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Abstract

Constraint satisfaction occurs in many practical applica-
tions. Recently, there has been increasing interest in dis-
tributed constraint satisfaction (DisCSP), where variables
and constraints are distributed among several agents, and
algorithms for finding solutions through asynchronous ex-
change of messages among agents.

An important reason for distributed problem solving is
openness: allowing the problem to define itself dynam-
ically through the combination of agents that participate
in it. We investigate openness in complete asynchronous
search algorithms for DisCSP, in particular the problem
of agents joining and leaving a search process in progress
without destroying consistency for the other agents, and
give complete search algorithms that satisfy this property.

1 Introduction

Constraint satisfaction has been applied with great suc-
cess to many important practical applications. Increas-
ingly, it also occurs in distributed settings with variables
and constraints defined by different agents. There has thus
been significant interest in the distributed constraint satis-
faction (DisCSP [29]) problem with asynchronous, dis-
tributed algorithms for solving it.

A major characteristic of distributed systems is their
openness: the combination of agents making up the sys-
tem is not built into the algorithms, and may not even be
known when the algorithm is running, and agents may
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even be joining and leaving the system while an algorithm
is active. Algorithms for DisCSP have focussed on asyn-
chronous execution, but have not considered openness to
a great extent.

In particular, asynchronous search algorithms for
DisCSP assume that the set of agents, variables and con-
straints is known at the beginning of the search and fixed
throughout. In this paper, we show how to create the pos-
sibility for agents to join and leave an ongoing search pro-
cess without halting it, and reusing the results of the on-
going search as much as possible.

In general, constraint satisfaction algorithms can be
easily adapted to allow additions of constraints during
search. Similarly, it turns out to be straightforward to al-
low new agents to introduce their variables and constraints
in DisCSP search without need to restart an ongoing asyn-
chronous search process.

It is however considerably more complex to allow an
agent to leave and remove its variables and constraints,
since this may make valid assignments which had earlier
been discarded. For the centralized case, Bessiere ([3])
has shown how to dynamically put back values elimi-
nated by consistency techniques, so that search can restart
with the variable or constraint that has been removed
rather than from the beginning. Verfaille and Schiex ([6])
has shown techniques for adapting complete solutions to
changes in the constraint system. Both techniques only
address centralized search algorithms, and it is not clear
how they could be generalized to an asynchronous case.

A central innovation we present in this paper is a relax-
ation technique for asynchronous, distributed search al-
gorithms that allows us to reactive the right parts of the
search space when agents and their associated variables
and constraints leave an ongoing asynchronous search.
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We first introduce the asynchronous search algorithm and
the extra structures required to allow reordering and re-
moval of agents. We then show how we can allow
agents to leave the search by reordering them into the
last position of the search hierarchy, and then dropping
them from the search. We develop the technique into an
open protocol where agents can join and leave an asyn-
chronous search. Finally, we also investigate the case
where agents leave without announcing it, such as when
an agent crashes.

2 Background

The first complete asynchronous search algorithm for
DisCSPs is the Asynchronous Backtracking (ABT) [28].
For simplicity the approach in [28] considers that each
agent maintains exactly one distinct variable. More com-
plex cases were considered later [30]. The first version
of ABT has requested the agents to store all the nogoods,
but this requirement was removed in [29, 10, 21], where
versions of ABT with polynomial space-complexity are
mentioned. The version in [7] supports agents own-
ing Dynamic CSPs. Some definitions of DisCSPs have
considered what happens in the case where the knowl-
edge and interest on constraints is distributed among
agents [31, 23, 21]. [23] proposes a static ordering and
distribution in ABT that fits the natural structure of a real
problem (the nurse transportation problem). The Asyn-
chronous Aggregation Search (AAS) [21] algorithm actu-
ally extends ABT to the case where the same variable can
be instantiated by several agents. AAS offers the possi-
bility to aggregate several branches of the search. An ag-
gregation technique for DisCSPs is presented in [15] and
allows for simple understanding of the privacy/efficiency
mechanisms. The order on variables in distributed search
was so far addressed in [4, 1, 27, 23, 9, 21]. In what con-
cerns distributed consistency algorithms, one of the first
is presented in [31].

