
Abstract agents for Shared instantiation in ABT
[Research Note]

Marius-Călin Silaghi∗

Florida Institute of Technology (FIT)
Melbourne, Florida 32901-6988, USA

msilaghi@cs.fit.edu

Ion Constantinescu
Swiss Federal Institute of Technology (EPFL)

CH-1015 Lausanne, Switzerland
Ion.Constantinescu@epfl.ch

ABSTRACT
Complete asynchronous search algorithms for DisCSPs require

an order on participating agents. This order has been often per-
ceived as strongly harming fairness. However, already in the origi-
nal presentation of asynchronous backtracking (ABT) agents stand
for variables. We show here that an additional level of abstraction
in ABT, namely replacing ABT agents with a cooperation Mech-
anism, can lead to important shifts in fairness properties. It is re-
markable that the result can be achieved without losing complete-
ness and with minimal adaptations to the distributed protocol.

1. INTRODUCTION
Distributed Constraint Satisfaction Problems (DisCSPs)

are satisfaction problems where constraints and/or variables
are owned by distinct agents that cooperate for finding solu-
tions satisfying all of them. The fact that an agent A owns
a constraint can mean that A is interested in enforcing the
constraint or simply that he knows it. Owning a variable can
mean owning knowledge about its domain (owning a unary
constraint), or having the right to propose discussions about
possible instantiations for the variable.

In case of conflict in distributed search over DisCSPs, ties
have to be broken in a consistent manner [2]. Therefore,
complete asynchronous search algorithms for DisCSPs re-
quire an order on participating agents. In many types of
problems, this order can harm fairness as higher priority
agents can propose first their preferred alternatives.

However, already in the original presentation of asyn-
chronous backtracking (ABT) [9] agents stand for variables.
We show here that an additional level of abstraction in ABT,
namely logically replacing ABT agents with a cooperation
Mechanism, can lead to important shifts in fairness proper-
ties. It is remarkable that the result can be achieved without
losing termination and with minimal adaptations to the dis-
tributed protocol.

2. RELATED WORK
The first complete asynchronous search algorithm for

DisCSPs is the Asynchronous Backtracking (ABT)[9]. The
approach in [9] considers that each agent maintains only one

∗This work was performed while the first author was working at EPFL,
supported by the Swiss National Science Foundation project number 21-
52462.97.

variable. More complex definitions were given later [10].
Other definitions of DisCSPs [11, 8, 5] have considered the
case where the interest on constraints is distributed among
agents. [8] proposes versions that fit the structure of a
real problem (the nurse transportation problem). The Asyn-
chronous Aggregation Search (AAS) [5] algorithm is a first
extension of ABT to the case where the same variable can be
instantiated by several agents. It mainly increases the sup-
port for abstractions. A framework for supporting proposals
on conflicting resources is defined in [6]. A second tech-
nique is then presented in [4] and allows for simple under-
standing of privacy/efficiency mechanisms. [1] shows how
add-link messages can be avoided in ABT. [3] uses a con-
sensus algorithm for deciding ordering during search and
[7] shows how an abstract agent can be used for modeling
the reordering decision of a set of agents with majority vot-
ing. No such approach is known for increasing fairness in
proposing assignments.

3. ASYNCHRONOUS BACKTRACKING (ABT)
In asynchronous backtracking, the agents run concur-

rently and asynchronously. Each agent Ai instantiates its
variable xi and communicates the variable value to the rel-
evant agents. [9] assumes FIFO channels. The channels are
reliable, delivering messages within a finite delay, τ .
Definition 1 (Assignment) An assignment for a variable xi
is a tuple 〈xi, v〉 where v is a value from the domain of xi.

Since the channels deliver messages in FIFO order, the
assignments are received in the order in which they are gen-
erated. A static order is imposed on agents and we assume
that Ai has the i-th position in this order. If i>j then Ai has
a lower priority than Aj and Aj has a higher priority then
Ai. Aj can impose first eventual preferences it has on its
values

Each constraintC is evaluated by the lowest priority agent
whose variable is involved in C. It is denoted CEA(C).

Each agent holds a list of outgoing links represented by
a set of agent names. Links are associated with constraints.
ABT assumes that every link is directed from the value send-
ing agent to the constraint-evaluating-agent.
Definition 2 (Agent View) The agent view of an agent,Ai,
is a set containing the newest assignments received byAi for
distinct variables.

when received (ok?,〈xj , dj〉) do
add(xj ,dj) to agent view;
check agent view;

end do.
when received (nogood,Aj ,¬N) do

when 〈xk, dk〉, where xk is not connected, is contained
in ¬N

send add-link to Ak;
add 〈xk, dk〉 to agent view;

put ¬N in nogood-list;
old value← current value;
check agent view;
when old value = current value

