j≥t, xi ∈ evars(Aj);

Algorithm 2: Procedure of Ai for receiving propagate messages in DMAC-ABT.

5.2 DMAC-ABT

Parts of the content of a message may become invalid due to newer available infor-
mation. We require that messages arrive at destination in finite time after they are sent.
The receiver can discard the invalid incoming information, or can reuse invalid nogoods
with alternative semantics (e.g. as redundant constraints).

In addition to the messages of ABT, the agents in DMAC-ABT may exchange in-
formation about nogoods inferred by DCs. This is done using propagate messages as
shown in Algorithm 2. Before making their first proposal as in ABT, cooperating agents
can start with a call to maintain consistency(0).

Definition 5 (Consistency nogood). A consistency nogood for a level k and a variable
x has the form V →(x∈lkx) or V →¬(x∈s\lkx). V is a set of assignments. Any assign-
ment in V must have been proposed by Ak or its predecessors. lkx is a label, lkx 6=∅. s is
the initial domain of x.4

The propagate messages for a level k are sent to all agents Ai, i≥k, xi∈evars(Ai).
They take as parameters the reference k of a level and a consistency nogood. Each
consistency nogood for a variable xi and a level k is tagged with the value of a counter
Ck

xi
maintained by the sender. The agents Ai use the most recent proposals of the agents

Aj , j≤k when they compute DC consistent labels of level k. Ai may receive valid
consistency nogoods of level k with assignments for the set of variables V , V not in

4 Or a previously known label of x (for AAS).



evars(Ai). Ai must then send add-link messages to all agents Ak′ , k′≤k not yet linked
to Ai and owning variables in V . In order to achieve consistencies asynchronously,
besides the structures of ABT, implementations can maintain at any agent Ai, for any
level k, k≤i:

– The set, V i
k , of the newest valid assignments proposed by agents Aj , j≤k, for each

interesting variable.
– For each variable x, x∈vars(Ai), for each agent Aj , j≥k, the last consistency no-

good (with highest tag) sent by Aj for level k, denoted cnk
x(i, j). cnk

x(i, j) is stored
only as long as it is valid. It has the form V k

j,x→(x∈sk
j,x).

NVi(V
i

k
) is the constraint of coherence of Ai with the view V i

k . Let cnk
x(i, .) be

(∪t≤k
t,j V t

j,x)→(x∈∩t≤k
t,j st

j,x). Pi(k) := CSP(Ai) ∪ (∪xcnk
x(i, .)) ∪ NVi(V

i
k ) ∪ CLi

k
.

Ck
xi

is incremented on each modification of cnk
xi

(i, i) (line 2.6).
On each modification of Pi(k), cnk

xi
(i, i) is recomputed by inference (e.g. using

local consistency techniques at line 2.4) for the problem Pi(k). cnk
xi

(i, i) is initialized
as an empty constraint set. CLi

k
is the set of all nogoods known by Ai and having the

form V →C where V ⊆V i
k and C is a constraint over variables in vars(Ai). cnk

xi
(i, i) is

stored and sent to other agents by propagate messages iff its label shrinks and either
CSP(Ai) or CLi

k
was used for its logical inference from Pi(k). This is also the moment

when Ck
xi

is incremented. The procedure for receiving propagate messages is given in
Algorithm 2.

We now prove the correctness, completeness and termination properties of DMAC-
ABT. We only use DC techniques that terminate (e.g. [25, 2]). By quiescence of a group
of agents we mean that none of them will receive or generate any valid nogoods, new
valid assignments, propagate or add-link messages.

Property 2 In finite time ti either a solution or failure is detected, or all the agents
Aj , 0≤j≤i reach quiescence in a state where they are not refused a proposal satisfying
ECSP(Aj)∪NVj(view(Aj)).

Proposition 1. DMAC-ABT is correct, complete and terminates.

The proof is given in Annexes. It remains to show the properties of the labels com-
puted by DMAC-ABT at each level of the distributed search tree. If the agents, using
DMAC-ABT, store all the valid consistency nogoods they receive, then DCs in DMAC-
ABT converge and compute a local consistent global problem at each level (each pair
initial constraint-variable label is checked by some agent). If on the contrary, the agents
do not store all the valid consistency nogoods they receive but discard some of them af-
ter inferring the corresponding cnk

x(i, i), then some valid bounds or value eliminations
can be lost when a cnk

x(i, i) is invalidated. Different labels are then obtained in different
agents for the same variable. These differences have as result that the DC at the given
level of DMAC-ABT can stop before the global problem is DC consistent at that level.

