Hybridizing ABT and AWC into a polynomial
space, complete protocol with reordering

Marius-Calin Silaghi, Djamila Sam-Haroud, and Boi Faltings

Swiss Federal Institute of Technology Lausanne
1015 Ecublens,Switzerland
{Marius.Silaghi,Djamila.Haroud,Boi.Faltings}@epfl.ch

Abstract. Existing Distributed Constraint Satisfaction (DisCSP) frame-
works can model problems where a)variables and/or b)constraints are
distributed among agents. Asynchronous Backtracking (ABT) and Asyn-
chronous Weak Commitment (AWC) are the first asynchronous complete
algorithms for solving DisCSPs of type a. The order on variables is well-
known as an important issue for constraint satisfaction and is the main
strength of AWC. The previous polynomial space asynchronous search al-
gorithms are extensions of ABT and require for completeness a static or-
der on their variables. Here, we show first how agents can asynchronously
and concurrently propose reordering in ABT while maintaining the com-
pleteness of the algorithm with polynomial space complexity. Reordering
has various applications (e.g. security, efficiency). Finding time-efficient
reordering heuristics for search in DisCSPs is not obvious. We then show
how an efficient reordering heuristic inspired from the one used in AWC
can be integrated in the new search protocol.

1 Introduction

Distributed Constraint Satisfaction (DisCSP) is a powerful framework for mod-
eling distributed combinatorial problems. A DisCSP is defined in [14] as: a set
of agents Ay, ..., A, where each agent A; controls exactly one distinct variable
xi, and each agent knows all constraint predicates relevant to its variable. This
is an acceptable simplification since the case with more variables in an agent can
be easily obtained from it. Asynchronous Backtracking (ABT) [14] is the first
complete and asynchronous search algorithm for DisCSPs. A simple modification
was mentioned in [15, 5] to allow for versions with polynomial space complexity.

The completeness of ABT is ensured with help of a static order imposed
on agents. ABT is a slow algorithm and [12] has introduced a new algorithm
called Asynchronous Weak Commitment (AWC). AWC allows agents to reorder
themselves asynchronously by decreasing their position when they are over-
constrained. AWC has proven to be more efficient than ABT but its requirement,
for an exponential space could not be eliminated without losing completeness.

So far, no asynchronous algorithm has offered the possibility to perform re-
ordering without losing either the completeness, or the polynomial space prop-
erty. In this paper we first describe an extension of ABT that allows the agents
to asynchronously and concurrently propose changes to their order. This exten-
sion is called ABT with Asynchronous Reordering (ABTR). We prove that the
completeness of ABTR is ensured with polynomial space complexity. ABTR is
required in various applications (e.g. security [9]). Another typical use of reorder-
ing is for efficiency. It is not obvious to find time-efficient reordering heuristics for
DisCSPs. The reordering heuristic of AWC has proven to be enough cheap and
efficient to fit distributed algorithms but it cannot be directly used in ABTR.
We end this article by showing how an efficient heuristic with similar behavior
as the one in AWC can be obtained and its performance is evaluated.

This is the first asynchronous search algorithm that allows for asynchronous
dynamic reordering while being complete and having a polynomial space com-
plexity. Here we have built on ABT since it is an algorithm easier to describe
than its subsequent extensions. The technique can nevertheless be integrated in
a straightforward manner in most extensions of ABT.

2 Related Work

The first complete asynchronous search algorithm for DisCSPs is the Asyn-
chronous Backtracking (ABT) [14]. The approach in [14] considers that each
agent maintains only one distinct variable. More complex definitions were given
later [16,11]. Other definitions of DisCSPs have considered the case where the
interest on constraints is distributed among agents [17,10,7]. [10] proposes al-
gorithms that fit the structure of a real problem (the nurse transportation prob-
lem). The Asynchronous Aggregation Search (AAS) [7] algorithm actually ex-
tends ABT to the case where the same variable can be instantiated by several
agents and an agent may not know all constraint predicates relevant to its vari-
ables. AAS offers the possibility to aggregate several branches of the search. An

aggregation technique for DisCSPs was then presented in [6] and allows for sim-
ple understanding of the privacy/efficiency mechanisms. The order on variables
in distributed search was so far addressed in [2,13,10,4], showing the strong
impact it has on the solving algorithms.

3 Asynchronous Backtracking (ABT)

In asynchronous backtracking, the agents run concurrently and asynchronously.
Each agent A; instantiates its variable x; and communicates the variable value
to the relevant agents. Since we do not assume FIFO channels, in our version a
local counter, C}’*, in each agent is incremented each time a new instantiation
is chosen, and its current value tags each generated assignment.

Definition 1 (Assignment). An assignment for a variable x; is a tuple {x;, v, c)
where v is a value from the domain of x; and c is the tag value.

Among two assignments for the same variable, the one with the highest tag
(attached value of the counter) is the newest. A static order is imposed on
agents and we assume that A; has the i-th position in this order. If >3 then A;
has a lower priority than A; and A; has a higher priority then A;.

Rule 1 (Constraint-Evaluating-Agent) Fach constraint C is evaluated by
the lowest priority agent whose variable is involved in C. It is denoted CEA(C).