1 send (ok?,〈xi, current value〉) to Aj ;

end do.
procedure check agent view do

when agent view and current value are not consistent
if no value inDi is consistent with agent view then

backtrack;
else

select d ∈ Di where agent view and d are con-
sistent;
current value← d;
send (ok?,〈xi, d〉) to lower priority agents in
outgoing links;

end
end do.
procedure backtrack do

nogoods
← {V | V = inconsistent subset of agent view};

when an empty set is an element of nogoods
broadcast to other agents that there is no solution;
terminate this algorithm;

for every V ∈ nogoods do
select 〈xj , dj〉 where xj has the lowest priority in
V ;

2 send (nogood,Ai,V) to Aj ;
remove (xj ,dj) from agent view;

end do
check agent view;

end do.

Algorithm 1: Procedures of Ai for receiving messages in
ABT.

Based on their constraints, the agents perform inferences
concerning the assignments in their agent view. By infer-
ence the agents generate new constraints called nogoods.
Definition 3 (Nogood) A nogood has the form ¬N where
N is a set of assignments for distinct variables.

The following types of messages are exchanged in ABT:

• ok? message transporting an assignment is sent to
a constraint-evaluating-agent to ask whether a chosen
value is acceptable.

• nogood message transporting a nogood. It is sent from
the agent that infers a nogood ¬N , to the constraint-

evaluating-agent for ¬N .

• add-link message announcing Ai that the sender Aj
owns constraints involving xi. Ai inserts Aj in its out-
going links and answers with an ok?.

The agents start by instantiating their variables concur-
rently and send ok? messages to announce their assignment
to all agents with lower priority in their outgoing links.
The agents answer to received messages according to the
Algorithm 1 [9].

4. INTRODUCING COORDINATION

In this paper our objective is to explore ways for allow-
ing the process of instantiation a variable to be controlled by
two or more agents. For that we propose an extension to the
model described above with the concepts of coAgent and co-
Variable (cooperating, collaborating). The assignment pro-
cess itself is going to be exterior to the ABT algorithm and
we are going to refer to it as the coMechanism. A coMech-
anism for deciding instantiations with interesting behavior
could consist of a voting mechanism over the set of val-
ues obtained with unanimity when the acceptable sets of all
agents are intersected.

First we present a basic set of relations between existing
and proposed concepts and then we discuss a number of
choices for completely defining this model.

Any coAgent controls the instantiation of exactly one co-
Variable. A Distributed CSP can have a number of zero or
more coAgents / coVariables.

The case of a Distributed CSP with zero coAgents is
exactly the initial case presented above in Section 3. The
case of a Distributed CSP with two ore more coAgents can
be easily derived from the case of a Distributed CSP with
one coAgent. As such we are going to consider next the
case of a Distributed CSP with one coAgent / coVariable.

The agents that participate to the coMechanism are said
to support the coAgent or otherwise are called supporting
Agents. The agents that participate in the ABT are called
ABT Agents.

Further defining the newly proposed concepts raises a
number of questions:

• 1. what is the intersection set between the supporting
Agents and ABT Agents?

• 2. how are the agents controlling the coMechanism in-
teracting with the agents participating to the ABT?

• 3. is an agent controlling the coMechanism and thus
participating in the instantiation of the coVariable al-
lowed to control also a local variable?

Our first proposed model gives the following responses:

• 1. only one agent acts as both a supporting Agent and a
ABT Agent (the cardinality of the intersection set from
1. is one). This is actually going to be the coAgent.

• 2. the coAgent is going to act as a gateway running the
ABT and also the coMechanism

• 3. the coAgent doesn’t control a local variable

The ABT algorithm is going to be different in the case of
the coAgent in the following aspects: for selecting a value
d ∈ Di for the coVariable the coAgent iteratively checks if
the value is consistent with the agent view but also runs the
coMechanism for the value.

As such the check agent view procedure of the ABT
algorithm is going to look as following:

procedure check agent view do
when agent view and current value are not consistent

for every value d ∈ Di consistent with agent view
do

if d consistent with coMechanism then
current value← d;
send (ok?,〈xi, d〉) to lower priority agents
in outgoing links;
return ;

end
end do
if no value d found then

backtrack;
end

end do.

Algorithm 2: The check agent view in the case of the coA-
gent

Figure 1 shows an example of running the above algo-
rithm with coAgentA2.

In step (a) agent A1 instantiate his variable to 1 and sends
a ok? message to the coAgent A2 . Upon receiving the ok?
message agent A2 chooses a possible value for his local
variable - in our case 2 - and initiates the coMechanism
with this variable. The coMechanism returns successfully
and as such agent A2 assigns the results to his current value
(current value = 2).

In step (b) A2 sends an ok? message to A3 with the
newly assigned value.

