£169P-Consistency

Technical Report No. TR-01/368

TMarius-Calin Silaghi, TJamila Sam-Haroud, {Rainer Weigel,
TXuan-Ha Vu, and {Boi Faltings

tLaboratoire d’Intelligence Artificielle
Département d’Informatique
EPFL, Ecublens
CH-1015 Lausanne

silaghi
Eomail: 4 220U U gy diepfich
xuanha

faltings

Fax: ++441-21-693.52.25

{Fachhochschule fiir Technik, Wirtschaft
und Soziale Arbeit St.Gallen (FHSG)
MIT IT CH-9001 St. Gallen
Tel. ++41 (0)71 288 99 72

E-mail : rainer.weigel@fhsg.ch

July, 2001

Many large sets of problems, specially alternatives of design problems, have
important common components. Considerable simplifications to a set of queries
are obtained when relevant information concerning large common subproblems
can be compiled in advance. Such compiled information can also help human
users to perform an analysis in order to first direct search toward the most
promising alternatives of a design.

In this paper we describe £1e5®-consistent constraints, a class of compiled
representations with a predefined upper-bound of global approximation errors.
To allow for increasing the resolution of the compiled information with manage-
able complexity, an £1e5®-consistent constraint approximates projections of the
solution space of a Numeric CSP on a subset of its variables. The upper bounds
of approximation errors are parameterized by: a representation approximation
error, £1; a vector €2 defining the splitting resolution on each variable of the
constraint; and a set of contracting operators ® that have reached a fix point.

1 Introduction

Many large sets of problems, specially alternatives of design problems, have
important common components. Considerable simplifications to a set of queries
are obtained when relevant information concerning large common subproblems
can be compiled in advance. Such compiled information can also help human
users to perform an analysis in order to first direct search toward the most
promising alternatives of a design.

Here we describe e1e2®-consistent constraints, a class of compiled repre-
sentations with a predefined upper-bound of global approximation errors. To
allow for increasing the resolution of the compiled information with manageable
complexity, an g5 P-consistent constraint approximates projections of the so-
lution space of a Numeric CSP on a subset of its variables. The upper bounds
of approximation errors are parameterized by: a representation approximation
error, €1; a vector g2 defining the splitting resolution on each variable of the
constraint; and a set of contracting operators ® that have reached a fix point.

2 Relations and Approximations

A real constraint ¢(z1, . ..,) has the form f1(z1,..., 2,)opfa(x1,. .., 2y), where
fi, f2:IR" = Randop € {<,>,=,>,<}. Let ¢(z1,...,zy) be a real constraint
with arity n. The relation defined by ¢, denoted by p., is the set of tuples sat-
isfying ¢. The relation defined by the negation, —c¢, of ¢ is given by IR™ \ p.
and is denoted by pz. The global relation defined by the conjunction of all the
constraints of a NCSP, C, is denoted p¢. It can be approximated by a computer-
representable superset or subset. In the first case the approximation is complete
but may contain points that are not solutions. Conversely, in the second case,
the approximation is sound but may lose certain solutions. A relation p can
be approximated conservatively by the smallest (w.r.t set inclusion) union of
boxes, Unionp, or more coarsely by the smallest box Outerp, containing it.
By using boxes included into p, sound (inner) approximations Innerp can also
be defined. In [2], Innerp is defined as the set {r € IR" | Outer{r} C p}.

The computation of these approximations relies on the notion of contracting
operators. Basically, a contracting operator narrows down the variable domains
by discarding values that are locally inconsistent. This is often done using bound
consistency. In this paper we use the notion of outer contracting operator,
defined as follows:

Definition 1 (Outer contracting operator) Let T be a set of intervals over
IR and p a real relation. The function OC, : I" — 1" is a contracting operator
for the relation p iff for any box B, B € ", the next properties are true:

(1) OC,(B) C B (Contractiveness)
(2) pnB C OC,B) (Completeness)

The contractiveness in unidimensional cases is illustrated in Figure 1. Of-
ten, a monotonicity condition is also required in some approaches [5, 1]. The

X

Figure 1: A function f in unidimensional cases is contractive if for positive
arguments it is positive and lies below the identity function.

