
How to get AAS’ when you just have AAS

Marius-Călin Silaghi?

Florida Institute of Technology (FIT),
Melbourne, Florida
msilaghi@cs.fit.edu

Abstract. It is well known that the development of a new complex
CSP algorithm from scratch is difficult and error prone. Asynchronous
Aggregation Search (AAS) [2] is a family of algorithms whose efficient
implementation involves complex features like: dynamic detection of in-
terchangeabilities, interruptibility of the backtracking with switch of con-
texts, and management of more or less intelligent nogood stores. More-
over, all these may have different behavior in different states of local
state machines.
AAS has different related versions (AAS0, AAS1, AAS2) that can be ob-
tained with small effort from one another. A remarkable related family
of algorithms is the Asynchronous Aggregation Search without signa-
tures (AAS’) [2]. AAS’ shares several characteristics with AAS, allowing
for similar aggregations, but the semantic of the information is comple-
mentary. Namely, the costly operations are triggered by changes of local
instantiations rather than by changes of composed instantiations.
Here I show how, despite the quite deep differences between the basic
operations of AAS and AAS’, one can perfectly implement AAS’ based
on any AAS implementation, by a ’trick’ in problem formulation and
local rules.

1 Introduction

It is well known that the development of a new complex CSP algorithm from
scratch is difficult and error prone. Asynchronous Aggregation Search (AAS) [2]
is a family of algorithms whose efficient implementation involves complex fea-
tures like: dynamic detection of interchangeabilities, interruptibility of the back-
tracking with switch of contexts, and management of more or less intelligent
nogood stores. Moreover, all these may have different behavior in different states
of local state machines.

AAS has different related versions (AAS0, AAS1, AAS2) that can be obtained
with small effort from one another. A remarkable related family of algorithms
is the Asynchronous Aggregation Search without signatures (AAS’) [2]. AAS’
shares several characteristics with AAS, allowing for similar aggregations, but the
semantic of the information is complementary. Namely, the costly operations are

? This work started while the author was working at EPFL, supported by the Swiss
National Science Foundation project number 21-52462.97.

triggered by changes of local instantiations rather than by changes of composed
instantiations.

Here I show how, despite the quite deep differences between the basic oper-
ations of AAS and AAS’, one can perfectly implement AAS’ based on any AAS
implementation, by a ’trick’ in problem formulation and rules for local reasoning.
It is remarkable to note that AAS’ can be obtained even from simplified versions
of AAS.

2 Problem

We consider naturally distributed constraint satisfaction problems involving pri-
vacy requirements (e.g. for solving auctions [2]).

Definition 1 (DisCSP). A DisCSP (A,V,D,C) is given by a set of agents
A1, ..., An where each agent Ai wants to enforce some private constraint Ci in
C. The set of shared variables involved in Ci is Vi (from V). The agents want
instantiation of the variables in Vi in the corresponding domains Di.

Such a problem can be solved by centralizing it into a trusted party, operation
that translates it into a typical CSP. 1

2.1 (First) Solution of a CSP

Here are presented SCSP, the simple and formal mathematical equations for
defining the first solution to a CSP [2]. Imagine we want to solve a CSP P =
(X,C,D) where X is a set of variables x1, x2, ...xn, C is a set of constraints and D

a set of domains for X. The domain of xi is Di, whose values are vi
1, v

i
2, ..., v

i
|Di|

.

Definition 2 (first solution). The first solution of a CSP given a total order
on its variables and a total order on its values is the first among solution tuples
when these are ordered lexicographically.

Let gconsistent(P) be a function such that:

gconsistent(P) =

{

1 if P has a solution
0 if P is infeasible

A simple example is shown later.
Consider now a set of functions: f1, f2, ..., fn, fi : CSP→IN, such that each

fi will return the index of the value of xi in the first solution, or 0 if no solution
exists.

fi(P) =

{

k if P has the first solution for xi = vi
k

0 if P has no solution

1 Once the constraints of different agents are securely shared, securely solving the
DisCSP reduces to securely solving the CSP obtained by the union of all constraints
enforced by the different agents.

A simple example is also shown later.
Let us first define the functions gi,1, gi,2, ..., gi,|Di|. gi,j : CSP → {0, 1}.

gi,j(P) =

{

1 if P has a first solution for xi = vi
j

0 if P is infeasible for xi = vi
j

A simple implementation is:

gi,j(P) = gconsistent(P ∪ {xi = vi
j} ∪k<i (xk = vk

fk(P))) (1)

where the union of a problem and some constraints yields the problem tighten
by enforcing the additional constraints.

