
An algorithm applicable to

clearing combinatorial exchanges

Marius-Călin Silaghi
Florida Institute of Technology

September 17, 2002

Technical Report
CS-2002-14

Florida Institute of Technology
Melbourne, Florida 32901-6975

Abstract

It is important to approach negotiations in a way that ensures privacy.
So far, research has focused on securely solving restricted classes of ne-
gotiation techniques, mainly the (M+1)-st-price auctions. Here we show
how these results can be adapted to more general problems.

This paper extends our previous results on how distributed finite dis-
crete problems can be solved securely. Such problems can model larger
classes of negotiation problems, e.g. Combinatorial Exchanges [SF02]. In
Finite Discrete Maximization, each tuple in the problem space is associ-
ated with an integer value in a predefined interval and we search for a
maximizing input. Values from different subproblems are combined addi-
tively. We show that unconstrained distributed Finite Discrete Maximiza-
tion problems can be solved securely using a scheme that we propose for
translating shared secret values into shared differential bids. Differential
bid vectors are already used in [AS02, Bra02b].

Constrained distributed Finite Discrete Maximization poses additional
challenges, due to the loss of additivity of the maximized cost, when in-
feasibility is marked as the lowest finite value. We found two ways of
solving this problem: a) by using an additional multiplication value; and
b) by using larger variable domains. While the first alternative enforces
a threshold to the privacy level in our current protocol, the second one
increases much the complexity of the computation. The proposed algo-
rithms are only (t/3)-private, where t is the number of participants.

1

1 Introduction

Cryptographic protocols can enforce certain privacy guarantees in distributed
computation of functions [GB96]. [GMW87, CCD88b, CCD88a, BOGW88]
show how cryptographic protocols can be compiled from protocols/functions
for honest agents. For some combinations of problems, concepts of security and
types of attacks, cryptographic protocols obtained this way can be safe.
Example 1.1 Without intractability assumptions, when at most a minority of
the participants (<1/3) can make coalition, there exist cryptographic protocols
that are safe even against active attacks [CCD88a].
Example 1.2 “Fully private (M+1)-st-price auctions”, secure against any col-
lusion, have been described in [Bra02a]

Many existing cryptographic protocols are targeted to the computation of
functions based on addition and multiplication. Optimization problems are
efficiently approached by branching algorithms (e.g. branch and bound, ...),
but these show to be difficult to implement securely [Sil02c].

In this article we show how general finite discrete maximization can be solved
securely, being guaranteed to resist attacks from any colluding set of less than
a third of the participants. Our algorithm is based on the recent secure auction
solving, proposed in [Bra02b]. Finite Discrete Maximization problems are prob-
lems where each tuple in the problem space is associated with an integer value
in a predefined interval and a maximizing input is looked for. Values from dif-
ferent parts combine additively. We show that unconstrained distributed Finite
Discrete Maximization problems can be solved securely using a scheme that we
propose for translating shared secret values into shared differential bids [AS02].

Constrained distributed Finite Discrete Maximization poses additional chal-
lenges, due to the loss of additivity of the maximized cost, when infeasibility is
marked as the lowest finite value. We propose two ways of solving this problem:
a) by using an additional multiplication value; b) and by using larger variable
domains. While the first alternative enforces a threshold to the privacy level,
the second one increases strongly the complexity. Unfortunately, but expectedly,
the obtained algorithms are slower than known optimization algorithms.

2 Background

After a long series of important results in cryptographic protocols [GMW87,
CCD88b, CCD88a, BOGW88, GB96], recent results report more and more ap-
plications. Several reports are enthusiastic about the impressing results that
can be achieved using semi-trusted parties [SM]. However, the final success of
this kind of techniques is not yet clear [LAN02]. [Bra02b] show how simple
auctions can be solved privately without any servers and auctioneers.

Here we address a more general class of maximization problems that allows
us to approach problems such like combinatorial auctions with multiple buyers
and sellers.

2

2.1 Maximization problems

An important class of optimization problems requires to find valuations of a set
of variables that maximize the sum of a set of secret functions.

Definition 2.1 (FDM) A Finite Discrete Maximization problem (X,D,F) is
defined by a set of variables X = {x1, x2, ..., xn} and a set of functions fi ∈ F ,
fi : D1

i ×D2
i × ...→ D′i, where D′i is a finite range in IN, Dk

i ∈ D is the domain
of a variable xki ∈ X.