Each agent holds a list of outgoing links represented by a set of agent
names. Links are associated with constraints. ABT assumes that every link is
directed from the value sending agent to the constraint-evaluating-agent.

Definition 2 (Agent_View). The agent_view of an agent, A;, is a set con-
taining the newest assignments received by A; for distinct variables.

Based on their constraints, the agents perform inferences concerning the as-
signments in their agent_view. By inference the agents generate new constraints
called nogoods.

Definition 3 (Nogood). A nogood has the form —N where N is a set of as-
signments for distinct variables.

The following types of messages are exchanged in ABT:

— ok? message transporting an assignment is sent to a constraint-evaluating-
agent to ask whether a chosen value is acceptable.

— nogood message transporting a nogood. It is sent from the agent that infers
a nogood —N, to the constraint-evaluating-agent for —N.

— add-link message announcing A; that the sender A; owns constraints in-
volving x;. A; inserts A; in its outgoing links and answers with an ok?.

The agents start by instantiating their variables concurently and send ok?
messages to announce their assignment to all agents with lower priority in their
outgoing links. The agents answer to received messages according to the Algo-
rithm 1 [11] (except for code delimited by *).

Definition 4 (Valid assignment). An assignment (x,v1,c1) known by an
agent A; is valid for A; as long as no assignment (x,va, ca), ca>c1, is received.

A nogood is valid if it contains only valid assignments. The next property
is mentioned in [15] and it is also implied by the Theorem 1, presented later.

Property 1 If only one valid nogood is stored for a value then ABT has polyno-
mial space complexity in each agent, O(dn), while maintaining its completeness
and termination properties. d is the domain size and n is the number of agents.

3.1 Asynchronous Weak-Commitment (AWC)

In AWC, each agent A; has a priority defined by a local value k(A;) in con-
junction with the initial position 7. k(A;) is increased when a new nogood =N
is computed, such that A; will precede all the agents generating assignments in
N. The new priority is broadcasted to the neighboring agents. Excepting this
priority, AWC behaves like the ABT which stores all nogoods. AWC is guaran-
teed to terminate since the number of possible nogoods is bounded. However the
number of possible nogoods is exponential in the size of the problem.

4 Histories

There is one major issue to be solved for allowing agents to asynchronously
propose new orders on themselves. According to [2], in general, infinite loops
cannot be avoided if always' more than one agent involved in a conflict can
change their instantiation. The agents in a conflict must be able to eventually
coherently decide which one of them should change its instantiation (an order).

A simple way to dynamically reorder agents in asynchronous search (e.g. for
efficiency) is to intermittently synchronize among all agents a consistent view of
what the order is. We call it reordering with restarts. The search is complete if
the delay between two reorderings increases (e.g. monotonically) to oo [1].

On the other hand, if we need that agents propose reordering asynchronously
(e.g. as in AWC or as required for security in [9]), the order typically changes
before an agreement could be reached. What one can do in this case is to ensure
that only a finite number of orderings can be considered. One then must enable
agents to coherently decide which of two received orderings is the newest. How-
ever, we avoid putting an artificial bound on the number of reorderings proposed
by each agent. This would not match the global complexity of a problem but
corresponds to a two stage algorithm: an incomplete min-conflict-like search for

! There is not a problem if the event eventually occurs but it should not always occur.

D D@)

mgix={..}2:kop| @ m2 L e B LTS o
‘ 3
‘%3 G

Fig. 1. Simple scenarios with messages for proposals on a shared variable, x.

a bounded time, followed if necessary by a version of ABT (e.g. upon AWC,
this can be achieved by putting an upper-bound on k(4;) and running the ABT
which stores only valid nogoods and taggs assignments with counters).

To exploit the analogy between maintaining agreement on a value assignment
and agreement on an order, we propose to handle an ordering on agents as the
value of a variable. Now we show how we decide which of two received orderings is
the newest. We introduce a marking technique that allows for the easy definition
of a total order among the proposals made asynchronously by a set of statically
ordered agents on a shared variable (e.g. the ordering of other agents).

Definition 5. A proposal source for a variable x is an entity (e.g. an abstract
agent) that can make specific proposals concerning the valuation of x.

We consider that a static order < is defined on proposal sources. The proposal
source with position £ is noted P{, k > x{. x{ is the first position defined by <.
Each proposal source P’ maintains a counter C{ for z. The markers involved
in our marking technique for ordered proposal sources are called histories.

Definition 6. A history is a chain h of pairs that can be associated to a pro-
posal for a variable x. A pair p=|a:b| in h signals that a proposal for x was made
by PT when its CT had the value b, and it knew the prefiz of p in h.

An order « (read “precedes”) is defined on pairs such that |i1:l1] o |ig:la] if
either i1 <is, or (ilzig)/\(ll>l2).

Definition 7. A history hy is newer than a history he if a lexicographic com-
parison on them, using the order o< on pairs, decides that hy precedes hs.