monotonicity ensures that a mazimal fix-point is obtained. However, the ideal
result is the minimal fix-point where the completeness is not lost. Reaching this
minimal fix-point (as Hull-consistency) is impossible or prohibitive with most
common operators (Bound or Box consistency). Figure 2 describes this situa-
tion. While in general one cannot guarantee that the wished minimal fix-point
is reached, it is seldom useful to guarantee that the mazimal fix-point is be

obtained.
a) I'/_\ |
M_ M

fix pQints
) II/\J'/_\ 1%
AM

B N——]

Figure 2: a) Monotonicity reaches the unique (wished) fix-point with Hull-
consistency. b) With techniques like Box-consistency, monotonicity leads to the
worst fixed point, A. Without monotonicity one may reach a smaller complete
fix-point (e.g. B).

Let Vg = {z1...2,} be a set of variables taking their values over IR. Given
> r = {IR, Fr, Rr} a structure where Fr denotes a set of operators and R a
set of relations defined in IR, a real constraint is defined as a first order formula
built from) and VR. Interval arithmetic methods [5] are the basis of interval
constraint solving. They approximate real numbers by intervals and compute
conservative enclosures of the solution space of real constraint systems.

3 £1529-Consistency

Consistencies are classes of representations which can be achieved using re-
duction operators. Such reduction operators are mostly used to simplify a
(sub)problem during search. However, counsistency can be use to simplify a
subproblem that may occur often in the future problems. In this last case, the
challenge is to find a representation which can be used efficiently in future con-

texts, and which contains as much important information as possible. Saving
the whole solution space of a NCSP is out of discussion since even with floating
point limitations, the space requirements to store all the solution points is usu-
ally intractable. In contrast, Hull consistent or Arc-consistent domains [4] are
cheaper to store, but contain relatively little information.

A natural alternative to the punctual approach is to cover the spectrum of
solutions for inequalities using a reduced number of subsets from IR". Usually,
these subsets are chosen with known and simple properties (interval boxes, poly-
topes, ellipsoid) [6]. Several authors have proposed set covering algorithms with
intervals boxes [6, 3, 8, 2]. Section 4 describes an algorithm for dynamically con-
structing an interval-box covering, for a set of equality/inequality constraints,
according to a “maintaining local consistency” search schema. It builds on the
feasibility test proposed in [2]. This allows for robustly constructing sound boxes
and devising efficient splitting heuristics for search. The output is a union of
boxes which conservatively encloses the solution set.

This section describes a class of outer approximations projected on a subset
of variables and characterized by a property that we call £1e5®-consistency.
e162P-consistency is a weaker version of global consistency, which only considers
approximations of certain projections of the solution space. Such representations
can be constructed as a preprocessing technique for speeding up further queries.

When a representation of all the solutions of a NCSP has to be built, or even
its projection to a quite limited number of variables, the precision is the most
constraining factor. The space required depends exponentially on this precision.
The analytic representation itself is very efficient in space, but is less easy to
visualize and offers less topological information. The amount of aggregation on
solutions is a second factor that controls the required space. The improvements
that can be achieved depend on the problem at hand. The next definition
introduces the notion of €125 ®-consistency which allows for characterizing the
representation of the solution space for any projection on a given subset of
variables.

Definition 2 (e®-solution) An e®-solution of a NCSP N is a box denoted by
vne = T X ... X I, (n is the number of variables in N') such that the search
tool consisting of contracting operators ® and splitting operators with resolution
€ cannot reduce it or decide the absence of solutions inside it.

An e®-solution is therefore either a completely feasible box, or a box in which
® cannot find an infeasible box with all dimensions larger than €. Techniques
like those in Section 4 can be used to obtain boxes that are either completely
feasible, or that have all dimensions lower than ¢ (see Figure 3). € can be seen
as a vector {e!,...,e"}, where €’ is the resolution chosen for z;. Further we
consider for simplicity that ¢ is a constant, and &’ = ¢, Vi.