After the design of asynchronous backtracking, work
has mainly concentrated on the intelligence of the back-
tracking by tuning the quality of the nogoods selected
for storage [10, 11, 25, 21], and on algorithms for
achieving consistency [2, 8]. The first algorithm for
asynchronous maintenance of consistencies is presented
in [21]. Performing asynchronous reordering was first

proposed in [26] according to a min-conflict heuristic.
The first polynomial-space complete asynchronous search
algorithm with reordering is presented in [21], where its
integration within asynchronous maintenance of consis-
tency is also described. Asynchronous use of abstractions
in complete search is first described in [21]. Issues on
openness in incomplete search algorithms are discussed
in [12, 16, 5].

2.1 Constraint Removal

Agents that leave a process are typically involved in many
structures maintained by other agents: outgoing-links, as-
signments, explicit and consistency nogoods. To cleanly
remove agents, the structures maintained by protocol have
to be updated. An elegant way of isolating an agent Ai is
to reorder it to the position with the lowest priority. Then,
no other agent owns assignments issued by Ai, and no
agent maintains structures storing consistency nogoods
at corresponding search levels. Additional mechanisms
are used for eliminating outgoing-links, nogoods inferred
from internal constraints of Ai, and consistency nogoods
generated by Ai.

Several researchers have studied constraint removal in
the framework of centralized consistency achievement
and maintenance. [18] proposes a natural and simple solu-
tion for AC3. [3] maintains more information with AC4,
namely a separate justification for each eliminated value.
This enables to recover some more information when a
constraint predicate is removed. At the other extreme,
[17] gives a technique which intelligently reuses much of
the existing work without storing any additional data dur-
ing computation of consistency. Open systems for prob-
lem solving are discussed in [19] and [24].

The Distributed Constraint Satisfaction Paradigm
(DisCSPs) is defined in [29]. Some well known exten-
sions are Partial Distributed Constraint Satisfaction [27]
for approaching over-constrained problems, and Dis-
tributed Dynamic Constraint Satisfaction [7, 16, 12] for
modeling dynamic local problems.

2.2 Asynchronous Search

We introduce now the main notions involved in asyn-
chronous search algorithms. The agents run concurrently
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and asynchronously, exchanging some types of propos-
als. A total order is defined on agents, and it is used to
break ties in case of conflicts during search. By Aij(o) we
denote the agent Aj having position i in the order o on
agents. If i>j then Ai has a lower priority than Aj and
Aj has a higher priority then Ai.1

Definition 1 (Assignment) An assignment for a variable
xi is a tuple 〈xi, v, c〉 where v is a value from the domain
of xi and c is the tag value.

The tags timestamp the assignments and allow for an or-
der, called “stronger”, on assignments generated by the
same agent. The strongest assignments received by dif-
ferent agents form their agent view.

In ABT, each constraint C has to be evaluated by a pre-
defined agent:

Rule 1 (Constraint-Evaluating-Agent) Each constraint
C is enforced by the lowest priority agent whose variable
is involved in C.

In MAS, the assignments are called aggregates. The cor-
responding rule for MAS is generalized to:

Rule 2 A constraint C can be enforced by the lowest pri-
ority agent, Ai, or one of its successors, if for each vari-
able involved in C, either Ai or one of its predecessors
can propose aggregates.

This means that any agent that wants to enforce a con-
straintC has to propose assignments for any variable inC
for which no higher priority agent proposes assignments.
The set of predicates enforced by Ai is denoted CSP(Ai).
Each agent holds a list of outgoing links represented by a
set of agents. Links are associated with constraints. Every
link is directed from the value sending agent to a corre-
sponding constraint-evaluating-agent.

Definition 2 (Agent View) The agent view of an agent,
Ai, is a set containing the strongest assignments received
by Ai for distinct variables.

Based on their constraints, the agents perform infer-
ences concerning the assignments in their agent view. By
inference the agents generate new constraints called no-
goods.

1They can impose first eventual preferences they have on their values

Definition 3 (Explicit Nogood) An explicit nogood has
the form ¬N where N is a set of assignments for distinct
variables.