This is a generalization of the notion newer on assignments. P7 builds a
history for a proposal on z by prefixing to the pair |a:value(C?)|, the newest
history that it knows for proposals on made by some P}, k<a. The C7 of P7
is reset each time incoming messages announce proposals with newer histories,
made by some P, b<a. C is incremented before P; makes a proposal for .

Definition 8. A history hy built by PP for a proposal is valid for an agent A
if no other history hy (eventually known only as prefiz of a history hb) is known
by A such that ho is newer than hy and was generated by Py <.

For example, in Figure 1 the agent P{ may get messages concerning the same
variable x from Py and Py'. In Figure 1a, if the agent Py has already received my,

it will always discard ms since the proposal source index has priority. However,
in the case of Figure 1b Py knows |1:k1¢| and the message m; is the newest only
if k15 <k1. The length of a history tagging proposals for a variable, z, is upper
bounded by the number of proposal sources for x.

Alternatively to using histories, proposals could be tagged using a simple
counter. In this case an agent needs to store the last proposals on x made by
each predecessor proposal source and considers as current proposal a combination
of them. Then P7 needs not resend its old proposal p when p remains consistent
with the view of P¥ that changes. Instead P7 would have to send a new proposal
if its proposal changes to become identical with the newest received proposal.
This is a tradeoff and the best alternative depends on the problem at hand. We
conjecture that using histories is usually preferable for shared variables in AAS
as well as for ordering with the reordering heuristics presented here.

5 Reordering

Now we show how the histories described in the previous section help agents
during the search to asynchronously and concurrently propose new orders on
themselves. In the next subsection we describe a didactic simple version that
needs additional specialized agents.

5.1 Reordering with dedicated agents

The histories in the previous section are built by proposal sources ordered stati-
cally. We only know to use histories built by statically ordered proposal sources.
The idea behind asynchronous reordering in asynchronous search is to consider
the proposal sources for ordering as additional abstract agents. Their activity
can be delegated to different physical agents along the search. This seems com-
plicated to apprehend at once and we start by first considering that the proposal
sources for the ordering are a set of external distinct agents. Besides the agents
Aq,..., A, in the DisCSP we want to solve, we consider that there exist n—1
other agents, R, ..., R* 2, solely devoted for reordering the agents A;.

Definition 9. An ordering is a variable that can take as value a sequence of
distinct agents Ak, ..., Ak, -

We attach to each value of ordering a history as defined in the previous
section. The proposal sources for the ordering on agents are the agents R?, where
RI<RJ if i<j and xgrderzo‘ R is the proposal source that when knowing an
ordering, o, can propose orderings that reorder only agents on positions p, p > i.
In terms of value agreement this means that the agents agree on a value o for
ordering when each R’ agrees with the prefix of length i+1 in o.

An agent A; may receive the position 7,7 # i. Let us assume that the agent
A, knowing an ordering o, believes that the agent A;, owning the variable x;,
has the position j. A; can refer A; as either A7, A’(0) or A!. The variable x; is

Al/Al 70k?<$1, 1, 1>(A1, AQ, A3)4> A3
@ @ A /AT heuristic(z1,1,1)(A1, A2, A3)__, R

Aq Ar AQ/.:A2 70k?<$2, 2, 1)(141, Asg, Ag)—, As
H# # A3/A® _nogood—((z1,1,1), (£2,2,1))(A1, A2) s As
Ay/A? add-link Ay

Az R' _ reorder (A;, A3, A)|1: 1|, Aj

R° _ reorder (A3, A1, A2)[0: 1|, As

O Q R' _ reorder (Ai,As, A2)|1: 11—, Ay
5 n R° reorder (Aj, A1, A2)[0: 1|—, Ay
R R A3/A1 _ok?<w3,1,2>(A3,A1,A2)|0 . 1‘__> A1
A3/A1 _ok?<x3, 1, 2)(143, Al, A2)|0 : 1‘—> Ao

Fig. 2. Simplified example for ABT with random reordering based on dedicated agents.
A;i /A’ in the left column shows that A; had the position j when it has sent the message.

also referred to by A; as either 27, 27 (0) or xf . All the agents owning variables
related by a constraint with the variable of the current agent are inserted in
outgoing links at initialization. ok? messages are sent only to those agents in
outgoing links that have lower priority than the current agent.

Definition 10 (Known order). An ordering known by R* (respectively A") is
the order o with the newest history among those proposed by the agents RF,0<k<i
and received by R® (respectively by A). A* has the position i in o. This ordering
is referred to as the known order of R! (respectively of A*).

Rule 2 (Proposed order) An ordering, o, proposed by R! is such that the
agents placed on the first i positions in the known order of R’ must have the
same positions in o. o is referred to as the proposed order of R'.

Let us consider two different orderings, 01 and oz, with their corresponding
histories: O1 = (01, h1), Oz = (02, ha); such that |hy| < |ha|. Let p¥ = |a¥:bk|
and p§ = |ak:b%| be the pairs on the position k, k > 0 in hy respectively in hs.

Definition 11 (Reorder position). Let u be the lowest position such that p¥
and pYy are different and let v = |h1|. The reorder position of hy and hg,
R(hi,hs), is either min(a},a%) + 1 if u > v, or ay™ + 1 otherwise. This is the
position of the highest priority agent reordered between hy and hs.