Definition 3 (¢162P-consistency) A constraint c(xy,...x) of a NCSP N =
(V,C, D) is e1e2®-consistent related to the variables in X = {x1,...,x}, XCV,
iff:

PN|x C per YU € Dy X...XDyy, DE pe => Ny, FDEUNey|s |T—D[< e

)
indiscernible v
feasible
<eg
-+
a) b)

Figure 3: Example of e®-solutions: a) completely feasible box; b) indiscernible
box.

projection of

indiscernible
£1®P-solution

< &1

projection of

feasible
£1®P-solution
£9 PN
a) b)

Figure 4: Simple example of an e1e2®-consistent constraint C' of a NCSP, V.
C' is here a space surrounded by the box with rounded corners: a) building on
a completely feasible box; b) building on an indiscernible box.

PN|x represents the projection of the n dimension solution space of N,
denoted py, into the space X. When all the solutions of a NCSP, N, are
contained in an e;®-solution (Figure 3), a corresponding worst approximation
g1e2®-consistent constraint C' of N is obtained as in Figure 4.

Theorem 1 Let C be an e12®P-consistent constraint for a NCSP, N'. Let S be a
set of e®-solutions, pyr € S. Any constraint C' such that S |yars(c)S por € po
is an e1e9®-consistent constraint for N.

Proof. Referring to the projections of the same e®-solutions as C, the Euclidean
distance condition (a’'<a < 1) is respected by any element of por (Figure 5). o

Definition 4 The conjunction of two constraints C, respectively Cs, is a con-
straint C', C = Cy A Cy, such that pc = pc, N pc,-

Definition 5 The disjunction of two constraints Cy, respectively Ca, is a con-
straint C, C = Cy V Cy, such that pc = pc, U pc, -

Let C be the conjunction of two e1e2P-consistent constraints, C for a NCSP,
N1, respectively Co for a NCSP, AMs. C is not necessarily an £1e5®-consistent

Figure 5: Any outer approximation constraint C’, whose feasible set pgr = rC’
is contained in an €12 ®-consistent constraint C', pc = rC, is 12 P-consistent.

constraint for the NCSP N1UN5. Intuitively, the intersection of two e®-solutions
in the two NCSPs may not be an ¢®-solution

Theorem 2 Let C be the disjunction of two e1e2®-consistent constraints, Cq
for a NCSP, N1, respectively Co for a NCSP, N>. C is an £1e2®-consistent
constraint for the NCSP N1V Ns.

Proof. Any e®-solution of N7 or N3 is an e®-solution of N7 V N>, Therefore any
element of pc, U pc,, belonging either to pc, or to pc,, is within Euclidean distance
€2 from a an e®-solution. o

The next corollary is obvious:

Corollary 2.1 An g1e9®-consistent NCSP whose solution space is contained
in a set, S, of eg-solutions can be obtained as the union of outer approzima-
tions of each box in S, where the precision of the approzimation is 51/\/5 (see
Theorem 1).

3.1 Example of ¢;6,$-consistent constraint

We now illustrate a simple example of an e1e5®-consistent constraint, namely
the e162®-consistent binary bitmap constraint. Let N be a NCSP with variables
{z1, 22, ...,z }, each variable z; taking its value in an interval [ay,b;]. Given
two distinct variables, z; and z;, a projection of a numeric constraint, ¢;, on
x;,x; can be approximated with a bitmap representation. In [8, 7, 9], a cell
in a tree or bitmap is feasible when assignments for z; and z; can be found
such that ¢; is satisfied. By constraint propagation, the global infeasibility of
some cells can be detected. These representations help in solving IV, but also
in giving hints about the geometry of the solution space.

e1e2P-consistency is a result of the separate consideration of these two dif-
ferent targets, namely solving and analyzing IN. £1e2®-consistency is not meant
for solving IV, but rather it is obtained as a result of solving. Instead, an e1e2®-
consistent constraint signal regions containing global solutions of N (somewhat
similar to global consistency). It can be used as a redundant constraint for im-
proving further solving of NCSPs of the type N AN’ where N’ is a NCSP. This
is useful when several NCSP with a common part have to be solved successively.