Now we can define the next simple implementation for the functions fi.

fj(P) =

|Dj |
∑

i=1

i ∗ (gj,i(P) ∗
∏

k<i

(1− gj,k(P))) (2)

In [2] we show that the functions g and f given by Equations 1 and 2 corre-
spond to their definition.

2.2 Expensive implementation of the satisfiability function

Let SS(P) be the ordered set of all tuples in the cross-product of the domains of
P . Each constraint c in the set of constraints C is a function, c : SS(P)→ {0, 1}.
The secret parameters of the distributions are the various values c(t) where t

is a tuple. Let us define the function p, p : SS(P) → {0, 1}, defined as p(t) =
∏

c∈C c(t).

gconsistent(P) =
∑

ti∈SS(P)

(p(ti)
∏

k<i

(1− p(tk)))

As shown in [2], given the previous definitions of the functions p,
gconsistent(), gi,j , and fi, and a (Dis)CSP P , the vector 〈vi

fi(P)〉 defines a solu-

tion of P (the first one).

Remark 1. The computation of the vector 〈fi(P)〉 requires only additions and
multiplications and can be easily compiled unto a secure protocol.

Remark 2. Actually whenever an element of the vector 〈fi(P)〉 is 0, the compu-
tation can be stopped since P is infeasible.

Remark 3. Submitted shares of an input value, v, of a tuple in a constraint can
be verified by checking that v(v−1)=0.

Due to the drawbacks of this approach (cost, insecurity to colluders) we
consider it important to study the alternatives based on constructive search,
two important ones being compared next, AAS vs. AAS’.

3 Framework

Both AAS and AAS’ are designed to solve naturally distributed constraint satis-
faction problems. Their framework is not restricted to defining the search space
and the solution space of the problems, but also agent competence [2]. The fol-
lowing definition imposes some restrictions on the operations that agents can
perform.

Definition 3 (DisCSP with modifiers). A DisCSP (A,V,D,M,C) is given
by a set of agents A1, ..., An where each agent Ai wants to enforce some private
constraint Ci.

The set of shared variables involved in Ci is Vi. The agents negotiate the
instantiation of the variables in Vi in the corresponding domains Di by either
revealing conflicts or by proposing instantiations for a subset Mi of Vi.

Any variable xk that is involved with an existential quantifier in at least one
constraint, has to be in the Mi set of at least one agent Ai. The agents want to
agree on instantiations such that all the predicates are satisfied.

This definition generalizes most of the definitions known to the author. Algo-
rithms defined for DisCSPs with modifiers can then be correctly compared with
algorithms developed for any sub-framework.

Definition 4. The set of modifiers of xi, Ms
i , is the set of agents having xi in

their Mi.
Ms

i = {Ak|xi ∈Mk}

Remark 4 (external constraint). A non-unary constraint in a DisCSP with mod-
ifiers is called external if at least two of the variables it involves, xi and xj , are
such that |M s

i ∪M
s
j |>1.

One can similarly define internal constraints.

Remark 5 (internal constraint). A non-unary constraint in a DisCSP with mod-
ifiers is called internal if any two of the variables it involves, xi and xj , are such
that |Ms

i ∪M
s
j |=1.

It is worth to be noticed that the newly introduced notions of inter-
nal/external constraints generalize their most common usage.

To enforce C in AAS, Ai:

– has to announce at beginning that it wants to modify all the shared existen-
tially quantified variables in C (this is always possible), or

– has to be ordered such that some agents with lower positions want to modify
all the shared existentially quantified variables in C that Ai does not want
to modify itself.

An agent does not need to enforce a constraint, C, that it has when it knows
that another agent with higher position enforces C.

4 Asynchronous Aggregation Search (AAS)

AAS imposes a total order on the agents participating in the computation. Lower
positioned agents in this order have a higher priority than higher positioned ones.

The main idea behind AAS is to allow the agents to aggregate several as-
signments into one proposal. Agents refine proposals of higher priority agents.
To allow for this flexibility, AAS asks agents to tag their proposals with a signa-
ture. The signature defines the validity of the proposal as function of proposals
of higher priority agents. These elements are detailed in the rest of this section.

