
ABT WITH ASYNCHRONOUS REORDERING

MARIUS-CĂLIN SILAGHI, DJAMILA SAM-HAROUD, AND BOI FALTINGS

Swiss Federal Institute of Technology Lausanne

1015 Ecublens,Switzerland

{Marius.Silaghi,Djamila.Haroud,Boi.Faltings}@epfl.ch

Existing Distributed Constraint Satisfaction (DisCSP) frameworks can model
problems where a)variables and/or b)constraints are distributed among agents.
Asynchronous Backtracking (ABT) is the first asynchronous complete algorithm
for solving DisCSPs of type a. The order on variables is well-known as an im-
portant issue for constraint satisfaction. Previous polynomial space asynchronous
algorithms require for completeness a static order on their variables. We show
how agents can asynchronously and concurrently propose reordering in ABT while
maintaining the completeness of the algorithm with polynomial space complexity.

1 Introduction

Distributed combinatorial problems can be modeled using the general frame-
work of Distributed Constraint Satisfaction (DisCSP). A DisCSP is defined
in 1 as: a set of agents, A1, ..., An, where each agent Ai controls exactly one
distinct variable xi and each agent knows all constraint predicates relevant to
its variable. The case with more variables in an agent can be obtained quite
easily from here. Asynchronous Backtracking (ABT) 1 is the first complete
and asynchronous search algorithm for DisCSPs. A simple modification was
mentioned in 1 to allow for a version with polynomial space complexity.

The completeness of ABT is ensured with the help of a static order im-
posed on agents. So far, no asynchronous search algorithm has offered the
possibility to perform reordering without losing either the completeness, or
the polynomial space property. In this paper we describe a technique that al-
lows the agents to asynchronously and concurrently propose changes to their
order. We then prove that, using a special type of markers, the completeness
of the search is ensured with polynomial space complexity.

This is the first asynchronous search algorithm that allows for asyn-
chronous dynamic reordering while being complete and having a polynomial
space complexity. Here we have built on ABT since it is an algorithm easier
to describe than its subsequent extensions. The technique can nevertheless
be integrated in a straightforward manner in most extensions of ABT. 2

Proc. of the Int. Conf. on Intelligent Agent Technology, 2001 54

2 Related Work

The first complete asynchronous search algorithm for DisCSPs is the Asyn-
chronous Backtracking (ABT)1. For simplicity, but without severe loss of
generality, the approach in 1 considers that each agent maintains only one
variable. More complex definitions were given later.3,4 Other definitions of
DisCSPs 5,6,7 have considered the case where the interest on constraints is
distributed among agents. 6 proposes versions that fit the structure of a real
problem (the nurse transportation problem). The Asynchronous Aggregation
Search (AAS) 7 algorithm actually extends ABT to the case where the same
variable can be instantiated by several agents and an agent may not know
all constraint predicates relevant to its variables. AAS offers the possibil-
ity to aggregate several branches of the search. An aggregation technique
for DisCSPs was then presented in 8 and allows for simple understanding of
the privacy/efficiency mechanisms. The strong impact of the ordering of the
variables on distributed search was so far addressed in 9,6,10.

3 Asynchronous Backtracking (ABT)

In asynchronous backtracking, the agents run concurrently and asyn-
chronously. Each agent instantiates its variable and communicates the vari-
able value to the relevant agents. Since here we don’t assume FIFO channels,
in our version a local counter, Cxi

i , is incremented each time a new instan-
tiation is proposed, and its current value tags each generated assignment.

Definition 1 (Assignment) An assignment for a variable xi is a tuple
〈xi, v, c〉 where v is a value from the domain of xi and c is the tag value.

Among two assignments for the same variable, the one with the higher
tag (attached value of the counter) is the newest. A static order is imposed
on agents and we assume that Ai has the i-th position in this order. If i>j

then Ai has a lower priority than Aj and Aj has a higher priority then Ai.

Rule 1 (Constraint-Evaluating-Agent) Each constraint C is evaluated
by the lowest priority agent whose variable is involved in C.