Among the consistency nogoods that an agent computes itself at level k from its
constraints, cnk

x(i, i), let it store only the last one for each variable and only as long
as it is valid. Let Ai also store only the last (with highest tag) consistency nogood,



when received (ok?,〈xj, dj , cxj
〉) do

if(old cxj
) return;

3.1 add(xj ,dj ,cxj
) to agent view; eliminate invalidated nogoods;

maintain consistency(j);
check agent view; //only satisfies consistency nogoods of levels t, t<cLi;

procedure check agent view do
when agent view and current value are not consistent //cf. nogoods of levels t, t<cLi

if no value in Di is consistent with agent view then
backtrack;

else
select d ∈ Di where agent view and d are consistent;
current value← d; Ci

xi
++; maintain consistency(i);

send (ok?,〈xi, d, Ci
xi
〉) to lower priority agents in outgoing links;

Algorithm 3: Procedures of Ai for receiving ok? messages in DMAC-ABT.

cnk
x(i, j), sent to it for each variable x∈vars(Ai) at each level k from any agent Aj .

cnk
x(i, j) is also stored only as long as it is valid. Each agent stores the highest tag

ck
x(j) for each variable x, level k and agent Aj that sends labels for x. Then:

Proposition 2. DC(A) labels computed at quiescence at any level using propagate
messages are equivalent to A labels when computed in a centralized manner on a pro-
cessor. This is true whenever all the agents reveal consistency nogoods for all minimal
labels, lkx, which they can compute and when CLi

k
are not used.

Proof. In each sent propagate message, the consistency nogood for each variable is
the same as the one maintained by the sender. By checking ck

xv
(j) at line 2.1, the stored

consistency nogoods are coherent and are invalidated only when newer assignments are
received (event that is coherent) at lines 1.1,2.2,3.1. Any assignment invalid in one agent
will eventually become invalid for any agent. Therefore, any such nogood is discarded
at any agent, iff it is also discarded at its sender. The labels known at different agents,
being computed from the same consistency nogoods, are therefore identical and the
distributed consistency will not stop at any level before the global problem is local
consistent in each agent.

Since consistency nogoods are not discarded when nogoods are sent to agents gen-
erating their assignments, asynchronism is ensured by temporarily disregarding those
consistency nogoods. In Algorithm 3 we only satisfy consistency nogoods at levels
lower than the current inconsistent level, cLi (see line 2.5 in Algorithm 2). Alterna-
tively, such consistency nogoods could be discarded but then, to ensure coherence of
labels, agents receiving any nogood should always broadcast assignments with new
tags and many nogoods would be unnecessarily invalidated.

ABT may deal with problems that require privacy of domains. For such problems,
agents may refuse to reveal labels for some variables, especially since the initial labels
at level 0 are given by the initial domains. The strength of the maintained consistency
is then function of how many such private domains are involved in the problem. The



procedure maintain consistency(minT) do
if (minT > cLi) then return;

4.1 for (t←minT; t≤i; t++)
new-cns← consistency nogoods for all vars(Ai) after local consistency on Pi(t);
when (domain wipe out by computing explicit nogoods nogoods)

for every V ∈ nogoods;
select 〈xj , dj , cxj

〉 where xj has the lowest priority in V ;
4.2 send (nogood,Ai,V ) to Aj ; eliminate invalidated explicit nogoods;

cLi ←t; remove 〈xj, dj , cxj
〉 from agent view;

break;
forall new-cn← consistency nogood for any variable xu in new-cns

when new-cn shrinks label of xu (obtained from ∪w,k≤tcn
k
xu

(i, w))
cnt

xu
(i, i)← new-cn; ct

xu
(i)++;

send (propagate,Ai,t,ct
xu

,new-cn) to agents Aj , j≥t, xu∈vars(Aj);

Algorithm 4: Procedure of Ai for receiving propagate messages in DMAC-ABT1.

DisCSPs presenting only privacy on constraints, and the corresponding versions and
extensions of ABT, suffer less of this problem.