The problem is to find a valuation t of all variables in X, that maximizes∑
i fi(t).

Definition 2.2 (FDDM) A Finite Discrete Distributed Maximization problem
(A,X,D, F) is defined by a set of agents, each of them, Aj, owning a private
FDM with functions fi,j and eventual shared variables. They are looking for a
solution that maximizes the FDM (X,D,F) obtained by the union of the vari-
ables and functions in all the agents.

The problem is to find a valuation t of all variables in X, that maximizes∑
i,j fi,j(t) for all fi,j in all agents Aj.

In public settings, algorithms can exploit intricate branching procedures to
ensure efficient cuts in the problems. However, there hasn’t been much progress
in securely applying this type of efficient algorithms.

It is important to note that FDDMs can be used to model Combinatorial
Exchanges, a general type of negotiations of which auctions are a well-known
instance [SF02].

2.2 Constrained problems with constant objective func-
tion

Imagine we want to solve P = (X,D,F) where X is a set of variables
x1, x2, ...xn, F is a set of functions with results in the set {0, 1}, D a set of
finite discrete domains for X, and we require that

∑
fi = |F |. The domain of

xi is Di ∈ D, whose values are vi1, v
i
2, ..., v

i
|Di|.

Definition 2.3 (first solution) The first solution of P given a total order ≺1

on its variables X, and a total order on its values ≺2 is the first among solution
tuples when these are ordered with the lexicographical order induced by ≺1 and
≺2.

An algorithm for finding the first solution of such a problem based solely on
additions and multiplication was proposed in [Sil02b], and can be straightfor-
wardly compiled [GMW87, CCD88b, CCD88a, BOGW88] into a secure protocol.
As this is the main predecessor of the techniques proposed here, we will detail
it and its drawbacks.

Often, one has to restrict a problem by adding additional constraining func-
tions. We define the union between a problem P = (X,D,F) and a function f
as the problem P = (X,D,F ∪ {f}).

3

(X,D,F) ∪ f = (X,D,F ∪ {f})
Let us imagine that we have a function satisfiable(P) with the next prop-

erty (an example is given later):

satisfiable(P) =

{
1 if P has a solution
0 if P is infeasible

We will design now a set of functions: f1, f2, ..., fn, fi : P∗→IN, such that
each fi will return the index of the value of xi in the first solution, or 0 if no
solution exists.

fi(P) =

{
k if P has the first solution for xi = vik
0 if P has no solution

For this purpose, we will first design the functions gi,1, gi,2, ..., gi,|Di|. gi,j :
P∗ → {0, 1}.

gi,j(P) =

{
1 if P has a first solution for xi = vij
0 if P is infeasible for xi = vij

Whenever a first solution exists, a simple implementation is:

gi,j(P) = satisfiable(P ∪ {xi = vij} ∪k<i (xk = vkfk(P))) (1)

where vkfk(P) is the (fk(P)-th) value of xk, the value that xk takes in the first
solution.

Namely, gi,j(P) is 1 selecting vij for xi, if and only if the problem obtained
by adding to P the function

λi =

{
1 if xi = vij
0 if xi 6= vij

that selects the current value, and the functions

λ∗k =

{
1 if xk = vkfk(P)

0 if xk 6= vkfk(P)

instantiating previous variables to their values in the first solution, is satisfiable.
This recursion is possible by first computing the value of the first variable

in the first solution, f1, based on g1,j as described next. Based on the result
one can compute g2,j . Then, one can now compute f2. The recursion continues
with gi,j that helps in computing fi.

We define functions tj,1, tj,2, ..., tj,|Dj |. tj,i : P∗ → {0, 1}. These functions
hold temporary results, whose semantic is that no satisfiable subtree exists
under any node xj=v

j
k, k≤i, when previous variables are assigned according to

the values in the first solution:

4

function value-to-differential-bid-vector(c(t), K)

1. Jointly, all agents build a vector a0
t for the secret value c(t).

a0
t =< c0t,0, c

0
t,1, ..., c

0
t,K >. Actually,

a0
t =< c(t), c(t)− 1, c(t)− 2, ..., c(t)−K >.

To achieve this, each agent Ai computes
a0
t (i) =< c0t,0(i), c0t,1(i), ..., c0t,K(i) >. where c0t,0(i) = ci(t), and for k > 0,

c0t,k(i) = c0t,k−1(i)− s(i).