4.1 Proposals on shared variables

All the agents can aggregate several assignments for a variable xi into one pro-
posal if

– all the agents owning constraints on some variable xi announce at beginning
that they want to make proposals with assignments for xi

– or at most one agent owning constraints on xi makes exception but is ordered
after the others.

Moreover:

Remark 6. More than one agent enforcing initial constraints on xi may not an-
nounce at beginning that they want to make proposals with assignments for xi.
Let them be ordered in such a way that the first of them has position ki. Let
Ski

i be the set of agents that enforce initial constraints on xi and that are po-

sitioned before ki. All the agents in Ski

i , excepting the last positioned of them,
are allowed to aggregate several assignments in one proposal (aggregate).

Several branches of the search are therefore aggregated.

4.2 Signatures

Signatures enable several agents to make proposals on the same variable. The
real problem comes from the fact that the different agents should be able to
coherently agree on a common proposal.

A decision can be taken by giving different priority to distinct agents. How-
ever, this would simply lead to the loss of any proposal coming from lower priority
agents and the problem is not solved. The notion of proposal was redefined in a
way that allows several proposals to be composed.

Remark 7. We say that the relation “p1 complies to p2” between two proposals
is intended if the agent generating p1 explicitly states this relation.

This is related to the compliance of decisions from lower ranked authori-
ties to decisions of higher ranked ones, as taken in human societies. There, an
ordnance is often specified as complying to a certain law, etc. (see Ciglean’s
Democracy [2]).

Now I recall a marking technique that allows for the definition of a total
order among the proposals made concurrently and asynchronously by a set of
ordered agents on a shared resource (e.g. an order, a variable, processor time).
This technique also allows to specify implicit “complies to” relations.

A conflict resource is a resource for which several agents can make pro-
posals in a concurrent and asynchronous manner. R, denotes a generic shared
resource.

Remark 8. A proposal source for a resource R is an entity (e.g. an agent,
abstract agent) that can make specific proposals concerning the allocation (or
valuation) of R.

We will consider that a total order ≺ is defined on proposal sources. The
proposal sources with lower position according to ≺ have a higher priority. The
proposal source with position k is noted PRk , k ≥ kR0 . kR0 is the first position.

Each proposal source PRi maintains a counter CR
i

for the conflict resource
R. Markers for defining order on messages in distributed settings have been first
introduced in [1]. The markers involved in our marking technique for ordered
proposal sources are called signatures.

Definition 5. A signature is a chain h of pairs, |a:b|, that can be associated
to a proposal, Z, for R. A pair p=|a:b| in h signals that Z complies to a proposal
for R that was made by PRa when its CRa had the value b, and it knew the prefix
of p in h.

Example 1. The next are examples of signatures:

– || -an empty signature

– |1:5| -a one pair signature

– |1:5|2 : 4| -a two pairs signature

– |2:4|3 : 2|5 : 2|7 : 23| -the pairs are ordered in a signature.

While the form of these pairs resembles the ones in [1], their semantic is
different. An order ∝ (read “follows”) is defined on pairs such that |i1:l1|∝|i2:l2|
if either i1>i2, or (i1=i2)∧(l1<l2) — this is due to the fact that l1 and l2 are
counters.

Example 2. The next are examples of order on pairs:

– |1:5| ∝ |1:7|
– |2:5| ∝ |1:3|
– |4:5| ∝ |2:5|
– |4:7| ∝ |2:5|

Definition 6. A signature h1 is stronger than a signature h2 if a lexicographic
comparison on them, using the order ∝ on pairs, decides that h2 ∝ h1.

P1
x

P2
x

P3
xm1:x={..}|1:k1l|

m3:x={..}|2:k2h|

m1:x={..}|1:k1l|

m2:x={..}|1:k1f|

a) b)

x

x

x x

x
x

P1
x P3

x

m3:x={..}|1:k1f|2:k2g|

P2
x

Fig. 1. Simple scenarios with messages for proposals on a resource, x.