S| xy

| —

:

Vva
LY.
o

S
[~ |Xy

o
/J/ C
B

—

Figure 6: A bitmap e162®-consistent constraint with feasible space C' for a
NCSP, N, whose solution space projection on z,y is S|, . The grid resolution
is &1/ V2. The cell A belongs to C' since it intersects the projection of an
e®-solution s, s, .

4 Algorithms

We now present an algorithm named UCA6 (Algorithm 1) that computes a
Union approximation for numerical CSPs with equalities and inequalities [10].
We note lists in the Prolog style [Head|Tail]. B denotes the list of children to
be checked for a node, and P denotes the list of all B. The algorithm presented
is depth-first. Breadth-first and other heuristics can be obtained by treating the
lists B and P as sets, P becoming respectively the union of all the sets of type
B. The algorithm UCAG iteratively calls the function getNext which delivers
a new Outer approximation for a subspace in the solution space. By con-
struction, the new Outer approximation will not intersect with any previously
computed box. The function getNext has two main components: a reduction
operator, reduc (Algorithm 2), and a splitting operator, split (Algorithmn 3).
These operators are interleaved as in a classical maintaining bound consistency
algorithm. Practically, it is preferable to stop the dichotomous split when the
precision of the numeric search tool (splitting and contracting operators) can
lead to unsafe solutions at a given precision €. An unsafe solution is a box
that may contain no real solution. reduc, checks this state using a function
called Indiscernible(constraint, Box, OC, ¢), which is not discussed here in de-
tail'. Since we assume that OC and ¢ do not change during search, the actual
call to Indiscernible is Indiscernible(constraint, Box).
Each search node is characterized by the next structures:

* The list B corresponds to a set of splits for the current search node. It
defines the next branches of search. Each split correspond to a new node
of the search.

1The simplest strategy consists of checking that all the intervals are smaller than e, but
more sophisticated techniques can be built by estimating computational errors.

procedure UCAG6(C = (V,C,D): NCSP) do
P = [[{OC,c (D), C, {Bq(OC, (D))} }I;
0.1 while (getNext(P, C, solution)) do
| U — {solution}Uls;

return U;
function getNext(inout:P = [B = [{B € I",C : NCSP,{B, € I"}} |
Ts] | Tpl;
in: Cg € NCSP; out: solutione I") — bool

for ever do

0.2 if (B=1]) then

0.3 if (Tp =[]) then

0.4 ‘ return (false);

else

0.5 | P« Tp;

0.6 continue;

0.7 (C/aB’:{Bq’}) — reduc(C, Ba {Bq});

0.8 B «— Tg;

0.9 if (B> <> () then
0.10 if (" =10) then
0.11 solution «— B?’;
0.12 return (true);
0.13 B’ « split(B’,C' {Bq’});
0.14 P — [B"| Pl

Algorithm 1: The Search procedure

function reduc(in: C : NCSP, Be I"", {B;e I"}) —(NCSP, I"*, {II"})
1.1 B’ — OC,.(B);
1.2 for all (q={inequality}, q€ C, B4 € {Bi}) do

1.3 if (B’NBq <> Bg) then

14 B, — OC,_ (B’NBy);

1.5 if ((Bq = 0)VIndiscernible(q.Bq)) then
1.6 L € —=C\{a}, {Bi} — {Bi} \ Bg;

1.7 for all (q=equality, q€ C) do

1.8 if (Indiscernible(q,B’)) then

1.9 L ¢ —=C\{a}, {Bi} —{Bi} \ Bq;

110 | return (C, B’, {B;});

Algorithm 2: Problem Reduction

* A box B defining the domains of the current NCSP.

* The current NCSP C containing only the constraints of the initial NCSP
that can participate in pruning the search space. The constraints that are
indiscernible or entirely feasible in B are eliminated.

* Each constraint ¢ in a node is associated with a box, Bg, such that all the
space in B\ By is feasible.

Each Bgq is initially equal with the projection of the initial search space on the
variables in the constraint ¢, after applying OC,_. One of the features of reduc
is that it removes redundant completely feasible or indiscernible constraints. If
the recent domain modifications of some inequality ¢ have modified Bq, ¢ is
checked for feasibility at line 1.4, and eventually removed from the current CSP
(line 1.6). Equalities are similarly eliminated at line 1.9 when they become
indiscernible.