Each agent holds a list of outgoing links represented by a set of agents.
Links are associated with constraints. ABT assumes that every link is directed
from the value sending agent to the constraint-evaluating-agent.

Definition 2 (Agent View) The agent view of an agent, Ai, is a set con-
taining the newest assignments received by Ai for distinct variables.

Based on their constraints, the agents perform inferences concerning the
assignments in their agent view. By inference the agents generate new con-

Proc. of the Int. Conf. on Intelligent Agent Technology, 2001 55

straints called nogoods.

Definition 3 (Nogood) A nogood has the form ¬N where N is a set of
assignments for distinct variables.

The following types of messages are exchanged in ABT: ok?, nogood,
and add-link. An ok? message transports an assignment and is sent to a
constraint-evaluating-agent to ask whether a chosen value is acceptable. Each
nogood message transports a nogood. It is sent from the agent that infers a
nogood ¬N , to the constraint-evaluating-agent for ¬N . An add-link message
announces Ai that the sender Aj owns constraints involving xi. Ai inserts Aj

in its outgoing links and answers with an ok?.
The agents start by instantiating their variables concurently and send

ok? messages to announce their assignment to all agents with lower priority
in their outgoing links. The agents answer to received messages according to
the Algorithm 1 (except for pseudo-code delimited by ’*’).4

Definition 4 (Valid assignment) An assignment 〈x, v1, c1〉 known by an
agent Al is valid for Al as long as no assignment 〈x, v2, c2〉, c2>c1, is received.

A nogood is invalid if it contains invalid assignments. The next property
is mentioned in 1 and it is also implied by the Theorem 1, presented later.

Property 1 If only one nogood is stored for a value then ABT has polynomial
space complexity in each agent, O(dn), while maintaining its completeness and
termination properties. d is the domain size and n is the number of agents.

4 Histories

Now we introduce a marking technique that allows for the definition of a total
order among the proposals made concurently and asynchronously by a set of
ordered agents on a shared resource (e.g. an order).

Definition 5 A proposal source for a resource R is an entity (e.g. an
abstract agent) that can make specific proposals concerning the allocation (or
valuation) of R.

We consider that an order ≺ is defined on proposal sources. The proposal
sources with lower position according to ≺ have a higher priority. The proposal
source for R with position k is noted PR

k , k ≥ xR0 . xR0 is the first position.

Definition 6 A conflict resource is a resource for which several agents can
make proposals in a concurent and asynchronous manner.

Each proposal source PR
i maintains a counter CR

i
for the conflict resource

R. The markers involved in ourmarking technique for ordered proposal sources
are called histories.

Proc. of the Int. Conf. on Intelligent Agent Technology, 2001 56

P1
x

P2
x

P3
xm1:x={..}|1:k1l|

m3:x={..}|2:k2h|

m1:x={..}|1:k1l|

m2:x={..}|1:k1f|

a) b)

x

x

x x

x
x

P1
x P3

x

m3:x={..}|1:k1f|2:k2g|

P2
x

Figure 1. Simple scenarios with messages for proposals on a resource, x.

Definition 7 A history is a chain h of pairs, |a:b|, that can be associated to
a proposal for R. A pair p=|a:b| in h signals that a proposal for R was made
by PR

a when its CR
a had the value b, and it knew the prefix of p in h.

An order ∝ (read “precedes”) is defined on pairs such that |i1:l1| ∝ |i2:l2|
if either i1>i2, or i1=i2 and l1 < l2.

Definition 8 A history h1 is newer than a history h2 if a lexicographic
comparison on them, using the order ∝ on pairs, decides that h2 precedes h1.

PR
k builds a history for a new proposal on R by prefixing to the pair

|k:value(CR
k)|, the newest history that it knows for a proposal on R made

by any PR
a , a<k. The CR

a in PR
a is reset each time an incoming message

announces a proposal with a newer history, made by higher priority proposal
sources on R. CR

a is incremented each time PR
a makes a proposal for R.