Example 3. The next are examples of order on signatures:
1:7	stronger than	2:8				
2:9	stronger than	2:8				
1:7	3 : 5	stronger than	1:7			
1:7	3 : 5	stronger than	1:7	4 : 7		
1:7	3 : 6	stronger than	1:7	3 : 5		
1:7	3 : 5	4 : 2	stronger than	1:7	3 : 5	
1:7	3 : 6	stronger than	1:7	3 : 5	4 : 3	
1:7	3 : 6	4 : 2	stronger than	1:7	3 : 5	4 : 3

This is a generalization of the notion stronger on assignments. PRk builds a
signature for a new proposal on R by prefixing to the pair |k:lkj |, the strongest
signature that it knows for a proposal on R made by any PRa , a<k. lkj is the
current value of CRk . The CRa in PRa is reset each time an incoming message
announces a proposal with a stronger signature, made by higher priority proposal
sources on R. CRa is incremented each time PRa makes a proposal for R.

Remark 9. A signature h1 built by PRi for a proposal is valid for an agent A

if no other signature h2 (eventually known only as prefix of a signature h′2) is
known by A such that h2 is stronger than h1 and was generated by PRj , j ≤ i.

For example, in Figure 1 the agent P x
3 may get messages concerning the same

resource x from P x
1 and P x

2 . In Figure 1a, if the agent P x
3 has already received m1,

it will always discard m3 since the proposal source index has priority. However, in
the case of Figure 1b P x

2 knows |1:k1f | and the message m1 is the strongest only
if k1f<k1l. The length of a signature tagging proposals for a conflict resource,
R, is upper bounded by the number of proposal sources for R.

I also define some notations:

– The strongest signature received by PRk up to and including a given event
is denoted by signature(k), and

– the signature marking a message m is denoted signature(m).

4.3 Communication schema

All pairs of agents can communicate directly. The communication channels are
considered reliable. Messages are delivered with random but finite delay.

4.4 Protocol

In AAS, as presented further in this subsection, the agents exchange messages
about sets of values for variables (aggregates). Sets of aggregates for combina-
tions of variables are called aggregate-sets. We refer to an aggregate proposed
for a variable x by an agent Ai as a proposal of Ai on x.

Definition 7. An aggregate is a triplet 〈xj , sj , hj〉 where xj is a variable, sj

a set of values for xj, sj 6=∅, and hj a signature of the pair (xj , sj). It is also
called assignment.

The signature guarantees a correct message ordering. It determines if a given
aggregate is more recent than another.

Remark 10. The strongest aggregate received by an agent Ai for each variable
define its view, view(Ai).

The local search space of an agent Ai, is denoted by SS(Ai) and is defined
by the Cartesian product of the domains in CSP(Ai).

A computation in AAS reasons on some types of nogoods (conflicts). V ′→¬Ti

is a nogood entailed for Ai by its view V, denoted NVi(V), iff V ′⊆V

and V and V’ disable the same tuples, Ti, from SS(Ai). An explicit nogood
has the form ¬V , or “V→fail”, where V is an aggregate-set. A conflict list
nogood (CL) for Ai has the form “V→¬T”, where V⊆view(Ai) and T is a
set of tuples, such that T can be represented by the structures (e.g. stack) of
a systematic centralized backtracking algorithm. An incoming explicit nogood
whose conclusion is a superset of the current set of solutions for the local CSP of
the agent may not be completely representable in CL (by the structures of the
used backtracking algorithm). Such a nogood is called overflowing nogood.

An agent maintains its view and a valid CL and always enforces its CL and its
nogood entailed by the view. To compactly denote sets of messages of the same
type exchanged at once among the same agents, in the AAS protocol we often
directly write all their parameters as parameter of one message. The following
types of messages are exchanged in AAS:

– ok? messages having as parameter an aggregate.
– nogood messages announcing an explicit nogood.
– add-link messages announcing the interest of the sender in a variable.

Remark 11. An agent is interested in a variable, x, if it enforces constraints
involving x.

add-link(var) is sent from an agent Aj to an agent Ai, j>i and informs Ai

that Aj is interested in the variable(s) var.
ok?(a) messages announce proposals of domains for a set of variables and

are sent from agents with higher priorities to agents with lower priorities. The
proposal is sent to all successor agents interested in it. Let the set of valid
aggregates known to the sender Ai be denoted known(Ai). known(Ai) includes
the view of Ai as well as aggregates built by Ai. a∈known(Ai).

Rule 1 Any tuple not removed by known(Ai) must satisfy the local constraints
of the sender Ai and its valid nogoods

2.