New optional messages for reordering are:

— heuristic messages for heuristic dependent data, and
— reorder messages announcing a new ordering, (o, h).

An agent R' announces its proposed order o by sending reorder messages
to all agents A¥(0),k > 4, and to all agents R* k > i. Each agent A; and each
agent R’ has to store its known order denoted O°"*(A;) respectively O°*(R?).
For allowing asynchronous reordering, each ok? and nogood message receives
as additional parameter an order and its history (see Algorithm 1). The ok?

Al/Al/Rl 70k?<11,1,1>(A1,A2,A3)—_> A3
AQ/AZ/RO/R2 701(?(.122, 2, 1>(A1, AQ, A3)—_> A3
A3/A3/R3 7n0good—|((x1, 1, 1>, <.r2, 2, 1>)(A1, AQ)A Ao
@ @ A /RY /A reorder (A;, A3, A2)|1:1|—__, A3

A1 Ay As/RO/A3/R* __ reorder (Az, A1, A2)|0: 1], A;
7 7~ A /RY /A — reorder (A1, A3, Ao)|[1: 1|, A
A3 As/R°/A3/R? reorder (As, A1, A2)|0: 1], A
A3/A1/R1 Ok?(xg,]., 2>(A3,A1,A2)|0 : 1|—) Aq

Ag/Al/Rl 0k?<x3, 1, 2>(A3,A17A2)|0 : 1|—) A2

Fig. 3. Example for ABTR with random reordering. R’ delegations are done im-
plicitely by adopting the convention “A* is delegated to act for R*. Left column:
A;JAT /R /R ... shows the roles played by A; when the message is sent. In bold is
shown the capacity in which the agent A; sends the message. The addlink is not shown.

messages hold the newest known order of the sender. Each nogood message
sent from A7 to A? holds the order, in agreement with O°"*(A7), that A7 believes
to be O°T*(A?). This ordering denoted O™ (A7) consists of the first i agents in
the O™t (A7) and is tagged with a history obtained from the history of its O°"* by
removing all the pairs |a:b| where a>i. For example, in Figure 2 the 4th message
contains O§"(A3)=(A1, As).

When A; receives a message which contains an order with a history h that is
newer than the history h* of O"t(A;), let the reordering position of h and h* be
I”. The assignments known by A; for the variables z*, k > I, are invalidated.

The agents R! can modify the ordering in a random manner or according to
special strategies appropriate for a given problem.? Sometimes it is possible to
assume that the agents want to colaborate in order to decide an ordering. The
heuristic messages are intended to offer data for reordering proposals. These
parameters depend on the used reordering heuristic. The heuristic messages
can be sent by any agent to the agents R*. heuristic messages may only be
sent by an agent to R* within a bounded time, ty, after having received a new
assignment for 27, j<k. Agents can only send heuristic messages to R® within
time t;, after the start of the search. Any reorder message is sent within a
bounded time t, after a heuristic message is received or from start.

Besides CO'AT and O°rt(RF), the other structures that have to be maintained
by RF, as well as the content of heuristic messages depend on the reordering
heuristic. The space complexity for A* remains the same as with ABT.

5.2 ABT with Asynchronous Reordering (ABTR)

In fact, we have introduced the physical agents R’ in the previous subsection
only in order to simplify the description of the algorithm. Any of the agents A;
or other entity can be delegated to act for any R7. When proposing a new order,
R? can also simultaneously delegate the identity of R?, ..., R»~2 to other entities,

2 e.g. first the agents forming a coalition with R:.

when received (ok?,(z;,d;*, cz;*) %, (0, h) *) do
getOrder((o, h)); if(old ¢,) return; //ABTR;
add(zj,d;*,cz;*) to agent_view; clean nogoods; check agent_view;
end do.
when received (mnogood,A;,—N * (o, h)[,L]*) do
getOrder((o, h}); if I am not CEA(—N) return; //ABTR;
[if L newer than L° then L°—L]; //ABTR-~wcl;
*if (((zi,d, c)€N and I have better nogood for z;=d wanting to discard =N or
(if =N contains invalid assignments)) then discard =N else*; //ABTR;
when (zy, di*, cp*x), where z is not connected, is contained in =N
send add-link to Ay; add (zk, di*, cp*) to agent_view; clean nogoods;
put =N in nogood-list for x;=d;
add other new assignments to agent_view; clean nogoods;
old_value «— current_value; check_agent_view;
when old_value = current_value *and if A; has lower priority than A;*
1.1 send (ok?,(z;, current_valuex, cz, *)*,0°™*) to Aj;;
end do.
procedure check_agent_view do
when agent_view and current_value are not consistent
if no value in D; is consistent with agent_view then
backtrack;
else
select d € D; where agent_view and d are consistent;
current_value «— d; *cz, ++ *;
send (ok?,{z;, dx, ¢z, *)*,0°"*) to lower priority agents in outgoing links;

end
end do.