4.1 Splitting operator

The function split (Algorithm 3) allows for using three splitting strategies.
The first one, splitFeasible, extracts sound subspaces for some inequality, as
long as these subspaces fragment the search space in a ratio limited by a given
fragmentation threshold, denoted by frag (line 2.4). The second and the third
strategies (splitIneq, respectively splitEq), consist of choosing for dichotomous
split, a variable involved in an inequality (respectively an equality) of the current
NCSP C. The heuristics used at lines 2.5, 2.6, 2.7, and 2.8 in Algorithm 3 can
be based on the occurrence of variables in the constraints of C, or according to
a round robin technique. The domain of the chosen variable is then split in two
halves. Techniques based on the occurrences of variables in constraints can also
be used to devise heuristics on ordering the bounds at line 2.3 in splitFeasible.
The criteria for choosing a constraint at line 2.2 can look for maximizing the
size of the search space for which a given constraint is eliminated, minimize
the number of children nodes, or maximize the number of constraints that can
benefit? from the split.

Given two boxes B and Bg, where B contains B,, and given a bound b in
B, for a variable z, we use the next notations:

* Be(x,b)[Bq,B] 15 the (feasible) box not containing Bq obtained from B by
splitting the variable z in b.

* Bu(x,b)[Bq,B] 18 the (indiscernible) box containing B4 obtained from B by
splitting the variable x in b.

* By, (xpy I8 the (indiscernible) box obtained from B by splitting the vari-
able z in half and retaining its upper half.

2The constraints for which the domains are split may propagate more when OC is applied.

function split(in: Be I", C : NCSP, {B; € I"}) — [{I",NCSP, {I"}} |
-]

2.1 fun « choose appropriate(splitFeasible, splitIneq, splitEq);

B[]
fun(B, C, {Bi}, B);
| return B;
procedure splitFeasible (in:B,C,{B;};inout:B € [{I"",NCSP,{I"}} |]])
do
2.2 q + choose {inequality}€ C, Bq € {Bi};
2.3 foreach (bound b of some variable = of q in Bq (e.q. in descending

order of the relative distance rd to the corresponding bound in B)) do
2.4 if (rd <frag) continue;

B’ — By(x,b)[Bq,B]}

B < By(x,b)[B4,BJ;

B —[{B’, C\{q} {Bi} \Bq} [B |;

L B~ [{B,C.{Bi}} | B];

procedure splitIneq(in:B,C,{B;} inout:B € [{I",NCSP,{I"}} | .]) do
2.5 q < choose {inequality, B4 € I"} € C;

2.6 x « choose variable of q given C;

B — [{B%r(x)[BpCa {Bi}} [B;

B B — [{B%](x)[B},C, {Bit} [B

procedure splitEq(in:B,C,{B;};inout:B € [{I",NCSP, {I"}} | .]) do
2.7 | ¢« choose {equality} € C;

2.8 x « choose variable of q given C;

B~ [{B%r(x)[BpCa {Bi}} | B];

B B — [{B%](x)[B}’C’ {Bi}} | B ;

Algorithm 3: Four splitting operators.

B B |Buxxb)Ba.B] [Bf(x,b)[Bq.B]

A

B1210B] | B1/2r(x)[B] Bq

X X

X1 (x1+x2)/2 X2 b

\4

Figure 7: Splitting operators

* Byy(x)py Is the (indiscernible) box obtained from B by splitting the vari-
able x in half and retaining its lower half.

These concepts are illustrated in the Figure 7. In Procedure splitFeasible, our

described implementation splits the current box ¢ along all borders of B, that
do not fragment the search space with a ratio more than frag (considering the
ratio is computed such that it is always less or equal to 1). However, one may
choose to split in a step only along the border which offer the highest ratio.