2. Jointly, all agents build a vector a1
t for each possible tuple t.

a1
t =< c1t,0, c

1
t,1, c

1
t,2, ..., c

1
t,K >.

To achieve this, each agent Ai computes
c1t,k = (c0t,k + 1) ∗∏0<τ≤K (c0t,k − τ)(c0t,k + τ).

3. Return a1
t .

Figure 1: Transforming a secret value c(t) ∈ {0, 1, 2, ...,K} to a differential bid
vector. The share of c(t) to the agent Ai is ci(t).

tj,i(P) =
∏

0<k≤i
(1− gj,k(P)) (2)

Functions tj,i are obtained incrementally as follows:

tj,0(P) = 1 (3)

tj,i(P) = tj,i−1 ∗ (1− gj,i(P)) (4)

Once tj,i have been computed for all i, one can compute the index of the
value of xj , namely fj :

fj(P) =

|Dj |∑

i=1

i ∗ (gj,i(P) ∗ tj,i−1(P)) (5)

Lemma 2.1 The functions g and f given by Equations 1 and 5 correspond to
their definition.

Proof. The properties can be checked recursively starting with g1, k and f1.

It remains to find an efficient implementation of satisfiable().

Remark 2.1 It is improbable that one will ever find secure protocols more ef-
ficient than generate and test. This is due to the fact that any trimming of
a branch reveals information when the “test” operator cannot be implemented
securely (see [Sil02c]).

5

procedure satisfiable(P)

1. i=first tuple; a=0; b=1; (they do not need to be securely shared, and can
be distributed in plain)

2. loop: a = a+ p(ti) ∗ b

3. if i≥|SS(P)| (problem space exhausted), then terminate and return a.

4. b = b ∗ (1− p(ti))

5. i=next tuple;

6. goto loop

Figure 2: satisfiable(P) when P is already shared. Several such functions for
different values of a variable can be computed in parallel in order to exploit
common partial results in computing p(t).

Let SS(P) be the ordered set of all tuples in the cross-product of the domains
of P =< X,D,F >. Each function c in the set of constraints F is a function,
c : SS(P) → {0, 1}. The secret parameters of the distributions are the various
values c(t) where t is a tuple in D. Let us define the function p, p : SS(P) →
{0, 1}, defined as p(t) =

∏
c∈F c(t).

satisfiable(P) =
∑

ti∈SS(P)

(p(ti)
∏

k<i

(1− p(tk)))

Proposition 2.1 Given the previous definitions of the functions p,
satisfiable(), gi,j, and fi, and a problem P , the vector 〈vifi(P)〉 defines

a solution of P (the first one).

Proof. See the definition of the functions f .

To avoid storing all the tuples in memory, the function satisfiable will
be computed similarly with the functions gi,j , namely by using two temporary
values (see Figure 2).

Remark 2.2 The computation of the vector 〈fi(P)〉 requires only additions and
multiplications and can be easily compiled unto a secure protocol using any of
the classic techniques mentioned in this chapter.

The secret parameters of the computation are the values c(t).

Remark 2.3 Actually whenever an element of the vector 〈fi(P)〉 is 0, the com-
putation can be stopped since P is infeasible.

The secure algorithm obtained by compiling the computation of 〈vifi(P)〉 is
referred to as Secure Problem Solver. To circumvent the exponential number of

6

intermediary results and to have an acceptable space requirement, the compu-
tation of satisfiable should be done tuple after tuple.

Remark 2.4 Submitted shares of an input value, v, of a tuple in a constraint
can be verified by checking that v belongs to {0, 1} (e.g. using the protocol given
in [Bra02b], section 4.1.6). Alternatively, one could also verify that v(v−1)=0.

The algorithm that any agent has to follow here is given in Figure 3.
The drawbacks of this approach are that:

• due to multiplications, this approach offers only n/3-privacy.

• the space complexity is exponential for the best efficiency (to avoid re-
computation of all the tuples)

• the best efficiency is n2 times higher than the efficiency of generate and
test.

3 Secure Maximization Solver

Here I describe a technique applicable to maximization problems. Without loss
of generality, we consider that each agent is interested in a single function, f .
An important first idea is to map securely shared values into differential bid
vectors. A technique for achieving this is proposed next. Additional techniques
are then proposed for allowing for conditions in these problems.

Finite Discrete Distributed Maximization problems were defined at the be-
ginning of the Background section.