Definition 9 A history h1 built by PR
i for a proposal is valid for an agent

A if no other history h2 (eventually known only as prefix of a history h′2) is
known by A such that h2 is newer than h1 and was generated by PR

j , j ≤ i.

For example, in Figure 1 the agent P x
3 may get messages concerning the

same resource x from P x
1 and P x

2 . In Figure 1a, if the agent P x
3 has already

received m1, it will always discard m3 since the proposal source index has
priority. However, in the case of Figure 1b the message m1 is the newest only
if k1f < k1l and is valid only if k1f ≤ k1l. In each message, the length of the
history for a resource is upper bounded by the number of proposal sources for
the conflict resource.

5 Reordering

Now we show how the histories described in the previous section offer during
the search a mean for allowing agents to asynchronously and concurrently
propose new orders on themselves. In the next subsection we describe a
didactic, simplified version that needs additional specialized agents.

Proc. of the Int. Conf. on Intelligent Agent Technology, 2001 57

5.1 Reordering with dedicated agents

Besides the agents A1, ..., An in the DisCSP we want to solve, we consider
that there exist n−1 other agents, R0, ..., Rn−2, that are solely devoted for
reordering the agents Ai.

Definition 10 An ordering is a sequence of distinct agents Ak0
, ..., Akn

.

An agent Ai may receive the position j, j 6= i. Let us assume that the
agent Al, knowing an ordering o, believes that the agent Ai, owning the
variable xi, has the position j. Al can refer Ai as either Aj , Aj(o) or A

j
i . The

variable xi is also referred to by Al as either xj , xj(o) or x
j
i .

We propose to consider the ordering on agents as a conflict resource. We
attach to each ordering a history as defined in the previous section. The
proposal sources for the ordering on agents are the agents Ri, where Ri≺Rj if

i<j and xorder0 =0. Ri is the proposal source that when knowing an ordering,
o, can propose orderings that reorder only agents on positions p, p > i.

Definition 11 (Known order) An ordering known by Ri (respectively Ai)
is the order o with the newest history among those proposed by the agents
Rk, 0≤k<i and received by Ri (respectively Ai). Ai has the position i in o.
This order is referred to as the known order of Ri (respectively Ai).

Definition 12 (Proposed order) An ordering, o, proposed by Ri is such
that the agents placed on the first i positions in the known order of Ri must
have the same positions in o. o is referred to as the proposed order of Ri.

Let us consider two different orderings, o1 and o2, with their corresponding
histories: O1 = 〈o1, h1〉, O2 = 〈o2, h2〉; such that |h1| ≤ |h2|. Let pk

1 = |ak
1 :b

k
1 |

and pk
2 = |ak

2 :b
k
2 | be the pairs on the position k in h1 respectively in h2.

Definition 13 (Reorder position) Let u be the lowest position such that
pu
1 and pu

2 are different and let v = |h1|. The reorder position of h1 and h2

is either min(au
1 , a

u
2) + 1 if u > v, or av+1

2 +1 otherwise. This is the position
of the highest priority reordered agent between h1 and h2.

New optional messages for reordering are: heuristic messages for heuris-
tic dependent data, and reorder messages announcing a new ordering, 〈o, h〉.

An agent Ri announces its proposed order o by sending reorder messages
to all agents Ak(o), k>i, and to all agents Rk, k>i. Each agent Ai and each
agent Ri has to store a set of orderings denoted Cord. Cord contains the
ordering with the newest history that was received from each Rj , j<i (if that
history is valid).a By the history of Cord we refer the newest history in Cord.
For allowing asynchronous reordering, each ok? and nogoodmessage receives

aTypically Cord is completely described by the ordering with the newest received history.