procedure backtrack do
nogoods — {V | V = inconsistent subset of agent_view};
when an empty set is an element of nogoods
broadcast to other agents that there is no solution, terminate this algorithm;
for every V € nogoods;
select (z;,d;*ce;™) where z; has the lowest priority in V;
1.2 send (nogood,Ai,V*,Oj-”[,O”t}*) to Aj;
remove (7;,d;*,cz;*) from agent_view; clean nogoods;

check_agent_view;
end do.

function getOrder ({0, h)) — bool //ABTR
when £ is invalidated by the history O™ then return false;
[when newer h than L° or same h as for L° but longer o then L° « (o, h)];
when not newer h than O°"t then return true;
I — reorder position for h and the history of O°";
invalidate assignments for 7, j > I; (o, h) — O°"*;
1.3 make sure that send (ok?,(z;,some value, cz;),0"") will be performed
to all lower priority agents in outgoing links;

return true;
end.

Algorithm 1: Procedures of A; for receiving messages in ABT, ABTR and ABTR-wcl.
Code between ’* is added to ABT. Code between ’[’ ’]” is only for ABTR-wcl

Py, by attaching a sequence R°— Py, ..., R" 2—P; _, to the ordering. At a
certain moment, due to message delays, there can be several entities believing
that they are delegated to act for R? based on the ordering they know. However,
any other agent can coherently discriminate among messages from simultaneous
Rs using the histories that R’s generate. The R’ themselves coherently agree
when the corresponding orders are received. The delegation of R7, j>i from a
physical entity to another poses no problem of information transfer since the
counter C})rder of RJ is reset on this event. The counter COT4eT of a new R
delegated by a previous different R is set to k where |i:k| is a pair in the history
that tags the new received ordering.

For example, in Figure 3 we describe the case where the activity of R? is
always performed by the agent believing itself to be A?. R? can send a reorder
message within time ¢, after an assignment is made by A’ since a heuristic
message is implicitely transmitted from A? to R'. We also consider that A, is
delegated to act as R°. R® and R' propose one random ordering each, asyn-
chronously. The receivers discriminate based on histories that the order from R°
is the newest. The known assignments and nogood are discarded. In the end, the
known order for Az is (As, A1, A2)[0: 1].

By quiescence of a group of agents we mean that none of them will receive
or generate any valid nogoods, new valid assignments, reorder messages or add-
link messages. The proof of the next property of ABTR is given in Annexes.

Property 2 Vi, in finite time t* either a solution or failure is detected, or all
the agents A7,0<j<i reach quiescence in a state where they are not refused an
assignment satisfying the constraints that they enforce and their agent_view.

Theorem 1. ABTR is correct, complete and terminates.

Proof. Completeness: All the nogoods are generated by logical inference from ex-
isting constraints. Therefore, if a solution exists, no empty nogood can be generated.

No infinite loop: This is a consequence of the Property 2 for i = n.

Correctness: All assignments are sent to all interested agents and stored there.
At quiescence all the agents know the valid interesting assignments of all predecessors.
If quiescence is reached without detecting an empty nogood, then according to the
Property 2, all the agents agree with their predecessors and the set of their assignments
is a solution. o

As we show in [9], ABTR is required in secure algorithms for automated
negotiations. In the sequel of this paper we deal with efficiency issues.

5.3 Saving effort across reordering

We let agents maintain their current assignment when a new order is received.
If the old order known by A; was (o',h'), after receiving a new order, (o, h),
Al(0) removes from its agent_view only those assignments (z*(0),v,c) where
k > j. Therefore, Ag (0) discards only nogoods containing some assignment
(z¥(0),v,¢),k > j, since the validity of such nogoods cannot be checked in o.

function getOrder ({0, h)) — bool
when h is invalidated by the history of O°"* then return false;
when not newer h than Ot then return true;
0°" — (o0, h); invalidate assignments for x7(0),j > v (remove from agent_view);
2.1 make sure that send (ok?,(x;, some value, ¢,),0") will be performed
to all lower priority agents in outgoing links;
when I am R¥, 99T (3)w:k|eh)?k : 0;
return true;
end.

Algorithm 2: Procedure of A} for receiving new orderings in ABTRI.

when received (mogood,Aj,~N,(o,h)) do
validOrder— getOrder({o, h)); if (-validOrder N (A; #CEA(=N))) return;
if (({(xs,d, c)€N and I have not-worse nogood for z;=d wanting to discard =)
or (if =N contains invalid assignments)) then discard =N else;
when (zy,dk, cx), where xy is not connected, is contained in =N
send add-link to Ay; add (zk, dk, ck) to agent_view;

put =N in nogood-list for x;=d,
add other new assignments in N to agent_view;

when (validOrder and valid =N and d=current_value)

3.1 Cgf(iler—{——{—; new_order «— A', .., AV A L
getOrder((new_ordernew-history)); ‘
3.2 make sure to send O°"* or (reorder,0°"") to all A7, j>wv;

check_agent_view;
end do.

Algorithm 3: Procedure of A} for receiving nogood messages in ABTR-we.

A; (re)sends its current assignment via ok? messages to any agent A“(0) in its
outgoing list where u > j. This version of ABTR is referred to as ABTRI.