5 Building 169,®-consistent bitmap constraints

The procedure UCAG6 can be modified for generating the feasible cells for rep-
resenting an e1e2®-consistent bitmap constraint on a set X of variables. This is
done by filtering out of P, the boxes of search space (bitmap cells), whose points
are closer to the found solution (line 0.1) than a distance 1. The distance is
computed in the space defined by the variables in X. The procedure required
for obtaining e1e2®-consistent bitmap constraints is called UCAT and is given
in Algorithm 4. ® corresponds to the used OC, ¢ is given by the size of the
bitmap and &5 is given by the implementation of Infeasible(c, Boz).

procedure UCA7(C = (V,C,D): NCSP) do

P = [[{0C,. (D), C, {B4(OC, . (D) H]];

3.1 while (getNext(P, C, solution)) do

U — {solution}Uis;

mark as feasible the bitmap cells intersecting {solution};
3.2 while non-empty(P) and (marked-feasible-head(P)) do
| P — tail(P);

| return U;
Algorithm 4: The Search procedure for bitmap e1e5®-consistent representations.

In order to build an £1e5®-consistent bitmap constraint, one has to filter out
of P feasible bitmap cells. To avoid repeated return to cells found feasible and
to avoid generating multiplications of the elements of the list, P, during this
filtering, the splitting of the boxes is preferably performed along the borders that
separate the bitmap cells. Whenever €; >> e2, there may be no appropriate cell
border to reduce the size of (indiscernible) boxes. Boxes are then split along
directions that are not cell borders, as in Figure 7. Filtering bitmap cells is
performed by eliminating from P all boxes completely contained in cells that
are marked as feasible.

For the examples in Figure 7, and given a bitmap generated by a grid with
width ¢/ V2, the splitting strategies shown in Figure 8 are added to the previ-
ous ones. The chosen splitting line/hyper-plan is the grid line/hyper-plan that
satisfies the splitting paradigm (bisection or separation of feasible regions) and
is the closest to the ideal choice defined as in Figure 7. The split procedures are
shown in Algorithm 5. The next notations, used in Algorithm 5, are defined as:

* B re()[B] is the (indiscernible) box obtained from B by splitting the

2

variable x along a grid line close to half and retaining its upper part.

10

enter

|
LN
| |<—split Bg |<—Spllt
Aol
<
grid grld
a) b)

>

Figure 8: Splitting when bitmap cell boundaries intersect the current box, paral-
lelly with the chosen split direction: a) Strategies with two indiscernible results;
b) Strategies with one indiscernible result.

procedure splitFeasible (in:B,C,{B;};inout:B € [{I",NCSP,{I"}} |]])
do
4.1 q «+ choose {inequality}e C, B, € {Bi};
4.2 for (the closest external grid line to a bound b of some variable x of
q in Bq (e.q. in descending order of the relative distance rd to the
corresponding bound in B)) do
4.3 if (rd <frag) continue;
B’ — Bt(x,b)[Bg,BI}
B« Bu(x b)[Bq,B]’

B —[{B’, C\{q} {Bi} \Bq} | B;

L B—[{B,C,{Bi}} |B];
procedure splitIneq(in:B,C,{B;} inout:B € [{I",NCSP,{I"}} | .|) do
4.4 q «+ choose {inequality, B4 € I} € C;
4.5 x « choose variable of q given C;

B — [{Bl g(x)[B)]’ ,C.ABi}} | B;
| B— [{B%Ig 0By G {Bit} [B;
procedure splitEq(in:B,C,{B; };inout:B € [{I",NCSP, {Il"}} |]) do
4.6 q « choose {equality} € C;
4.7 x «— choose variable of q given C;

B — [{B%rg(x)[B]acv{Bi}} | B };
| B — [{B%]g(x)[B],C7{Bi}} | B };

Algorithm 5: Splitting operators for bitmap £1£5®-consistent constraints.

* BB Is the (indiscernible) box obtained from B by splitting the
2
variable x along a grid line close to half and retaining its lower part.

The splitting strategies with the immediate subsequent filtering of P is not
sufficient for guaranteeing that a cell detected as feasible will not be rummaged
again. As shown in Figure 9, when the priority in splitting is not offered to

11

feasiblel__— 1 [—
| |
I I
| b |
I [

split l
I
|

Figure 9: The filtering power is reduced if the splitting is not done along grid
lines, when such lines intersect the current box. Here one cannot filter out the
box b, so that the current feasible cell will be scanned again.

grid lines/hyper-plan, a cell may be reached again later. Such cases can still
be cheaply detected relatively early, by checking if the current box is already
marked feasible, whenever it is completely contained in a cell (not intersected
by any grid line).