Proc. of the Int. Conf. on Intelligent Agent Technology, 2001 58

as additional parameter an order and its history (see Algorithm 1). The ok?
messages hold the newest known order of the sender. The nogood messages
hold the order in the Cord at the sender Aj that Aj believes to be the newest
known order of the receiver, Ai. This ordering consists of the first i agents in
the newest ordering known by Aj and is tagged with a history obtained from
the history of its Cord by removing all the pairs |a:b| where a≥i.b

When a message is received which contains an order with a history h that
is newer that the history h∗ of Cord, let the reordering position of h and h∗

be Ir. The assignments for the variables xk, k ≥ Ir, are invalidated.c

The agents Ri modify the ordering in a random manner or according to
special strategies appropriate for a given problem.d Sometimes it is possible to
assume that the agents want to colaborate in order to decide an ordering.e The
heuristic messages are intended to offer data for reordering proposals. The
parameters depend on the used reordering heuristic. The heuristic messages
can be sent by any agent to the agents Rk. heuristic messages may only
be sent by an agent to Rk within a bounded time, th, after having received
a new assignment for xj , j≤k. Agents can only send heuristic messages to
R0 within time th after the start of the search. Any reorder message is sent
within a bounded time tr after a heuristic message is received (or start).

Besides Corder
k and Cord, the other structures that have to be maintained

by Rk, as well as the content of heuristic messages depend on the reordering
heuristic. The space complexity for Ak remains the same as with ABT.

5.2 ABT with Asynchronous Reordering (ABTR)

In fact, we have introduced the physical agents Ri in the previous subsection
only in order to simplify the description of the algorithm. Any of the agents
Ai or other entity can be delegated to act for any Rj . When proposing a
new order, Ri can also simultaneously delegate the identity of Ri+1, ..., Rn−2

to other entitiesf , Pk, by attaching a sequence R0→Pki
, ..., Rn−2→Pkj

to the
ordering. At a certain moment, due to message delays, there can be several
entities believing that they are delegated to act for Ri based on the ordering
they know. However, any other agent can coherently discriminate among

bThe agents absent from the ordering in a nogood are typically not needed by Ai. Ai

receives them when it receives the corresponding reorder message.
cAlternative rule: Ai can keep valid the assignments of new variables xk, i ≥ k ≥ Ir but
broadcasts xi again.
de.g. first the agents forming a coalition with Ri.
eThis can aim to improve the efficiency of the search. Since ABT performs forward checking,
it may be possible to design useful heuristics.
f In 11 we explain how Ri can redelegate itself.

Proc. of the Int. Conf. on Intelligent Agent Technology, 2001 59

when received (ok?,(xj,dj *,cxj
, 〈o, h〉*)) do

*if(¬getOrder(〈o, h〉) or old cxj
) return*; //ABTR;

add(xj ,dj*,cxj
*) to agent view; check agent view;

end do.
when received (nogood,Aj ,nogood*,〈o, h〉*) do

if(¬getOrder(〈o, h〉)) return; //ABTR;
discard nogood if it contains invalid assignments else; //ABTR;

when (xk,dk,ck), where xk is not connected, is contained in nogood
send add-link to Ak; add (xk,dk,ck) to agent view;

add nogood to nogood-list; add other new assignments to agent view;
old value ← current value; check agent view;
when old value = current value

send (ok?,(xj ,current value,cxi
),known order(Ai)) to Aj ;

end do.
procedure check agent view do

when agent view and current value are not consistent
if no value in Di is consistent with agent view then

backtrack;
else

select d ∈ Di where agent view and d are consistent;
current value ← d; cxi

++; O ← known order(Ai);
send (ok?,(xi,d,cxi

),O) to lower priority agents in outgoing links;
end

end do.
procedure backtrack do

nogoods ← {V | V = inconsistent subset of agent view};
when an empty set is an element of nogoods;

broadcast that there is no solution, and terminate this algorithm;
for every V ∈ nogoods;

select (xj ,dj*,cxj
*) where xj has the lowest priority in V ;

send (nogood,xi,V ,Oj) to Aj ; remove (xj ,dj*,cxj
*) from agent view;

check agent view;
end do.
function getOrder(〈o, h〉) → bool //ABTR

when h is invalidated by the history of Cord then return false;
when not newer h than Cord then add 〈o, h〉 to Cord; return true;
I ← reorder position for h and the history of Cord;
invalidate assignments for xj , j ≥ I (alternatived); add 〈o, h〉 to Cord;

end.