Proposition 3. The minimum space an agent needs with DMAC-ABT for ensuring
maintenance of the highest degree of consistency achievable with DC is O(v2(v + d)).
With bound consistency, the required space is O(v3).

The proof is given in Annexes.

5.3 Using available valid nogoods in Pi(k) for maintaining consistency
(DMAC-ABT1)

In Algorithm 2, an agent Ai only sends consistency nogoods for the variable xi. How-
ever, when the local consistency is computed for Pi(k), new labels are also computed
for other variables known by Ai.

If in Pi(k) we only use consistency nogoods and initial constraints, the final result
of the consistency maintenance is coherent in the sense that at quiescence at any given
level, each agent ends knowing the same label for each variable. Namely the new label
obtained by Ai for some variable xu will be computed and sent by Au after receiving
the other labels in consistency nogoods and instantiations that Ai knows and are related
to xu.

We propose that agents can use in their Pi(k) valid explicit nogoods that they have
received by nogood messages or old and invalidated consistency nogoods stored as
redundant constraints. In this last case the labels obtained with Algorithm 2 are no
longer minimal since an agent Au does not know all constraints that can be used by Ai

locally for computing its version of the label of xu at level k.
In Algorithm 4 we present a version of DMAC-ABT that we call DMAC-ABT1.

In DMAC-ABT1, Ai can send consistency nogoods for all variables found in CSP(Ai).
The space complexity for storing the last tags for the consistency nogoods at all lev-
els and coming from all other agents is now O(v3) and for DMAC-ABT1 the space



x1(1,2) x2(2)

x3(1,2)

====

A1 A2

A3

1: A1 ok?〈x1, 1, 1〉 → A3

2: A2 –propagate(A2,0,1,x3 6∈ {2})–→ A1

3: A2 propagate(A2,0,1,x3 6∈ {2})→ A3

4: A2 ok?〈x2, 2, 1〉 → A3

5: A1 propagate(A1,0,1,x1 6∈ {1})→ A3

6: A1 ok?〈x1, 2, 2〉 → A3

7: A3 propagate(A3,0,1,x1 6∈ {1})→ A1

8: A3 nogood¬(〈x1, 1, 1〉→ A1

Fig. 2. Simplified example for DMAC-ABT1. Function of the exact timing of the network, some
of these messages are no longer generated. Only 2 messages are sequential (half round-trips).
ABT needs 4 sequential messages (half round-trips) for the same example (see [23]).

complexity is O(v3(v + d)). However, the power of DCs is increased since it can ac-
commodate any available nogood. The number of sequential messages is also reduced
since there is no need to wait for Au to receive the label of xi before reducing the label
of xu. Rather Ai propagates itself the label of xu.

Proposition 4. The minimum space an agent needs with DMAC-ABT1 for ensuring
maintenance of the highest degree of consistency achievable with DC is O(v3(v + d)).
With bound consistency, the required space is O(v4).

The proof is given in Annexes. We denote by DMAC-ABT2 the version of DMAC-
ABT where any agent Ai can compute, send and receive labels for variables constrained
by their stored nogoods and redundant constraints but not found in vars(Ai).

6 Example

In Figure 2 we show a trace of DMAC-ABT1 for the example described in [23]. Be-
fore making its proposal, A2 sends propagate messages to announce the consistency
nogood x3 6∈ {2} of level 0, tagged with c0

x3
(2) = 1. These propagate messages are

sent both to A1 and A3. A1 sends an ok? message proposing a new instantiation.
A3 (and A1 when the domain of x3 is public) compute both the consistency nogood

x1 6∈ {1} at level 0. A3 computes an explicit nogood from consistency at level 1 and
sends it to A1. This nogood is invalid since A1 has already changed its instantiation
(and a small modification of DMAC-ABT1, for simplicity not given here, can avoid
sending it). Then solution and quiescence are reached. The longest sequence of mes-
sages valid at their receivers (length 2) consists in messages 2,6. The worst case timing
(slow communication channel from A2 to A1 or privacy for the domain of x3) gives
the longest sequence 3,7,6 (5 would not be generated). The fact that ABT (as well as
any synchronous algorithm) would require at least 4 sequential messages illustrates the
parallelism offered by asynchronous consistency maintenance.