3.1 Intuitive Description

Now I describe a protocol for securely solving a finite discrete distributed max-
imization problem (A,X,D, F) where all the functions in F return results in
the set {0, 1, ..., h}, h ∈ IN+. Many other situations, like negative values, can be
mapped to this case. Let m = h|F |. The main steps of Secure Finite Distributed
Discrete Maximization (SFDDM) are as follows.

1. Each Ak shares function tuples ck(i) of its problem by distributing shares
ckj (i) to agents Aj .

2. Verify that value, ck(i) = v, of each submitted function tuple belongs
to {0, 1, ..., h} (It can be done by checking that v(v−1)...(v−h)=0, but
this introduces multiplications, therefore other 0-knowledge techniques are
preferred).

3. Securely compute the value c(t) of each tuple t of the global problem,
using the existing shares. This is achieved by summing up the shares that
are projection of the tuple on the corresponding variables. Unfortunately
this has exponential complexity.

7

procedure SecureSatisfaction

1. Securely distribute to each agent Aj encrypted Shamir shares of the fea-

sibility of each local tuple tik of Ai: (tik, s
j
k).

2. Verify the shared values as described in Remark 2.4.

3. Compute satisfiable(P). If P is not satisfiable (result 0), exit. If space
complexity allows, store p(t) for all t, or for as many t as possible.

4. j = 1

5. Compute in parallel all gj,k. The parallel computation can reuse common
partial results of the functions p(t), namely for the initial functions in P .
The space complexity is then |Di| and the tuples in SS(P) are enumerated
in lexicographical order.

Compute tj,k for all k.

6. Compute fj(P).

7. Announce fj(P) to the owners of the xj variable (agents that have func-
tions involving xj). This is done by sending them all the shares that they
do not have.

8. The shared secret fj(P) will be transformed in a differential
bid vector of size |Di| where the element fj(P) is 1 and
all the other elements are 0. This is achieved by the call
value-to-differential-bid-vector(fj(P),|Di|+ 1), followed by mul-
tiplying each element of the returned vector by 1

((−1)m(m!)2) where m =

(|Di|+1). The function value-to-differential-bid-vector doing this
is shown in Figure 1 (also see [Sil02a]). The obtained vector will be used
as a function checking that xj = vjfj(P) by multiplying the k-th element of

the vector with any tuple for xj = k. Eventual stored values of p(t) can
be multiplied with the corresponding value of this new function.

9. if j = |X|, then terminate algorithm.

10. j = j + 1

11. goto step 4

Figure 3: Algorithm performed by each agent Ai for finding a solution satisfying
conditions where g functions are computed in parallel. It is possible to also
compute them sequentially with lower space complexity.

4. Let m be the highest possible value of a tuple (e.g. h|F |). Make values
into differential bids with the non-zero term y, y = (−1)m(m!)2. This can

8

be done by calling the algorithm we propose in Figure 1.

5. Apply any of the known standard secure protocols to determine the winner
differential bid (see [Bra02b, Bra02a]).

3.2 Detailed Protocol

Assume a Distributed FDDM with n agents. By s(i) we denote i’s share of the
secret ’1’. We say that a tuple ti is in a larger tuple t when the projection of t
on the variables of ti yields ti.

1. Each agent Ai generates secretly a value vti for each tuple ti in FDM(Ai).

2. According to Shamir’s scheme, each agent Ai generates secretly a poly-
nome for each secret value vti , and generates n secret shares, vti(i,j), 1≤j≤n.

3. Each agent Ai sends to Aj the share vti(i,j).

4. Verify that vti belongs to the the set {0..h}, for each submitted value vti .
Eliminate agents that lie. This verification could be verified by checking
that vti(vti−1)...(vti−h)=0.

5. All agents compute for each tuple t the global cost c(t) =
∑
∀i,ti;ti∈t v

ti .

To achieve this, each agent Ai computes ci(t) =
∑
∀k,tk∈t v

tk
(k,i).

6. Jointly the agents perform at=value-to-differential-bid-vector(c(t),m),
where m=|F |h, and verify with one of the standard techniques [Bra02b,
Bra02a] that the result is a correct differential bid with the non-zero ele-
ment y, y=(−1)m(m!)2.

7. Run a standard secure protocol for deciding the winner among at for all
t, considered as differential bids (see [Bra02b, Bra02a]).

8. The results for the agents are revealed and the winner tuple with its value
are found (as in the other standard protocols).

Figure 4: SFDDM.