Algorithm 1: Procedures for Receiving Messages in ABT and ABTR.

Proc. of the Int. Conf. on Intelligent Agent Technology, 2001 60

x1(1,2) x2(2)

x3(1,2)

====

A1 A2

A3

A1/A1/R1 ok?〈x1, 1, 1〉(A1, A2, A3) → A3

A2/A2/R0/R2 ok?〈x2, 2, 1〉(A1, A2, A3) → A3

A3/A3/R3
–nogood¬(〈x1, 1, 1〉〈x2, 2, 1〉)(A1, A2)–→ A2

A1/R1/A1 reorder (A1, A3, A2)|1 : 1| → A3

A2/R0/A3/R2 reorder (A3, A1, A2)|0 : 1| → A3

A1/R1/A1 reorder (A1, A3, A2)|1 : 1| → A2

A2/R0/A3/R2 reorder (A3, A1, A2)|0 : 1| → A1

A3/A1/R1 ok?〈x3, 1, 2〉(A3, A1, A2)|0 : 1| → A1

A3/A1/R1 ok?〈x3, 1, 2〉(A3, A1, A2)|0 : 1| → A2

Figure 2. Simplified example for ABTR with random reordering. Ri delegations are done
implicitely by adopting the convention “Ai is delegated to act for Ri”. Left column:
Ai/A

j/Ri1/Ri2 ... shows the roles played by Ai when the message is sent. In bold is shown
the capacity in which the agent Ai sends the message. The addlink message in not shown.

messages from simultaneous Ris using the histories that Ris generate. The
Ri themselves coherently agree when the corresponding orders are received.
The delegation of Ri, i > 0 from a physical entity to another poses no problem

of information transfer since the counter Corder
i of Ri is reset on this event.

For simplicity, in the example in Figure 2 we describe the case where the
activity of Ri is always performed by the agent believing itself to be Ai. Ri

can send a reorder message within time tr after an assignment is made by Ai

since a heuristic message is implicitely transmitted from Ai to Ri. We also
consider that A2 is delegated to act as R0. R0 and R1 propose one random
ordering each, asynchronously. The receivers discriminate based on histories
that the order from R0 is the newest. The known assignments and nogood
are discarded. In the end, the known order for A3 is (A3, A1, A2)|0 : 1|.

By quiescence of a group of agents we mean that none of them will re-
ceive or generate any valid nogoods, new valid assignments, reorder messages
or addlink messages.
Property 2 In finite time ti either a solution or failure is detected, or all the
agents Aj , 0<j≤i reach quiescence in a state where they are not refused an
assignment satisfying the constraints that they enforce and their agent view.
Proof. Let all agents Ak, k<i, reach quiescence before time ti−1. Let τ be
the maximum time needed to deliver a message.
∃tip < ti−1 after which no ok? is sent from Ak, k<i. Therefore, no heuristic

message towards any Ru, u<i, is sent after tih = tip + τ + th. Then, each Ru

becomes fixed, receives no message, and announces its last order before a time
tir = tih + τ + tr. After tir + τ the identity of Ai is fixed as Al. Ai

l receives the
last new assignment or order at time tio < tir + τ .
Since the domains are finite, after tio, A

i
l can propose only a finite number of

Proc. of the Int. Conf. on Intelligent Agent Technology, 2001 61

different assignments satisfying its view. Once any assignment is sent at time
tia > tio, it will be abandoned when the first valid nogood is received (if one
is received in finite time). All the nogoods received after tia + nτ are valid
since all the agents learn the last instantiations of the agents Ak, k < i before
tia + nτ − τ . Therefore the number of possible incoming invalid nogoods for
an assignment of Ai is finite.

1.If one of the proposals is not refused by incoming nogoods, and since
the number of such nogoods is finite, the induction step is correct.

2.If all proposals that Ai can make after tio are refused or if it cannot find
any proposal, Ai has to send a valid explicit nogood ¬N to somebody. ¬N is
valid since all the assignments of Ak, k < i were received at Ai before tio.