Rule 3 (Nogood-Evaluating-Agent) An explicit nogood
¬N is enforced by the lowest priority agent that has gen-
erated an assignment in N .

The following types of messages are exchanged in
ABT:

• ok? message transporting an assignment is sent to a
constraint-evaluating-agent to ask whether a chosen
value is acceptable.

• nogood message transporting an explicit nogood
¬N . It is sent from the agent that infers ¬N , to the
nogood-evaluating-agent for ¬N .

• add-link message announcing Ai that the sender Aj
owns constraints involving xi. Ai inserts Aj in its
outgoing links and, if its last generated assignment
for xi is valid, answers with an ok?.

The agents start by instantiating variables concurrently
and send ok? messages to announce their assignment to
all agents with lower priority in their outgoing links.

Definition 4 (Valid assignment) An assignment
〈x, v1, c1〉 known by an agent Al is valid for Al as
long as no assignment 〈x, v2, c2〉, c2>c1, is received.

Definition 5 A nogood is invalid if it contains invalid as-
signments.

In the described version of ABT, only one valid explicit
nogood has to be stored for a value of a variable, but more
nogoods can be stored for efficiency reasons.

MAS extends ABT with support for aggregations (ab-
stractions), consistency, and reordering. In MAS, assign-
ments become aggregates [21]. An aggregate 〈x, v, h〉
uses as tag value a trace, h, which generalizes the con-
cept of the counter. The trace is a marker for ordered
proposal sources, technique (used first time in [20]).

3



2.2.1 Traces

We describe a marking technique that allows for the defi-
nition of a total order among the proposals made concur-
rently and asynchronously by a set of ordered agents on
a shared resource (e.g. an order, an assignment) [20]. Its
philosophy is related to the one of logical clocks [13].

Definition 6 A proposal source for a resource R is an
entity (e.g. a delegated agent) that can make specific pro-
posals concerning the allocation (or valuation) ofR.

We consider that an order ≺ is defined on proposal
sources. The proposal sources with lower position ac-
cording to ≺ have a higher priority. The proposal source
with position k is noted P sRk , k ≥ 0.

Definition 7 A conflict resource is a resource for which
several agents can make proposals in a concurrent and
asynchronous manner.

Each proposal source P sRi maintains a counter CRi for
each conflict resource R for which it can make propos-
als. The markers involved in our marking technique for
ordered proposal sources are called traces.

Definition 8 A trace is a sequence h of pairs, |a:b|, that
is associated to a proposal for R. A pair p=|a:b| in h
signals that a proposal for R was made by P sRa when its
CRa had the value b, and it knew the prefix of p in h. A
proposal source only knows traces proposed by proposal
sources with higher priority than itself.

An order ∝ (read “precedes”) is defined on pairs such
that |i1:l1| ∝ |i2:l2| iff either i1>i2, or i1=i2 and l1<l2.

Definition 9 A trace h1 is stronger than a trace h2 if a
lexicographical comparison on them, using the order ∝
on pairs, decides that h2 precedes h1, h2 ∝ h1.

P sRk builds a trace for a new proposal on R by prefix-
ing to the pair |k:lkj |, the strongest trace that it knows for
a proposal on R made by any P sRa , a<k. lkj is the cur-
rent value of CRk . The CRa in P sRa is reset each time an
incoming message announces a proposal with a stronger
trace, made by higher priority proposal sources onR. CRa
is incremented each time P sRa makes a proposal forR.

A1

A2

A3m1:x={..}|1:k1l|

m3:x={..}|2:k2h|

m1:x={..}|1:k1l|

m3:x={..}|1:k1f|2:k2g|m2:x={..}|1:k1f|

a)
b)

x

x

x x

x

x
A2

A1 A3

Figure 1: Simple scenarios with messages for proposals
on a resource, x.

Definition 10 A trace h1 built by P sRi for a proposal is
valid for an agent A if no other trace h2 is known by A
(eventually known as prefix of a trace h′2) such that h2 is
stronger than h1 and was generated by P sR≤i .