The SFDDM algorithm is detailed in Figure 4. The Algorithm consist of
securely distributing shares of the values of different tuples for different agents
using Shamir’s scheme. The shared values are then summed for each tuple and
the total value of each tuple is then securely transformed into a differential bid
vector.

Remark 3.1 Despite the fact that the differential bid vectors obtained for all tu-
ples are then used in a 1-st price auction that can be implemented “fully secure”

9

with any of the techniques proposed in [Bra02b, Bra02a], due to our implementa-
tion of value-to-differential-bid-vector based on multiplications, a lower
threshold has to be adopted for the offered privacy level.

Remark 3.2 The fact that several winning tuples can have the same value leads
to ties that have to be broken like in [Bra02a]. This is a problem that can strongly
increase the complexity of the protocol.

4 Constrained FDDM problems

In typical optimization problems, besides maximizing some objective function,
participants also want to enforce some conditions. In general, such conditions
can be modeled by setting the objective function in the excluded regions to −∞.
Unfortunately, this technique cannot be applied like this in our case due to the
finiteness of our domains.

4.1 Constrained FDDM problems with extended domains

Following the standard approach to Constrained FDDM problems we would
like to use −∞. We notice however that −h(|F | − 1) is sufficient due to the
known upper bound of a value. Constrained FDDM problems can therefore be
solved by modeling hard constraints with functions mapping forbidden regions
to −h|F | or −h(|F | − 1).

The previously described algorithm can be used by mapping the domains
[−h|F |, h] into [0, (h+ 1)|F |].

Remark 4.1 The complexity of the solved problem increases from O(h|X|) to

O((h(|F |+ 1)
|X|

).

Remark 4.2 When the problem is over-constrained, it is required at the end of
the auction protocol to destroy solutions with values less than h|F |2 (the value
to which 0’s are mapped).

Remark 4.3 This solution would make sense especially if the multiplications
currently used in the proposed SFDDM protocol will be successfully removed by
further research, such that the technique could be implemented “fully privately”
(without privacy thresholds).

4.2 Constrained FDDM problems with additional multi-
pliers

A more efficient solution is obtained by using specific feasibility values instead
of domain extensions. For each tuple t in a function f , each agent Ai has to se-
curely generate and distribute two shared secrets: fi(t) and φi(t). Constraining
functions φ are defined as:

10

1. Each agent Ai generates secretly a value vti for each tuple ti in FDM(Ai),
and a feasibility value φi(ti).

2. According to Shamir’s scheme, each agent Ai generates secretly a poly-
nome for each secret value vti respectively. φi(ti), and generates n secret
shares, vti(i,j) respectively. φi(ti)(i,j), 1≤j≤n.

3. Each agent Ai sends to Aj the shares vti(i,j) and φi(ti)(i,j).

4. Verify that φi(ti)(i,j) belongs to the set {0, 1} (e.g. as in the algorithm
SecureSatisfaction).

5. Verify that vti belongs to the set {0..h}, for each submitted value vti .
Eliminate agents that lie. This verification could be verified by checking
that vti(vti−1)...(vti−h)=0.

6. All agents compute for each tuple t the global cost c(t) =
∑
∀i,ti;ti∈t v

ti .

To achieve this, each agent Ai computes ci(t) =
∑
∀k,tk∈t v

tk
(k,i).

7. The secret value is than multiplied with the secret multipliers: c(t) =
c(t)

∏
∀i,ti;ti∈t φi(ti).

8. Jointly the agents perform at=value-to-differential-bid-vector(c(t),m),
where m=|F |h, and verify with one of the standard techniques [Bra02b,
Bra02a] that the result is a correct differential bid with the non-zero ele-
ment y, y=(−1)m(m!)2.

9. Run a standard secure protocol for deciding the winner among at for all
t, considered as differential bids (see [Bra02b, Bra02a]).

10. The results for the agents are revealed and the winner tuple with its value
are found (as in the other standard protocols).

Figure 5: SFDDM for constrained FDDM problems.

φi(t) =

{
1 if t is feasible for Ai
0 if t is infeasible for Ai

The optimized functions f maintain their semantic and take values between
1 and h, taking any value (e.g. 0) when the tuple is infeasible. A detailed
revision of the SFDDM protocol that includes multipliers is given in Figure 5.

Remark 4.4 The main drawback of this technique is that multiplications seem
to necessarily require a low threshold (|A|/2) on the achieved level of privacy.