In step (c) A3 is not able to instantiate his local variable
due to incompatibility with the current value of the higher
priority agent A2 so it backtrack by sending back to A2 a
nogood message.

In step (d) A2 has his local variable incompatible with his
nogood-list and is also not able to find a new assignment.
As such it is also forced to backtrack and sends back to A1

X1
{1,2}

X3
{2}

coAgent
X2

{1,2}

(ok?,(X1,1))

X1
{1,2}

X3
{2}

coMechanism

(initiate
coMechanism(2))

(result
coMechanism(2))

(a)

agent_view
{(X1,1)}
current_value=2

(ok?,(X2,2))

X1
{1,2}

X3
{2}

(nogood,(X2,2))

(b) (c)

X1
{1,2}

X3
{2}

(nogood,(A1,1))

coAgent
X2

{1,2}

coAgent
X2

{1,2}

coAgent
X2

{1,2}

(d)

Figure 1: ABT algorithm with coAgent and coMechanism

a nogood message.

5. ABSTRACT AGENTS

As noticed in the examples, the coAgents in the previous
algorithm can become bottlenecks in the interaction between
ABT and coMechanism. We propose now a simpler formal-
ism, ShABT, that modifies ABT but removes the bottlenecks
and ensures the needed fairness. A total order is defined on
the public variables of the DisCSP. ABT is modified as fol-
lows.

A1 A2 A3

A11 A31 A22 A32 A23 A33

A1* (x1)

A2* (x2)

A3* (x3)

A13

Figure 2: ShABT agent hierarchy.

Each physical agent Ai participates under the role/name
Aki in the instantiation of each of its variables xk and com-
municates the variable value to other interested agents. Aki
is referred to as a coAgent and enforces the constraints of
Ai involving xk and higher priority variables. The abstract
agent for xi is denoted Ai∗ . The abstraction hierarchy for

the previous problem is shown in Figure 2.
Each coAgent holds a list of outgoing links represented

by a set of physical agent names. ShABT assumes that
every link is directed from the value sending agent to the
constraint-evaluating-agent. Each physical agent owns an
agent view that can be accessed by all its coAgents.

Based on their constraints, the coAgents perform infer-
ences concerning assignments in their agent view and ex-
planations of disagreement of other coAgents, received via
coMechanism. To send a message to the abstract agent Ai∗ ,
it is sent to a coAgent Ait , for some t.

The following types of messages are exchanged in
ShABT:

• ok? message transporting an assignment is sent to a
nogood owner physical agent to ask whether a chosen
value is acceptable. The reception event is triggered for
all coAgents.

• nogood message transporting a nogood. It is sent from
the coAgent that infers a nogood ¬N , to a constraint-
evaluating-coAgent for ¬N .

• add-link message announcing Aik that the sender Aj
owns constraints involving xi. Aik inserts Aj in its
outgoing links and answers with an ok?.

• coMechanism message announcingAit that the sender
Aij runs the coMechanism for the assignment of xi. It
transports the current round ID of the coMechanism on
the variable, as well as the data needed for the coMech-
anism.

• nogoodlist messages are exchanged within the
coMechanism for composing nogood-lists after failure.

The agents start by launching coMechanism for instan-
tiating their variables concurrently. The agents answer to
received messages according to the Algorithm 3. coMecha-
nism rounds are tagged with monotonically increasing IDs.
coMechanism messages carry the round ID and the local
data needed for coMechanism. E.g., for the coMechanism
mentioned in the previous section, the data can consists of
the set of available values and a preference (e.g. a number
from 0 to 1) for each of them. The winning assignment will
belong to the intersection of the available values received
for the current round from all coAgents. It can be chosen by
optimizing a function (e.g. sum) over the preferences of all
agents. For ensuring consensus, ties can be broken with an
order on agents.

Theorem 1 ShABT is correct, complete and terminates.

Proof The proof is identical with the proof of ABT in [9],
where the reasoning is performed on variables.

5.1. POLYNOMIAL SPACE SHABT
ShABT has exponential space requirements, but a poly-

nomial space version called pShABT can be obtained as fol-
lows:

when received (ok?,〈xj , dj〉) do
add(xj ,dj) to agent view;
check agent view;

end do.
when received (nogood,Ajt ,¬N) do

Integrate-nogood(¬N);
old value← current value;
check agent view;
when old value = current value