For example, in Figure 1 the agent A3 may get mes-
sages concerning the same resource x from A1 and A2

and has to decide which of them is the most up to date.
In Figure 1 a), if the agent A3 has already received m1,
it will always discard m3 since the proposal source index
has priority. However, in the case of Figure 1 b) the mes-
sagem1 will be maintained only if k1f<k1l. By construc-
tion, no trace contains two pairs with the same proposal
source index. Therefore, in each message, the length of
the trace for a resource is upper bounded by the number
of proposal sources for that conflict resource [20].

2.2.2 Multiply Asynchronous Search (MAS)

For domain splitting, the proposal sources are the agents.
Each agent considers that the proposal sources for do-
main splitting are ordered according to the order it cur-
rently knows. For reordering, the proposal sources are a
set of abstract agents, that can be dynamically delegated
to existing physical agents. The order among the proposal
sources on reordering (the abstract agents) is static. The
proposal source with position k, k≥0 is referred to as Rk,
the k-th reordering leader. Rk can reorder agents found
on positions higher than k by proposing a set of guidelines
that have to be complied with by lower priority reordering
sources (e.g. the agent on position k+1), and proposes an
order. The notation Aij(o) tells that the agent Aj has po-
sition i in the current order o. Each agent has a different
perception of the distributed search, as a search tree.

Definition 11 The depth in distributed search trees is re-
ferred to as level.
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In order to maintain consistencies asynchronously, MAS
uses consistency nogoods.

Definition 12 A consistency nogood for a level k and a
variable x has the form V→(x∈lkx) or V→¬(x∈s\lkx).
V is an aggregate and may contain for x an assignment
〈x, s, h〉, lkx⊂s. Any assignment in V must have been pro-
posed by predecessors of Ak. lkx is a label, lkx 6=∅.

An aggregate 〈x, s, h〉 in V is redundant if s = l0x.

Definition 13 An order in MAS is an ordering proposal
on agents, and a delegation of proposal sources for re-
ordering, all these being marked with a marker for or-
dered proposal sources.

Besides the messages used in ABT, MAS uses the fol-
lowing types of messages:

• propagate message transporting a set of consistency
nogoods.

• heuristic message transporting information useful
for reordering.

• reorder message transporting an order.

A propagate message is sent by the agent that infers
the consistency nogoods in parameter to the agents that
see the corresponding level of the search. Some ver-
sions only send propagate messages to agents Ai for
which CSP(Ai) involves the variables in the transported
labels [21]. Each consistency nogood is tagged with its
level and the value of a counter Ci,x,k maintained by Ai,
incremented on consistency nogoods generation by the in-
ferring agent Ai, for variable x, at level k.

A heuristic message is sent by an agentAk toR>j , and
can be sent within delay th after it receives a new order,
aggregate or label for a level no higher than j. The exact
schema depends on the used heuristic.

A reorder message is sent by a proposal source for re-
ordering, Rk, to all reordered agents A>k and optionally
to lower priority proposal sources for reordering, R>k. It
can be sent within delay tr after a heuristic message is
received, or from the start of the search.

2.2.3 Reordering

The ordering on agents is considered as a conflict resource
and a trace is attached to each proposal on ordering. As
previously mentioned, the proposal sources for the order-
ing on agents are the agents Ri, where Ri≺Rj if i<j. Ri

is the proposal source that when knowing an ordering, o,
can propose orderings that reorder only agents on posi-
tions p, p>i. To specify that two notations: Ai, Rj , refer
to the same physical agent, we use the notation Ai ≡ Rj .
For dealing with reordering, each agent stores two orders:
the strongest known order and the proposed order.

Definition 14 (Known order) The ordering known by
Ri (respectivelyAi) is the order o with the strongest trace
among those proposed by the agents Rk, 0≤k<i and re-
ceived by Ri (respectively Ai). Ai has the position i in
o. This order is referred to as the known order of Ri (re-
spectively Ai).

Definition 15 (Proposed order) An ordering, o, pro-
posed by Ri is such that the agents placed on the first
i positions in the known order of Ri must have the same
positions in o. o is referred to as the proposed order of
Ri.