Lemma 1 When the splitting is done along a grid line/hyper-plan whenever a
grid line intersects the current box, the line 3.2 of procedure UCAT filters out
of P all the bozes contained in the last feasible cell.

Proof. Let us imagine that the bitmap cell, ¢, has just been found feasible due to
an e®-solution B*. We have to prove that no box B, whose projection is contained in
¢, is placed in P after a box B’ which projects partly in another cell, ¢’.

Let us imagine that the previous affirmation does not hold. P is treated in FIFO
order. It means that the box B strictly contained in ¢ (does not contain B*) has
been split apart from a box B° containing B’ and B*. Therefore the boxes B* and
B° have been separated along a line/hyper-plan that is not a cell border, while a
grid line/hyper-plan has intersected the current box across B® (the projection of B°
intersects both ¢ and ¢'). q.e.d. o

Theorem 3 If the splitting is done along a grid line/hyper-plan whenever a grid
line intersects the current box, then the search does never return to a bitmap
cell found feasible in an €169®-consistent bitmap constraint.

Proof. In order to return to a feasible cell ¢, part of ¢ should belong to a box, B in P.
If B is completely contained in ¢, it would have been filtered out in UCA7 (Lemma 1).
Therefore B contains parts of another bitmap cell, ¢’. B therefore intersects a grid
line. Since c is marked feasible, it means that a box, B’, intersecting c, has been
proved to be e®-solution. When B’ has been separated from B, the splitting action
has separated c in two. Therefore that split was not performed along a grid line. Since
B intersects a grid line, the hypothesis is contradicted and the proof is complete. u]

6 Conclusions

We present ¢165P-consistency, an approximation with bounded errors of global
consistency for numeric CSPs. £;1e5®-consistent constraints are compiled repre-
sentations that can provide relevant information concerning recurrent subprob-
lems. An algorithm is then detailed, which allows for efficient computations of

12

€162P-consistent bitmap constraints. It is based on a recent technique that we
have proposed for reducing search effort in numeric CSPs with inequalities.

7

Acknowledgements

We want to thank Frederic Goualard for interesting feedback.

References

[1]

Krzysztof R. Apt. The role of commutativity in constraint propagation
algorithms. ACM Transactions on Programming Languages and Systems,

TBD(TDB):1-35, 2001.

F. Benhamou and F. Goualard. Universally quantified interval constraints.
In Procs. of CP’2000, pages 67-82, 2000.

J. Garloff and B. Graf. Solving strict polynomial inequalities by Bernstein
expansion. Symbolic Methods in Control System Analysis and Design, Lon-
don: IEE, pages 339-352, 1999.

Esther M. Gelle. On the Generation of Locally Consistent Solution Spaces
in Mized Dynamic Constraint Problems. PhD thesis, EPF-Lausanne, 1998.

L. Granvilliers. Consistances locales et transformations symboliques de con-
traintes d’intervalles. PhD thesis, Université d’Orléans, déc 98.

L. Jaulin. Solution globale et garantie de problémes ensemblistes ; Appli-
cation a estimation non linéaire et a la commande robuste. PhD thesis,
Université Paris-Sud, Orsay, Feb 94.

Claudio Lottaz. Collaborative Desgn Using Solution Spaces. PhD thesis,
EPF-Lausanne, 2000.

D. Sam-Haroud and B. Faltings. Consistency techniques for continuous
constraints. Constraints, An International Journal,1, pages 85—118, 96.

M.-C. Silaghi, D. Sam-Haroud, and B. Faltings. Fractionnement intelligent
de domaine pour CSPs avec domaines ordonnés. In Proc. of RFIA2000,
2000.

M.-C. Silaghi, D. Sam-Haroud, and B. Faltings. Search techniques for non-
liniar constraint satisfaction problems with inequalities. In Proc. of AI2001,
Otawa, June 2001.

13