Remark 12. Generally, an aggregate has to be built and sent by Ai only if the
strongest aggregate for the same variable known by Ai does not have the same
set of values. Exceptions to this ’only’ appear for the first proposal made by Ai

after nogoods of certain types are discarded.

[2] gives two alternative rules for deciding the resend condition exception
when an aggregate in known(Ai)\view(Ai) will be multicasted on outgoing links
with a new signature.

Remark 13 (cover). We say that an aggregate-set V is covered by an aggregate-
set V’ if any tuple whose projection on the variables of V is in V, also projects
on the variables of V’ in V’.

nogood messages are sent from agents with lower priorities to agents with
higher priorities. If given its constraints and valid nogoods an agent can find no
proposal, in finite time it sends an explanation under the form of an explicit
nogood ¬N via a nogood message to the lowest priority agent that has built an
aggregate in N . An empty nogood signals failure of the search. On the receipt of
a valid nogood that negates3 its last proposed aggregate-set, V , an agent knows
that proposal V is refused. Any received valid explicit nogood is merged into the
maintained CL using the next inference technique:

V1 ∧ V2 → ¬T
1

V1 ∧ V3 → ¬T
2

⇒ V1 ∧ V2 ∧ V3 → ¬(T
1 ∨ T 2), (3)

where V1, V2 and V3 are aggregate-sets proposed by predecessors. They are ob-
tained by grouping the elements of the nogoods, such that V1, V2 and V3 have
no aggregate in common.

There exist several versions of AAS:

– AAS1 is the version of AAS where the agents store all distinct valid nogoods.
In AAS1, the CL becomes redundant, but the space complexity is exponential
in the size of the local problem, even if it is polynomial in the size of the
external problem.
AAS2 is the extreme case of AAS1 where all the distinct received nogoods
are stored.

– AAS0 is the version AAS where agents maintain a CL as described so far.

Procedures that can be followed by an agent Ai in AAS1, simplified for the case
where all enforcers are modifiers, are described in Algorithm 1 and Algorithm 2.
Modifications for the general case are described later.

2 Except for constraints about which Ai knows that a successor enforces them.
3 Covers the search space.

when received (ok?,〈xj , sj , hxj 〉) do

if(signature(xj) invalidates hxj) return;
add(〈xj , sj , hxj 〉) to agent view;
reconsider stored and invalidated nogoods; check agent view;

end do.

when received (nogood,Aj ,¬N) do

1.1 add the new valid aggregates for already connected variables in ¬N to agent view;
if (((∃¬M) ∧ (Ai knows ¬M) ∧ (consequencei(¬N) covered by consequencei(¬M))

∧ ¬(better ¬N than ¬M)) ∨ invalid(¬N)) then

if (I do not want to discard ¬N) then

when 〈xk, sk, tk〉, where xk is not connected, is contained in ¬N

send add-link(xk) to modifiers(xk); add 〈xk, sk, tk〉 to agent view;

store ¬N ;
end

else

when 〈xk, sk, tk〉, where xk is not connected, is contained in ¬N

send add-link(xk) to modifiers(xk); add 〈xk, sk, tk〉 to agent view;

put ¬N in nogood-list;
end

1.2 reconsider stored and invalidated nogoods;
old aggregate set ← current aggregate set; check agent view;
for all oa = ca; (oa∈old aggregate set)∧(ca∈current aggregate set) do

1.3 send (ok?,〈var(ca), set(ca), append(signature(ca), |i:C i
var(ca)|)〉) to Aj ;

end do
end do.

Algorithm 1: Procedures of Ai for receiving messages in AAS1.

– consequencei(¬N) is a function returning the maximal aggregate-set included
in N, which was generated by Ai.

– modifiers(xk) is a function returning M s
k , the set of agents that have an-

nounced that they want to modify xk.
– append(h,p) appends the pair p to the signature h.

Remark 14. Here the add-link are sent to all the agents that can modify in-
volved variables. But actually, as long as no agent reordering is performed, it is
redundant to send them to higher priority agents [2].

The function need multicast(a) fails only when both: the resend con-
dition fails, and a does not modify the tuples removed from SS(Ai)
by known(Ai). clean() removes the invalidated aggregates from cur-
rent aggregate set. signature(x) returns the signature of the strongest aggregate
for x in view(Ai).