Let us consider two different orderings, o1 and o2,
with their corresponding traces: O1 = 〈o1, h1〉, O2 =
〈o2, h2〉; such that |h1| ≤ |h2|. Let pk1 = |ak1 :bk1 | and
pk2 = |ak2 :bk2 | be the pairs on the position k in h1 respec-
tively in h2.

Definition 16 (Reorder position) Let u be the lowest po-
sition such that pu1 and pu2 are different and let v =
|h1|. The reorder position of h1 and h2 is either
min(au1 , a

u
2 ) + 1 if u > v, or av+1

2 + 1 otherwise. This
is the position of the highest priority reordered agent be-
tween h1 and h2.

An agent Ri announces its proposed order o by send-
ing reorder messages to all agents Ak, k>i, and to all
agents Rk, k>i. Each agent Ai and each agent Ri has
to store an ordering denoted Cord. Cord is the order-
ing with the strongest trace that was received. For al-
lowing asynchronous reordering, each ok? and nogood
message receives as additional parameter an order and its
trace. The ok? messages hold the strongest known order
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of the sender. The nogood messages hold the order in the
Cord at the sender Aj that Aj believes to be the strongest
known order of the receiver, Ai. This ordering consists of
the first i agents in the strongest ordering known by Aj

and is tagged with a trace obtained from the trace of its
Cord by removing all the pairs |a:b| where a≥i.

When a message is received which contains an order
with a trace h that is stronger that the trace h∗ of Cord,
let the reordering position of h and h∗ be Ir. The as-
signments/aggregates for the variables xk, k ≥ Ir, are
invalidated. This simple approach loses many nogoods
by invalidation, but techniques to recover some of these
nogoods are described in [21].

3 Open System

For simplification, here we consider that all sent messages
arrive in finite time to their destination, when the destina-
tion does not leave or suffer a crash. E.g. using TCP
connections – when on the failure of such a connection,
one should make sure that the destination agent eventu-
ally leaves or starts crash recovery procedures. Something
similar to this is implemented in RETSINA [24].

3.1 Joining Asynchronous Search

It is very easy to allow new agents to join a search process
since all existing work remains valid. When new agents
want/accept to get involved in the computation, all the ex-
isting agents should receive, via an involved message, in-
formation on

• the initial priority, and

• the external variables of the new agents.

The agent that receives an involved message have to send
their valid proposals, order, as well as their last gener-
ated valid labels, to the new agents. The simplest solu-
tion is to place new agents on positions following exist-
ing agents. Protocols supporting agent reordering (such
as AWC, ABTR, MAS) allow then for reordering agents
toward any other wished configuration.

Proposition 1 If the first message sent by newly joining
agents is sent after all previous agents have received the

corresponding involved message, any running protocol
that is an instantiation of MAS remains correct, complete
and terminates.

Proof. The proposition is obvious since the protocol ob-
tained by this combination behaves as an instance of MAS
where th is higher than the time up to the involvement of
the new agents, some messages are delayed for this period
of time, and channels discard invalidated messages.

When all agent answers involved messages with an ac-
knowledgment toward the new agents, the last ones can
straightforwardly detect the condition in the assumptions
of Proposition 1. Alternatively, the treatment of messages
could be adapted to ensure correct treatment of messages
from unexpected agents. It has to be noted that termina-
tion and solution detection algorithms [14, 21] that contin-
uously monitor the system have to be adapted for taking
into account the insertion of the new agents.

3.2 Leaving Asynchronous Search

3.2.1 Isolating an agent

Our first step towards removing an agent consists in iso-
lating it from search. Given the reordering capabilities
of MAS, it becomes easily possible to place any leaving
agent, Ai, on the last position before removing outgoing-
links and triggering the relaxation of the nogoods that Ai
has generated.