Theorem 2. ABTR with assignments reuse across reordering (ABTR1) has
polynomial space, is correct, complete and terminates.

Proof. Since the assignments are resent, the only difference with ABTR is that
some additional nogoods are stored. These additional nogoods are consistent
with the Theorem 1. The space remains polynomial since only one assignment, is
valid and only one nogood continues to be stored for each value of each variable.
The space complexity is not modified. o

6 AWC-like heuristic for ABTR1 (ABTR-wc)

In the previous section we have described a reordering technique that allows for
using heuristic messages for guiding reordering but we did not propose any
specific heuristic. ABT performs Forward Checking since the domains of the
future variables are pruned after each assignment. However, using heuristic

messages can be expensive since 3/2 message roundtrips A'— A7 — R — A" are
required for getting the result of prunning.

In this section we show how the idea behind the heuristic used in AWC can
be reused with ABTR1. In AWC each agent A; that discovers a new nogood =N
increases its own priority. Let us assume that the lowest priority assignment in
N concerns . In ABTR the agent A; has to send =N to AY. We can spare
messages by letting AV decide the new order that gives more priority to A;.

The priority of a variable is the priority of the agent owning it. —=N; is a
better nogood then — N5 if V; contains only higher priority variables than the
lowest, priority variable in Ns. To make sure that it increases the priority of A;
in the general case, A" can offer to A; its position v or a lower one. To do this,
A" has to act for some RV"*,¢t > 0. Let each A* act for R¥~! and let it cede its
position to the sender of each valid nogood received (Algorithm 3). This protocol
is called ABTR-wec.

Theorem 3. Better or valid nogoods can be received by agent A* in ABTR-wc
only in finite time after the agents A7, 5 < i have reached quiescence.

Proof. Each valid nogood received by A? eliminates a value. Each value elim-
inated by such a nogood will never be available since the nogoods eliminating
them (or better nogoods received later) use fixed assignments of quiescent agents
and cannot be invalidated. There are maximum dn such values and better no-
goods can be received for a value only n times. Therefore, they are received in
a finite time. o

It is required that R¥ does not send reorders beyond delay t,. +tj, 4+ 27 after
an instantiation is done by some A7, j<k.

Corolary 1 3t such that, when proposing reordering, the agent A* acts legally
for R*=' and ABTR-wc is an instance of ABTRI.

There exists a finite ¢ such that any valid or better nogood is received by
RFE=1/Ak in a time bounded by t;, after the quiescence of the agents A',[< k.

6.1 Saving effort across reordering for ABTR-wc

In the Algorithm 3, the line 3.1 actually allows for several versions since agent
Aj; is free to put whatever order among the agents following A;. By ABTR-wc
we denote a version where the agents following A; are ordered lexicographically.
This convention requires no additional information. However, due to reordering
involved on future agents many of the nogoods own by successors are invalidated.

In a version of ABTR-wc, that we denote ABTR-wcl, each agent maintains
one more ordering called last_known_successor-order and denoted L°. The line 1.2
in Algorithm 1 is modified in ABTR-wcl such that the sent nogood is also ac-
companied with the ordering O¢"t. L° holds the most recent ordering among O
and the orderings received with nogood messages. In ABTR-wcl the new_order
at line 3.1 becomes A', ..., A"~ A; A, ..., where the agents following A; are
ordered according to L°.

A further modification we make to ABTR-wcl is that each new proposed
ordering is sent at line 3.2 to all agents so that all of them can update their
last_known_successor_order. This last version is denoted ABTR-wc2.

7 Fair reordering heuristics

When the distributed search is used for negotiations, the position of an agent A
in the ordering on agents corresponds to certain advantages and drawbacks for
A. With some given problems agents prefer to be the first positioned ones such
that they could propose their preferred alternatives first. For other problems,
agents want to be positioned later such that they need to reveal less about their
constraints/domains. In ABTR one can reorder randomly or 'round robin’ the
agents in order to enhance fairness. Then, one still has to check or trust that the
agents respect the chosen reordering strategy.

However, when the agents form equal sized coalitions, fairness can be ensured
in ABTR by majority voting. Let us assume that the agents want to solve a
problem where privacy is essential. Agents want to place other agents from their
coalition on last positions. A fair alternation of agents from different coalitions,
when we have equal sized coalitions, is obtained when the function of R¥, k>0
is undertaken by an entity defined by the set of agents A!,..., A¥. The agents
in R* choose the agent A**1 by majority voting. Fairness results from the fact
that for these problems, low position agents will propose on next lower positions
agents from other coalitions.

The majority voting can be implemented by letting any A* in R* broadcast
to any other agent in R* the set of agents that A’ would like to see on position
AkFL The set is tagged with the history of O°"*(R¥). E.g., the agent chosen
for the position A**! can be the currently lowest position agent among those
with the highest number of occurrences in the proposals. The time ¢, required
by R* for deciding a new order is then equal to the maximum message delivery
delay 7. The correctness, completeness and termination properties of ABTR are
therefore maintained.