7 Experiments

We have presented here DMAC-ABT1, an algorithm that allows to maintain consis-
tency in ABT. ABT was chosen since it is simpler to present and explain. Recently we



have presented an extension of ABT that allows several agents to propose modifications
to the same variable and allows agents to aggregate values in domains. That extension is
called Asynchronous Aggregation Search (AAS) [14]. In [14] is shown that the aggre-
gations bring to ABT improvements of an order of magnitude for versions that maintain
a polynomial number of nogoods. Here it is therefore appropriate to test the improve-
ments that our technique for maintaining consistency brings to AAS. The version of
DMAC-ABT1 for AAS is denoted DMAC.

We have run our tests on a local network of SUN stations where agents are placed
on distinct computers. We use a technique that enables agents to process with higher
priority propagate and ok? messages for lower levels.

The DC used in our experimental evaluation maintains bound-consistency. In each
agent, computation at lower levels is given priority over computations at higher lev-
els. We generated randomly problems with 15 variables of 8 values and graph density
of 20%. Their constraints were randomly distributed in 20 subproblems for 20 agents.
Figure 3 shows their behavior for variable tightness (percentage of feasible tuples in
constraints), averaged over 500 problems per point. We tested two versions of DMAC,
A1 and A2. A1 asynchronously maintains bound consistency at all levels. A2 is a relax-
ation where agents only compute consistency at levels where they receive new labels
or assignments, not after reduction inheritance between levels. A2 is obtained in Al-
gorithm 4 by performing the cycle starting at line 4.1 only for t = k, where k is the
level of the incoming ok? or propagate message triggering it. In both cases, the per-
formance of DMAC is significantly improved compared to that of AAS. Even for the
easy points where AAS requires less than 2000 sequential messages, DMAC proved
to be more than 10 times better in average. A2 was slightly better than A1 on average
(excepting at tightness 15%). In these experiments we have stored only the minimal
number of nogoods. The nogoods are the main gain of parallelism in asynchronous dis-
tributed search. Storing additional nogoods was shown for AAS to strongly improve
performance of asynchronous search. As future research topic, we foresee the study of
new nogood storing heuristics [8, 24, 22, 18, 6].

8 Conclusion

Consistency maintenance is one of the most powerful techniques for solving centralized
CSPs. Bringing similar techniques to an asynchronous setting poses the problem of how
search can be asynchronous when instantiation and consistency enforcement steps are
combined. We present a solution to this problem. A distributed search protocol which
allows for asynchronously maintaining distributed consistency with polynomial space
complexity is proposed. DMAC-ABT builds on ABT, the basic asynchronous search
technique. However, DMAC-ABT can be easily integrated into more complex versions
of ABT (combining it with AAS and using abstractions [16], one can use complex
splitting strategies [17] to deal efficiently with numeric DisCSPs [12]). Another original
feature of DMAC is its capability of using backtrack nogoods to increase the strength
of the maintained consistency.5 The experiments show that the overall performance of

5 Since this paper was submitted, [1] presents an algorithm reusing some backtrack nogoods in
MAC. That algorithm can be proven to behave as a centralized instance of DMAC.



tightness

sequential 
messages

20 25 30 35 40 45 50

50

100

150

AAS

A1
A2

15 32

Fig. 3. Results averaged over 500 problems per point.

asynchronous search with consistency maintenance is significantly improved compared
to that of asynchronous search that does not maintain consistency.

Annexes (Proof)

Property 2 In finite time ti either a solution or failure is detected, or all the agents
Aj , 0≤j≤i reach quiescence in a state where they are not refused a proposal satisfying
ECSP(Aj)∪NVj(view(Aj)).