We describe here the case where the agents agree on the
convention: Aj≡Rj . Each reordering leader Ri stores
the set L of agents that have left. Let us consider the
case when an agent Ai leaves and N agents remain in
the search process. Let q= min(i−1, N−2). When Rq

knows that an agent Aij leaves, i≤N , then Rq has to
reorder Aij . If the known order of Rq specifies the se-
quence of agents: A1

p1
, ..., Ai−1

pi−1
, Aij , A

i+1
pi+1

, ..., AN+1
pN+1

,
then the agent Rq has to broadcast the message
reorder(A1

p1
, ..., Ai−1

pi−1
, Api+1

, ..., ApN+1
, Aj) to all the

agents Aj , Api+1
, ..., ApN+1

. This order is tagged with
a trace, as previously discussed. Any new proposed order
should put the set L at the end of the sequence of agents.
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3.2.2 Nogood management

We now describe a constraint relaxation schema for pri-
vate constraints2. That technique consists of explaining
inferences with references to constraints (CR). To en-
hance privacy support, the CRs do not necessarily stand
for a given constraint, but provide a way to signal when
due to relaxations, a nogood is invalidated. At any infer-
ence, the nogood resulting from the inference is tagged
with the union between:

• the CRs of the constraints used for inference, and

• the union of CRs tagging the nogoods used for infer-
ences.

Each agent is also associated with a predefined CR,
CR(Ai). The algorithms remain polynomial in space only
if the number of CRs in use is bounded. The reuse of
CRs can be enabled by attaching to them counters. When
CRs are obtained from Ai, the versions with lower value
of the counters cannot be used any longer, being trans-
formed into CR(Ai).

In Figure 2 is given an example of ABT with main-
tenance of CRs. CR(Ai) is denoted by CAi . The
example uses the simple problem exploited in [28] to
illustrate ABT. The agent A3 enforces the constraints
x1 6=x3, x2 6=x3, x3∈{1, 2}. Each of these constraints can
be represented with distinct CRs: {CA3

1 , CA3
2 , CA3

3 }. For
privacy reasons, A3 can use more than three CRs, having
several CRs for the same constraint. The separate relax-
ation of some of these constraints can be announced by
broadcasting the set of CRs representing them. There-
fore, each agent discards the nogoods tagged by CRs of
relaxed constraints.

For simplicity, each agent in the example of Figure 2
uses only one CR. The agent A3 infers the nogood
¬(〈x1, 1, 1〉, 〈x2, 2, 1〉) and tags it with CA3 , (CR(A3)).
When the agent A2 infers ¬(〈x1, 1, 1〉, 〈x2, 2, 1〉), it tags
this nogood with {CA2 , CA3} by adding CA2 due to its
constraint: x2∈{2}.

3.2.3 Agents Announcing their Retreat

We see the departure of an agent Ai as a relaxation,
namely the removal of the constraints of Ai. Obviously,

2Introduced in [22].

9: A2/A2 leaving(A2, ||, A1) → A1/A1/R0/R1

10: A2/A2 leaving(A2, ||, A1) → A3/A3

11: R0/A1/A1
–reorder(A1, A3)|0 : 1|–→ A3/A2

Figure 3: Example of ABTR when A2 leaves the search.
The default order is (A1, A2, A3), Rk ≡ Ak, and initially
R0 ≡ A1.

9: A2/A2/R0 leaving(A2, ||, A1) → A1/A1/R1

10: A2/A2/R0 leaving(A2, ||, A1) → A3/A3

11: R0/A1/A1
–reorder(A1, A3)|0 : 1|–→ A3/A2

Figure 4: Example of ABTR when A2 leaves the search.
The default order is (A1, A2, A3), Rk ≡ Ak, and initially
R0 ≡ A2.

the remaining agents need additionally to remove the links
that they have towards Ai and also eliminate the corre-
sponding data structures (assignments and set of labels
generated by Ai for different variables). The removal of
the occupied position, p, can also be realized easily in
MAS if the reordering leader Rp−1 generates a reorder
message which places that agent at the end of the search.
When the agent delegated to act for R0 withdraws, the
remaining agents have to reach a consensus on a new del-
egation of R0. Such a consensus can be easily obtained
using the convention that the agent on the first position
given the last order among the remaining agents, (e.g. A1

if it did not leave), will act for R0.
A new message, leaving, has to be used for signal-

ing departure. When Ai leaves the search, it broadcasts
leaving(Ai,order,R0) to all other agents. The message
takes as parameter the strongest order and the identity of
R0 known by the sender.