Similarly, when the quality of the found solution is essential and privacy is less
important, a fair reordering is obtained when the function of R* is undertaken
by the set of agents A1 .. A" With equal sized coalitions, a fair alternation
is obtained when the agent A*+1 is decided with the majority of the votes of the
agents forming the entity RF.

8 Experimentation

Solution detection In ABT a solution is found when the agents reach quiescence.
As proposed in [14] quiescence can be detected using general purpose algorithms.
We rather use in our experiments a solution detection algorithm that can detect
solutions before quiescence by composing partial valuations of the agents. This
technique is first proposed in [7] where composed partial valuations are sent via
accepted messages from lower priority agents to linked higher priority agents.

They are sent only when the partial valuation obtained by composing all incom-
ing partial valuations from all outgoing-links with the local one is not empty.
[8] uses a version of this technique where a static spanning tree having as root
a system agent is defined over agents. Each agent sends partial valuations only
along this spanning tree towards the root.

The composition of two partial valuations, vy, vs, consists in a valuation, v,
v=v1Uvs. If z; is assigned in both v; and vy then v is non-empty only if x; is
assigned with the same value in v; and in vs.

The solution detection technique in [8] can be used with no modification
for versions of ABTR where each agent always enforces all the constraints it
knows (e.g. ABTR reordering technique for AAS). Alternatively, for use with
the general version of ABTR, the solution detection technique presented in [8] is
modified by attaching as additional parameter of accepted(v) messages the Set
of References to the Constraints Completely Satisfied by the partial valuation
v, SRCCS(v). Each agent composing incoming partial valuations makes and
attaches the union of the corresponding SRCCS.

The references in SRCCS refer only to initial constraints and not to con-
straints (nogoods) inferred during search. This algorithm assumes that agents
know or may get references to (all) the constraints and that agents knowing the
same constraint agree on a common reference for it. This is acceptable when the
constraints are public. Otherwise, the technique in [8] is available.

Proposition 1. When the partial valuation V- computed by the system agent by
composing the last incoming valuations vy from each branch k of the root of the
solution detection spanning tree is not empty and SRCCS(V)=Uy (SRCCS(vy))
contains references for all the constraints of the agents, then V is a solution.

Proof. By construction, any extension of a partial valuation v satisfies all
the constraints referred in the associated SRCCS(v). Therefore V' satisfies
SRCCS(V), satisfying all agents when SRCCS(V') contains references to all the
constraints. D

Proposition 2. The solution detection algorithm based on SRCCSs detects a
solution for ABTR in finite time if the search does not fail.

Proof. Let us assume that a solution was not detected before quiescence. Then
according to Theorem 1 quiescence is reached by ABTR in finite time. Since
at quiescence any initial constraint C' is enforced by some agent, its reference
is sent with the last valuation in the SRCCS along the spanning tree. Since at
quiescence for ABTR the instantiations define a solution and are coherent, the

constraint references propagate up to the root and all references are present in
the last SRCCS(V') computed at root. o

8.1 Tests

We have run tests on random problems with 20 agents. The agents were placed on
distinct computers of our lab. We have generated problems of variable tightness

Fig. 4. Experiments

sequential
messages e
50 2

-0-ABT
—e-ABTRWC
e ABTRWC1

30 —o-ABTRWC2

20

45 50 55 60 65 70 75375, 80 85 gglghtness

for a density of 27% where each variable has 3 values. Each point in Figure 4 is
averaged over 100 random problems and shows the average number of sequential
messages (half network round-trips) required to solve the problem. The num-
ber of round-trips is the only important cost when agents are placed remotely
on internet and the local problems are not hard. The experiments show that
ABTR-wc2 performed clearly better in average than ABT and performed better
than other versions of ABTR~wec. This result shows that additional messages for
heuristic data (function taken by the added reorder messages in ABTR-wc2)
have actually improved efficiency. Therefore other efficient heuristics may be dis-
covered for ABTR in the future. For under-constrained problems (tightness over
85%) where solutions are found without resorting to many nogood messages,
few reorderings are proposed by ABTR-wc and therefore the new algorithms
perform quite similarly with ABT.

9 Conclusions

Reordering is a major issue in constraint satisfaction and is the main strength
of Asynchronous Weak-Commitment (AWC). All previous complete polynomial
space asynchronous search algorithms for DisCSPs require a static order of the
variables. We have presented an algorithm that allows for asynchronous reorder-
ing in Asynchronous Backtracking (ABTR). This is the first asynchronous com-
plete algorithm with polynomial space requirements that has the ability to con-
currently and asynchronously reorder variables during systematic asynchronous
search. Asynchronous reordering is required for security reasons in managing
coalitions in automated negotiation (see [9]). We then present ABTR-we, an
efficient reordering heuristic for ABTR inspired from AWC, that requires no
heuristic message. As with most distributed asynchronous algorithms, certain
resemblance [5, 7] can be found between the behavior of ABTR-wc and Dynamic
Backtracking [3]. Here the resemblance extends also to the reordering heuristic.

Annexes (Proof)

Property 2 Vi, in finite time t* either a solution or failure is detected, or all
the agents A?,0<j<i reach quiescence in a state where they are not refused an
assignment satisfying the constraints that they enforce and their agent_view.