1 send (ok?,〈xi, current value〉) to At;

end do.
procedure Integrate-nogood(¬N) do

when 〈xk, dk〉, where xk is not connected, is contained in ¬N
send add-link to Ak∗ ;
add 〈xk, dk〉 to agent view;

put ¬N in nogood-list;
2 add other new assignments to agent view//pShABT;

end do.
procedure check agent view do

when agent view and current value are not consistent
3 select d=coMechanism(++lcm,agent view,Di,nogood-list);

if d = ∅ then
wait and get nogoodlist(nl);
foreach (n ∈ nl) do

Integrate-nogood(n);
end
backtrack;

else
current value← d;
send (ok?,〈xi, d〉) to lower priority agents in outgoing
links and all Aif , f > z;

end
end do.
procedure coMechanism(cm,agent view,Di,nogood-list,data) do

lcm← max(cm,lcm);
discard coMechanism data for rounds less than lcm;
launch d=coMechanism by sending (coMechanism,Aih ,cm,local-
data) to all agents Ait ;
block waiting for coMechanism to end;
compute and return d;

end do.
when received (coMechanism,Aih ,cm,data) do

d = coMechanism(cm,agent view,Di,nogood-list);
if (d 6= ∅) then

current value← d;
send (ok?,〈xi, d〉) to lower priority agents in outgoing links;

else
4 send (nogoodlist,Aih ,nogood-list);

end
end do.
procedure backtrack do

nogoods← {V | V = inconsistent subset of agent view};
when an empty set is an element of nogoods

broadcast to other agents that there is no solution;
terminate this algorithm;

for every V ∈ nogoods do
select 〈xj , dj〉 where xj has the lowest priority in V ;

5 send (nogood,Aiz ,V) to Aj∗ ;
remove (xj ,dj) from agent view;

end do
check agent view;

end do.

Algorithm 3: Procedures of Aiz for receiving messages in
ShABT.

• Instantiations have to be tagged (e.g. with the ID of
coMechanism). Only the most recent is retained and
old ones are invalidated.

• The line 2 can and has to be called.

• Only one valid nogood has to be stored for a value.

Theorem 2 pShABT is correct, complete, terminates and
has polynomial space requirements.
Proof The proof is identical with the proofs for polynomial
space versions of ABT, where the reasoning is performed on
variables.

5.2. OPTIMIZATIONS
A lot of optimizations are possible in both ShABT and

pShABT. For example, the coMechanism call at line 3 can
be avoided if a nogood can be locally inferred. Especially
for ShABT, but also for pShABT, at line 4, coAgents can
send a resume nogood (e.g. as the conflict list CL in AAS).
Otherwise, for ShABT it becomes important to mark already
sent nogoods and to avoid sending them again to the same
target.

6. CONCLUSIONS
We have presented a way of modeling DisCSP agents by

three levels of abstraction. This allows for running search
protocols initially developed for ABT with totally ordered
agents, while proposed assignments of variables are decided
by majority voting of interested agents. We have applied
these concepts to the basic ABT, obtaining the ShABT al-
gorithm. While no experiments are available, the new ap-
proach clearly provides new fairness properties when com-
pared to other existing approaches.

REFERENCES
[1] C. Bessière, A. Maestre, and P. Meseguer. Distributed dy-

namic backtracking. In Proc. IJCAI DCR Workshop, pages
9–16, 2001.

[2] Z. Collin, R. Dechter, and S. Katz. On the feasibility of
distributed constraint satisfaction. In Proceedings of IJCAI
1991, pages 318–324, 1991.

[3] Amnon Meisels and Igor Razgon. Distributed forward
checking with dynamic ordering. In CP01 COSOLV Work-
shop, pages 21–27, Paphos,Cyprus, December 2001.

[4] P. Meseguer and M. A. Jiménez. Distributed forward check-
ing. In CP DCS Workshop, 2000.

[5] M.-C. Silaghi, D. Sam-Haroud, and B. Faltings. Asyn-
chronous search with aggregations. In Proc. of AAAI2000,
pages 917–922, Austin, August 2000.

[6] M.-C. Silaghi, D. Sam-Haroud, and B. Faltings. ABT with
asynchronous reordering. In 2nd A-P Conf. on Intelligent
Agent Technology, pages 54–63, Maebashi, Japan, October
2001.

[7] M.-C. Silaghi, D. Sam-Haroud, and B. Faltings. Hybridizing
abt and awc into a polynomial space, complete protocol with
reordering. Technical Report #01/364, EPFL, May 2001.

[8] G. Solotorevsky, E. Gudes, and A. Meisels. Algorithms for
solving distributed constraint satisfaction problems (DCSPs).
In Proceedings of AIPS96, 1996.

[9] M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara. Dis-
tributed constraint satisfaction for formalizing distributed
problem solving. In ICDCS, pages 614–621, June 1992.

[10] M. Yokoo and K. Hirayama. Distributed constraint satisfac-
tion algorithm for complex local problems. In Proceedings
of 3rd ICMAS’98, pages 372–379, 1998.

[11] Y. Zhang and A. K. Mackworth. Parallel and distributed al-
gorithms for finite constraint satisfaction problems. In Proc.
of Third IEEE Symposium on Parallel and Distributed Pro-
cessing, pages 394–397, 1991.