To know which CR belongs to which agent, CRs are
tagged with the name of the owner agent. To enable
the detection of the nogoods that depend on any leav-
ing agent, any generated nogood has to be marked with
the corresponding CRs. Whenever an agent, Ai, leaves
the process, this information can be broadcasted to all the
agents and the nogoods marked with CRs of Ai must be
removed by everybody.

Figure 3 shows an example where A2 leaves during
the example in Figure 2. Normally, R1 should undertake
the task of reordering the agents, but since R1 disappears
when the number of agents reduces to 2 [21], the task is
undertaken by R0. The Figures 4 and 5 show the case
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x1(1,2) x2(2)

x3(1,2)

====

A1 A2

A3

1: A1 ok?〈x1, 1, 1〉 → A3

2: A2 ok?〈x2, 2, 1〉 → A3

3: A3 nogood¬(〈x1, 1, 1〉, 〈x2, 2, 1〉), {CA3} → A2

4: A2 –nogood¬(〈x1, 1, 1〉, 〈x2, 2, 1〉), {CA2 , CA3}–→ A1

5: A2 add-link → A1

6: A2 ok?〈x2, 2, 2〉 → A3

7: A1 ok?〈x1, 2, 2〉 → A2

8: A1 ok?〈x1, 2, 2〉 → A3

Figure 2: Example of ABT with maintenance of CRs.

9: A1/A1/R0/R1 leaving(A1, ||, A2) → A2/A2

10: A1/A1/R0/R1 leaving(A1, ||, A2) → A3/A3

11: R0/A2/A1
–reorder(A2, A3)|0 : 1|–→ A3/A2

Figure 5: Example of ABTR when A1 leaves the search.
The default order is (A1, A2, A3), Rk ≡ Ak, and initially
R0 ≡ A1.

where the agent delegated to act for R0 leaves. In both
cases, the first remaining agent is delegated to act for R0

and generates the new order. In case R0 ≡ A3, no new
order needs to be generated, but A1 is delegated to act for
R0.

While all the links, nogoods and assignments for leav-
ing agents are removed when the corresponding leaving
message is received, those agents are still stored in the
sets L of each agent.

3.2.4 Leaving without Announcing

Agents may leave without announcing. As long as no-
body detects this departure, the search continues to use the
nogoods inferred from the internal constraints of the dis-
appeared agents. The dependencies continue to propagate
and may lead to the replacement of valid nogoods with
nogoods that depend on withdrawn agents. It is therefore
important to detect such withdrawal as soon as possible.

When no time-out is established, one cannot ensure the
achievement of any solution. If a time-out tt is agreed-
on, any agent that recovers after this time-out elapses will
have to join as a new agent, and much information can be
lost.

ABTR allows the agents to re-delegateR0 during a pre-
defined delay tr + th from the beginning of the search.
Moreover, the withdrawal of the agent acting for R0 also
leads to the re-delegation of R0. When the timeout is

detected for an agent Ai, the system detecting it can-
not be sure in asynchronous search whether Ai is or is
not acting for R0. This problem can be solved cleanly
with a two rounds protocol, assuming that no other agent
crashes during them. The first round consists in sending
leaving(Ai, ∅, ∅) messages to all remaining agents. When
an agent Aj receives leaving(Ai, ∅, ∅) without an order
from an agent Ak, k 6= i, Aj will trigger the elimination
of any message coming from Ai, but will not start acting
for R0, even if Aj ≡ A1. Instead Aj sends a message
leaving-data(Ai) to Ak attaching to it the strongest order
known at Aj , and the estimated identity of R0.

Proposition 2 If Ak receives the answer leaving-
data(Ai) from all remaining agents, and if Ai is R0 in
the strongest received ordering, then the leaving agent is
R0.

Proof. After any agent Aj receives a leaving(Ai),
Aj will discard any new information generated by
Ai. If Ai is R0, it can no longer change it at Aj
since any such change is discarded by Aj .

After Ak receives leaving-data(Ai) from all remaining
agents, ifAi isR0 in the strongest received order, thenAk
broadcasts leaving(Ai) with the strongest received order
and identity for R0.