2.a) If N is empty, failure is detected and the induction step is proved.
2.b) Otherwise ¬N is sent to a predecessor Aj , j<i. Since ¬N is valid,

the proposal of Aj is refused, but due to the premise of the inference step, Aj

either
2.b.i) finds an assignment and sends ok? messages, or
2.b.ii) announces failure by computing an empty nogood (induction

proven).
In the case (i), since ¬N was generated by Ai, Ai is interested in all its
variables (has sent once an add-link to Aj), and it will be announced by Aj

of the modification by an ok? messages. This contradicts the assumption
that the last ok? message was received by Ai at time tio and the induction
step is proved.
From here, the induction step is proven since it was proven for all alternatives.
In conclusion, after tio, within finite time, the agent Ai either finds a solution
and quiescence or an empty nogood signals failure.
R0 is always fixed (or after tr in the version in 11) and the property is true
for the empty set. The property is therefore proven by induction on i

Theorem 1 ABTR is correct, complete and terminates.

Proof. Completeness: All the nogoods are generated by logical inference
from existing constraints. Therefore, if a solution exists, no empty nogood
can be generated.

No infinite loop: This is a consequence of the Property 2 for i = n.
Correctness: All assignments are sent to all interested agents and stored

there. At quiescence all the agents know the valid interesting assignments of
all predecessors. If quiescence is reached without detecting an empty nogood,
then according to the Property 2, all the agents agree with their predecessors
and the set of their assignments is a solution.

Proc. of the Int. Conf. on Intelligent Agent Technology, 2001 62

6 Conclusions

Reordering is a major issue in constraint satisfaction. All previous complete
polynomial space asynchronous search algorithms for DisCSPs require a static
order of the variables. We have presented an algorithm that allows for asyn-
chronous reordering in ABT. This is the first asynchronous complete algorithm
with polynomial space requirements that has the ability to concurrently and
asynchronously reorder variables during search. Here we describe a random
reordering heuristic that can be useful for special purposes (coalitions, special
strategies). However, this algorithm offers a flexible mechanism (general pur-
pose heuristic messages) that allows for implementing most other heuristics
that can be believed useful for general or specific applications. Alternative
implementations, alternatives to using histories, how to save effort across re-
ordering and efficient heuristics are described in 11.

References

1. M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara. The distributed
CSP: Formalization and algorithms. IEEE TKDE, 10(5):673–685, 98.

2. M.-C. Silaghi, D. Sam-Haroud, and B. Faltings. Asynchronous consis-
tency maintenance with reordering. TR #01/360, EPFL, March 2001.

3. M. Yokoo and K. Hirayama. Distributed constraint satisfaction algorithm
for complex local problems. In ICMAS’98, pages 372–379, 1998.

4. M. Yokoo. Distributed Constraint Satisfaction. Springer, 2001.
5. Y. Zhang and A. K. Mackworth. Parallel and distributed algorithms for

finite CSPs. In Proc. of Symp. on PDP, pages 394–397, 91.
6. G. Solotorevsky, E. Gudes, and A. Meisels. Distributed CSPs - a model

and application. http://www.cs.bgu.ac.il/˜am/papers.html, Oct 97.
7. M.-C. Silaghi, D. Sam-Haroud, and B. Faltings. Asynchronous search

with aggregations. In Proc. of AAAI2000, pages 917–922, 2000.
8. P. Meseguer and M. A. Jiménez. Distributed forward checking. In Proc.

of DCS. CP’00, 2000.
9. M. Yokoo. Asynchronous weak-commitment search for solving large-scale

distributed CSPs. In ICMAS, pages 467–318, 95.
10. Y. Hamadi and C. Bessière. Backtracking in distributed constraint net-

works. In ECAI’98, pages 219–223, 98.
11. M.-C. Silaghi, D. Sam-Haroud, and B. Faltings. Hybridizing ABT

and AWC into a polynomial space, complete protocol with reordering.
TR #01/364, EPFL, Mai 2001.

Proc. of the Int. Conf. on Intelligent Agent Technology, 2001 63