Proof. The proof is by induction on i. Let this be true for the agents Aj , j<i. Let τ

be the maximum time taken by a message. After ti−1 + τ , Ai no longer receives ok?
messages. Ai receives the last valid ok? message at time ti

o≤ti−1 +τ . ∃tiv , ti−1 +τ≥tiv
such that after tiv , view(Ai) and all V u

k , k<i of any agent Au are no longer modified.
The set of disabled tuples in CLu

k , k<i can contain only a bounded number of ele-
ments for each agent Au and they cannot be invalidated after ti

o. CLu
k , k<i cannot be

invalidated after tiv. Since DCs were assumed to terminate, they terminate after each
modification of a CLu

k . Since the number of such modifications that can generate a new
consistency nogood after ti

v is bounded, after a finite time no consistency nogood is
received any longer by Ai for levels k<i.
Since the domains are finite, Ai can make only a finite number of different proposals
satisfying view(Ai). Once any of them is sent, the total number of consistency nogoods
that can be received before the proposal is modified is finite (this results by induction
to levels k≤i of the reasoning for k<i in the previous paragraph since after vτ , Ai

can receive only valid nogoods: valid explicit nogoods trigger the modification of the
instantiation of Ai so that they can arrive only in finite time; if valid explicit nogoods
are not received and no instantiation modification is done in finite time, no ok? is sent
any longer by Ai, and the number of valid consistency nogoods at level i is limited as
in the previous paragraph).
Only one valid explicit nogood can be received for a proposal since the proposal is
immediately changed on such an event. Invalid nogoods can be received only within vτ

time delay after a proposal is made. Therefore, there is a finite number of nogoods that
can be received by Ai for any of its proposals made after ti

v (and after tio).
1. If one of the proposals is not refused by incoming nogoods, and since the number

of received nogoods is finite, the induction step is correct.
2. If all proposals that Ai can make after tio are refused or if it cannot find any

proposal, Ai has to send according to rules inherited from ABT a valid explicit nogood



¬N to somebody. ¬N is valid since all the assignments of Ak , k < i were received at
Ai before tio.

2.a) If N is empty, failure is detected and the induction step is proved.
2.b) Otherwise ¬N is sent to a predecessor Aj , j<i. Since ¬N is valid, the proposal

of Aj is refused, but due to the premise of the inference step, Aj either
2.b.i) finds an assignment and sends ok? messages or
2.b.ii) announces failure by computing an empty nogood (induction proven).

In the case (i), since ¬N was generated by Ai, Ai is interested in all its variables, and
it will be announced by Aj of the modification by an ok? messages.
Case 2.b.i contradicts the assumption that the last ok? message was received by Ai at
time tio and the induction step is therefore proved for all alternative cases. The property
can be attributed to an empty set of agents and it is therefore proved by induction for all
agents.

Proposition 1. DMAC-ABT is correct, complete and terminates.

Proof. Completeness: All the nogoods are generated by logical inference from exist-
ing constraints. Therefore, if a solution exists, no empty nogood can be generated.
No infinite loop: The result follows from Property 2.
Correctness: All valid proposals are sent to all interested agents and stored there. At
quiescence all the agents know the valid interesting assignments of all predecessors.
If quiescence is reached without detecting an empty nogood, then all the agents agree
with their predecessors and their intersection is nonempty and correct.

Proposition 3. The minimum space an agent needs with DMAC-ABT for ensuring
maintenance of the highest degree of consistency achievable with DC is O(v2(v + d)).
With bound consistency, the required space is O(v3).

Proof. d-maximal domain size;v-number of variables. The space required for stor-
ing all valid assignments is O(v) for values and O(v) for the corresponding counters.
The agents need to maintain at most v levels, each of them dealing with maximum v

variables, for each of them having at most 1 last consistency nogood. Each consistency
nogood refers at most v assignments in premise and stores at most d values in label. The
stack of labels requires therefore O(v2(v + d)). The space required by the algorithm for
solving the local problem depends on the corresponding technique (e.g. chronological
backtracking requires O(v)). The stored explicit nogoods require O(dv) as mentioned in
Property 1. In DMAC-ABT are also stored O(v2) tags for consistency nogoods.

Proposition 4. The minimum space an agent needs with DMAC-ABT1 for ensuring
maintenance of the highest degree of consistency achievable with DC is O(v3(v + d)).
With bound consistency, the required space is O(v4).

Proof. The agents need to maintain at most v levels, each of them dealing with max-
imum v variables, for each of them having at most v last consistency nogoods. Each
consistency nogood refers at most v assignments in premise and stores at most d values
in label. The stack of labels requires therefore O(v3(v + d)). DMAC-ABT1 also stores
O(v3) tags for consistency nogoods. The other structures are identical as for DMAC-
ABT.



References

1. J.-F. Baget and Y.S. Tognetti. Backtracking through biconnected components of a constraint
graph. In Proc. of IJCAI-01, pages 291–296, 2001.