If some other agent, Au, does not answer to leaving
messages, the removal procedure is interrupted after the
corresponding time-out, Ak launches the protocol for an-
nouncing that both Au and Ai have left (Algorithm 1). If
Ak abandons himself without notice, any agent that has
received from Ak an leaving(Ai) without an order and
did not receive a leaving(Ai) with order, timeouts Ak af-
ter a delay 2tt and starts the protocol for announcing the
departure of both Ai and Ak.

8



procedure elimination(A : {Ai, ...}) do
broadcast leaving(A, ∅, ∅);
wait until receives all leaving-data(A,order,R0);

or timeout(tt);
if no timeout then

broadcast leaving(A,strongest-order,R0)
else

restart elimination procedure for agents that did
not answer and for A

end
end do.
when Ak detects time-out for Ai do

elimination({Ai});
end do.
when Aj receives leaving(A, ∅, ∅) from Ak do

block A;
answer with leaving-data(A,strongest-order,R0);
discard data from Ai or tagged CAi , Ai ∈ {Ai};
launch timer 2tt for {Ak} ∪A;

end do.
when Aj receives leaving(A,order,R0) from Ak do

block A;
discard data from {Ai} or tagged CAi , Ai ∈ {Ai};
if Aj≡Au, all A<u have left, and Ai≡R0 then

Aj ← R0;
end
stop Ru, u ≥ N − 1, N -the nr. of remaining agents;
while Ai ∈ A,Ai≡Av and ((v=N ∧Aj≡Rv−2) or

(v<N ∧Aj≡Rv−1)) do
send to owned delegated reordering proposal

sources: heuristic(reorder Ai as AN+1);
end
stop timer 2tt for {Ak} ∪A;

end do.
when timer 2tt for A do

elimination(A);
end do.

Algorithm 1: Procedures for eliminating a set of agents A
after time-out is detected by Ak.

Unfortunately this technique leads to important losses
when an agent cannot be reached for long time only due to
network congestion. To reduce these problems, a longer
timeout, T , can be established. Systems that are unreach-
able in acceptable time t, t<T , and that may have lost
some messages, can be updated with a recovery mecha-

nism similar to the one given in [21].

4 Main Problems and Research Di-
rections

For existing complete search protocols with polynomial
space requirements, the losses that it can incur when
agents withdraw can vary from very little to almost ev-
erything. The worst cases are expected to occur either
when a high priority agent withdraws, or when an agent
involved in most stored nogoods withdraws. The last case
is very likely towards the end of a search process for dif-
ficult problems.

The main advance that can be foreseen towards an im-
proved response to openness in complete search protocols
is the definition of some data structures to reduce the loss
of information when certain patterns of events take place.
Such a pattern is the withdrawal of only one agent. A pos-
sible strategy of Aj can consist of storing for each agent
Ai, all the last valid labels where it was not involved in
the inference process (labels and nogoods not tagged with
CR(Ai)). The space complexity would increase with a
factor n (the number of agents). Also the local worst case
computation cost of the agents can increase by the same
factor. Namely, each time a new valid label arrives, it has
to be combined with all existing labels for agents not in-
volved (as shown by tags) in its inference.

5 Conclusion

In this paper, we have shown how asynchronous search
algorithms, in particular AAS, can be provided with extra
structures that develop them into open protocols where
agents can join and leave ongoing DisCSP search pro-
cesses without need for restarting them. This allows asyn-
chronous search to be used in an open environment with
a dynamic agent population, which was not possible with
known algorithms.

The main challenge we solve is to allow agents to leave
a search process without restarting it. Our technique is
based on the realization that agents can leave a search eas-
ily if they are at the last position in the hierarchy. Thus,
leaving a search happens in two stages: first, the agent is
reordered to the last position, then it can leave the search.

9



We have presented the techniques in the context of
MAS (multiply asynchronous search), which can be seen
as a generalization of many known asynchronous search
algorithms such as ABT, AAS, ABTR or DMAC. It
should thus be clear how the technique could be applied
to these algorithms as well.
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