Proof. Let all agents A*, k<i, reach quiescence before time t*~!. Let 7 be the maxi-
mum time needed to deliver a message.
Elti7 < t*71 after which no ok? is sent from A*, k<i. Therefore, no heuristic message
towards any R"“, u<i, is sent after ¢} = ¢, + 7 + t5. Then, each R" becomes fixed,
receives no message, and announces its last order before a time t,. = tj, + 7 + t,.. After
t? 4+ 7 the identity of A is fixed as A;. A! receives the last new assignment or order at
time t5 < tL 4 7.
Since the domains are finite, after t£, A% can propose only a finite number of different
assignments satisfying its view. Once any assignment is sent at time t& > t¢, it will be
abandoned when the first valid nogood is received (if one is received in finite time).
All the nogoods received after t¢ + nr are valid since all the agents learn the last
instantiations of the agents A® k < i before t} + n7. Therefore the number of possible
incoming invalid nogoods for an assignment of A® is finite.

1.If one of the proposals is not refused by incoming nogoods, and since the number
of such nogoods is finite, the induction step is correct.

2.If all proposals that A* can make after t are refused or if it cannot find any
proposal, A® has to send a valid explicit nogood =N to somebody. —N is valid since
all the assignments of A, k < i were received at A* before t?.

2.a) If N is empty, failure is detected and the induction step is proved.

2.b) Otherwise ~N is sent to a predecessor A j<i. Since =N is valid, the proposal
of A7 is refused, but due to the premise of the inference step, A7 either:

2.b.i) finds an assignment and sends ok? messages, or

2.b.ii) announces failure by computing an empty nogood (induction proven).
In the case (i), since =V was generated by A%, A is interested in all its variables (has
sent once an add-link to A7), and it will be announced by A’ of the modification
by an ok? messages. This contradicts the assumption that the last ok? message was
received by A’ at time t¢ and the induction step is proved.
From here, the induction step is proven since it was proven for all alternatives.
In conclusion, after ¢, within finite time, the agent A° either finds a solution and
quiescence or an empty nogood signals failure.
After t, + t, + 7, R is fixed and the property is true for the empty set. The property
is therefore proven by induction on o

References

1. L. Baptista and J. Marques-Silva. Using randomization and learning to solve hard
real-world instances of satisfiability. In CP’2000, pages 489—-494, 2000.

2. Z. Collin, R. Dechter, and S. Katz. On the feasibility of distributed constraint
satisfaction. In Proceedings of IJCAI 1991, pages 318-324, 91.

3. M. L. Ginsberg. Dynamic backtracking. Journal of AI Research, 1, 93.

4. Y. Hamadi and C. Bessiere. Backtracking in distributed constraint networks. In
ECATI’98, pages 219-223, 98.

10.

11.
12.

13.

14.

15.

16.

17.

W. Havens. Nogood caching for multiagent backtrack search. In Proc. AAAI’'97
Constraints and Agents Workshop, '97.

P. Meseguer and M. A. Jiménez. Distributed forward checking. In Proceedings of
the International Workshop on Distributed Constraint Satisfaction. CP’00, 2000.
M.-C. Silaghi, D. Sam-Haroud, and B. Faltings. Asynchronous search with aggre-
gations. In Proc. of AAAI2000, pages 917 922, 2000.

M.-C. Silaghi, D. Sam-Haroud, and B. Faltings. Maintaining hierarchical dis-
tributed consistency. In Proceedings of the International Workshop on Distributed
Constraint Satisfaction. CP’00, 2000.

M.-C. Silaghi, D. Sam-Haroud, and B. Faltings. Generalized English Auctions by
relaxation in dynamic distributed CSPs with private constraints. In Proc. of the
IJCAI-01 DCR Workshop, pages 45-54, Seattle, August 2001.

G. Solotorevsky, E. Gudes, and A. Meisels. Distributed Constraint Satisfaction
Problems - a model and application. Preprint: http://www.cs.bgu.ac.il/“am, 97.
M. Yokoo. Distributed Constraint Satisfaction. Springer, 01.

M. Yokoo. Constraint relaxation in distributed constraint satisfaction problem. In
I1CDCS’93, pages 56—63, June 93.

M. Yokoo. Asynchronous weak-commitment search for solving large-scale dis-
tributed constraint satisfaction problems. In Proc. ICMAS, pages 467318, 95.
M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara. Distributed constraint
satisfaction for formalizing distributed problem solving. In ICD(CS’92, pages 614
621, June 92.

M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara. The Distributed CSP:
Formalization and algorithms. IEEE Trans. on KDE, 10(5):673 685, 98.

M. Yokoo and K. Hirayama. Distributed constraint satisfaction algorithm for
complex local problems. In Proceedings of 3rd ICMAS’98, pages 372-379, 1998.
Y. Zhang and A. K. Mackworth. Parallel and distributed algorithms for finite
constraint satisfaction problems. In Proc. of Third IEEE Symposium on Parallel
and Distributed Processing, pages 394 397, 91.