2. B. Baudot and Y. Deville. Analysis of distributed arc-consistency algorithms. Technical
Report RR-97-07, U. Catholique Louvain, 97.

3. C. Bessière, A. Maestre, and P. Meseguer. Distributed dynamic backtracking. In Proc. IJCAI
DCR Workshop, pages 9–16, 2001.

4. Z. Collin, R. Dechter, and S. Katz. Self-stabilizing distributed constraint satisfaction.
Chicago Journal of Theoretical Computer Science, 2000.

5. J. Denzinger. Tutorial on distributed knowledge based search. IJCAI-01, August 2001.
6. E.C. Freuder, M. Minca, and R.J. Wallace. Privacy/efficiency tradeoffs in distributed meeting

scheduling by constraint-based agents. In Proc. IJCAI DCR Workshop, pages 63–72, 2001.
7. M. Hannebauer. On proving properties of concurrent algorithms for distributed csps. In

Proc. of CP-01 DisCS Workshop. EPFL, 2000.
8. W. Havens. Nogood caching for multiagent backtrack search. In Proc. AAAI’97 Constraints

and Agents Workshop, ’97.
9. S. Kasif. On the Parallel Complexity of Discrete Relaxation in Constraint Satisfaction Net-

works. Artificial Intelligence, 45(3):275–286, October 90.
10. P. Meseguer and M. A. Jiménez. Distributed forward checking. In Proceedings of the Inter-

national Workshop on Distributed Constraint Satisfaction. CP’00, 2000.
11. D. Sabin and E. C. Freuder. Contradicting conventional wisdom in constraint satisfaction. In

Proceedings ECAI-94, pages 125–129, 94.
12. M.-C. Silaghi, Ş. Sabău, D. Sam-Haroud, and B.V. Faltings. Asynchronous search for nu-

meric DisCSPs. In Proc. of CP’2001, Paphos,Cyprus, 2001.
13. M.-C. Silaghi, D. Sam-Haroud, and B. Faltings. ABT with Asynch. Reordering. In IAT, 01.
14. M.-C. Silaghi, D. Sam-Haroud, and B. Faltings. Asynchronous search with aggregations. In

Proc. of AAAI2000, pages 917–922, 2000.
15. M.-C. Silaghi, D. Sam-Haroud, and B. Faltings. Maintaining hierarchical distributed consis-

tency. In Proc. of CP-00 Workshop on DisCS, 2000.
16. M.-C. Silaghi, D. Sam-Haroud, and B. Faltings. Multiply asynchronous search with abstrac-

tions. In IJCAI-01 DCR Workshop, pages 17–32, Seattle, August 2001.
17. M.-C. Silaghi, D. Sam-Haroud, and B. Faltings. Search techniques for non-liniar constraint

satisfaction problems with inequalities. In Proc. of AI2001, Otawa, June 2001.
18. M.-C. Silaghi, D. Sam-Haroud, and B.V. Faltings. Hybridyzing ABT and AWC into a poly-

nomial space, complete protocol with reordering. Technical Report #364, EPFL, May 2001.
19. M.C. Silaghi and B. Faltings. Parallel proposals in asynchronous search. Technical Report

#371, EPFL, August 2001.
20. G. Solotorevsky, E. Gudes, and A. Meisels. Distributed Constraint Satisfaction Problems - a

model and application. Preprint: http://www.cs.bgu.ac.il/˜am, 97.
21. G. Tel. Multiagent Systems, A Modern Approach to Distributed AI, chapter Distributed Con-

trol Algorithms for AI, pages 539–580. MIT Press, 99.
22. E. H. Turner and J. Phelps. Determining the usefulness of information from its use during

problem solving. In Proceedings of AA2000, pages 207–208, 2000.
23. M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara. Distributed constraint satisfaction for

formalizing distributed problem solving. In ICDCS’92, pages 614–621, June 92.
24. M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara. The Distributed CSP: Formalization

and algorithms. IEEE Trans. on KDE, 10(5):673–685, 98.
25. Y. Zhang and A. K. Mackworth. Parallel and distributed algorithms for finite constraint satis-

faction problems. In Proc. of Third IEEE Symposium on Parallel and Distributed Processing,
pages 394–397, 91.