Remark 4.5 The values 0 in the obtained global problem were reserved for

11

infeasibility. Winners with value 0 can be disabled, but actually, no secret is lost
when an infeasible tuple is revealed in a problem known to be over-constrained.

5 Summary

In this article we first describe finite distributed discrete maximization problems.
We then show how classic secure protocols (for addition and multiplication) can
be applied to finite distributed discrete maximization problems (FDDMs).

Besides the SecureSatisfaction algorithm for solving constrained problems
with constant objective functions, we also propose algorithms for both uncon-
strained and constrained FDDMs. An important ingredient that we propose
to enable these protocols is a functions that transforms a securely shared value
into a securely shared differential bid vector.

While the space complexity of the SecureSatisfaction algorithm is acceptable,
the algorithms for solving FDDMs have to simultaneously store in memory the
whole problem space. Further research may be able to solve this problem.

The privacy level offered by our protocols is currently limited to (|A|/3)-
privacy. Nevertheless, due to the fact that most parts of these protocols can be
implemented in a “fully private” way (namely without a threshold), we consider
it important to continue research for implementing the currently most problem-
atic part (transforming shared secret values into shared secret differential bid
vectors) in a secure way (e.g. without multiplications).

References

[AS02] M. Abe and K. Suzuki. M+1-st price auction using homomorphic
encryption. In Springer, editor, 5th IC on PKC, volume 2274 of
LNCS, pages 115–224, 2002.

[BOGW88] M. Ben-Or, S. Goldwasser, and A. Widgerson. Completeness the-
orems for non-cryptographic fault-tolerant distributed computat-
ing. In Proc. 20th ACM Symposium on the Theory of Computing
(STOC), pages 1–10, 1988.

[Bra02a] Felix Brandt. Fully private auctions in a constant number of rounds.
preliminary draft, August 2002.

[Bra02b] Felix Brandt. A verifiable, bidder-resolved auction protocol. In
L.Korba R.Falcone, editor, Deception, Fraud and Trust in Agent
Societies (AAMAS-W5), pages 18,25, Bologna, July 15 2002.

[CCD88a] D. Chaum, C. Crépeau, and I. Damg̊ard. Multiparty uncondition-
ally secure protocols. In Proc. 20th ACM Symposium on the Theory
of Computing (STOC), pages 11–19, Chicago, 1988.

12

[CCD88b] David Chaum, Claude Crépeau, and Ivan Damg̊ard. Multiparty
unconditionally secure protocols. In Springer-Verlag, editor, Proc.
CRYPTO 87, LNCS 293, page 462, 1988.

[GB96] Shafi Goldwasser and Mihir Bellare. Lecture notes on cryptography.
MIT, July 1996.

[GMW87] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental
game — a completeness theorem for protocols with honest major-
ity. In Proc. 19th ACM Symposium on the Theory of Computing
(STOC), pages 218–229, 1987.

[LAN02] Helger Lipmaa, N. Asokan, and Valtteri Niemi. Secure Vickrey
Auctions without Threshold Trust. In Financial Cryptography
2002, Lecture Notes in Computer Science, Southhampton Beach,
Bermuda, 11–14 March 2002. Springer-Verlag. To appear.

[SF02] Marius-Călin Silaghi and Boi Faltings. Self reordering for security
in generalized english auctions. In AAMAS, July 2002.

[Sil02a] Marius-Călin Silaghi. On securely solving distributed
CS(O)Ps. Technical Report IC-55-2002, EPFL, July 2002.
http://icwww.epfl.ch.

[Sil02b] Marius-Călin Silaghi. Privacy with Cryptographic Proto-
cols. Asynchronously Solving Distributed Problems with Pri-
vacy Requirements, Chapter 15. 2601, Swiss Federal Insti-
tute of Technology (EPFL), CH-1015 Ecublens, June 27, 2002.
http://www.cs.fit.edu/˜msilaghi/teza/chapter15.pdf.

[Sil02c] Marius-Călin Silaghi. Problems with a secure test oper-
ator. Asynchronously Solving Distributed Problems with Pri-
vacy Requirements, Annex B. 2601, Swiss Federal Institute
of Technology (EPFL), CH-1015 Ecublens, June 27, 2002.
http://www.cs.fit.edu/˜msilaghi/teza/chapter23.pdf.

[SM] D.X. Song and J. Millen. Secure auctions in a publish/subscribe
system. http://www.csl.sri.com/users/millen/.

13