At line 2.4, needed(a) succeeds when a has the same set as some assignment
b for var(a), found in old aggregate set, and b is still valid. Then, a inherits the
signature of b, signature(a)←signature(b).

Algorithm 1 stores all the valid assignments. However, it could be modified
to store only the strongest one [2].

procedure check agent view do

2.1 when agent view and current aggregate set are not consistent
if no aggregate set, V, in SS(Ai) is consistent with agent view then

backtrack;
else

2.2 select V ⊆ SS(Ai) where agent view, CSP(Ai) and V are consistent;
clean(current aggregate set);
for all a ∈ V do

if (need multicast(a)) then

xk ← var(a); Ci
xk
++;

signature(a) ← append(signature(xk),|i:C
i
xk
|);

send (ok?,〈xk, set(a), signature(xk)|i:C
i
xk
|〉)

to lower priority agents in outgoing links(xk);
2.3 current aggregate set ← current aggregate set ∪ a;

else

2.4 if (needed(a)) then

current aggregate set ← current aggregate set ∪ a;
signaturesi[var(current aggregate set)] ← signature of

var(current aggregate set) in old aggregate set
end

end
end do

end
end do.

procedure backtrack do

nogoods ← {V | V = inconsistent subset of agent view};
when an empty set is an element of nogoods

broadcast to other agents that there is no solution; terminate this algorithm;

for every V ∈ nogoods do

select Ak, the lowest priority agent among those proposing aggregates in V ;
2.5 send (nogood,Ai,V) to Ak;

remove from agent view all aggregates proposed by Ak ;
reconsider stored and invalidated explicit nogoods;

end do

check agent view;
end do.

Algorithm 2: Other procedures of Ai in AAS1.

In the Definition 3, agents may not be able/want to propose splitting of
domains of some of their variables. As explained in Section 4.1, the order on
agents defines restrictions on their ability to aggregate several proposals in one
assignment.

Definition 8. An agent Ai is aggregator for a variable xk only if it can propose
aggregates containing more than one value for xk.

Some specifications are needed to Algorithm 1, in order to accommodate the
Definition 3:

1. a vector of boolean values, mi[k], tells whether Ai is modifier for the variable
xk.

2. a vector of boolean values, ai[k], tells whether Ai is aggregator for the vari-
able xk.

3. a vector of signatures, signaturesi[k], tells to Ai the strongest signature it
received so far for xk.

4. in procedure check agent view, an agent that is not aggregator for xk selects
at line 2.2 only aggregate-sets that do not aggregate more than one value
for xk.

5. in procedure check agent view, an agent that is not aggregator for xk is not
satisfied at line 2.1 by current aggregate sets that aggregate more than one
value for xk.

6. an agent that is not modifier for xk does never send ok? messages with
aggregates for xk.

AAS is a complete search algorithm [2].

5 Asynchronous Aggregation Search without signatures
(AAS’)

An alternative implementation of the idea of AAS can be achieved without sig-
natures, by tagging aggregates with simple counters. That alternative is called
AAS’. AAS’ shares several characteristics with AAS, allowing for similar ag-
gregations, but the semantic of the information is complementary. Namely, the
costly operations are triggered by changes of local instantiations rather than by
changes of composed instantiations.

5.1 Alternatives to signatures

Alternatively to using signatures, proposals could be tagged using a simple
counter. In this case an agent needs to store the last proposals on R made
by each predecessor proposal source and considers as current proposal a combi-
nation of them. Then PRa needs not resend its old proposal p when p remains
consistent with the view of PRa that changes. Instead PRa would have to send
a new proposal if its proposal changes to become identical with the strongest
received proposal.

The protocol where this technique is used instead of signatures [2], was called
Asynchronous Aggregation Search without signatures (AAS’).

5.2 Obtaining AAS’ with AAS

Rather than implementing a new algorithm for AAS’, we will see now how any
implementation of AAS can be used to achieve AAS’ by a simple reformulation
of the treated DisCSP.

Consider that we have to solve a DisCSP (A,V,D,M,C), where A is a set of
agents A1, ..., An. V is a set of sets of variables V1, ... , one set Vk for each agent

Ak. D is a set of sets of domains D1, ..., one set Dk for each agent Ak. A domain
Dk,j in Dk specifies possible values for xk,j . M is a set of sets of variables M1, ...,
one set Mk for each agent Ak, Mk ∈ Vk. Mk is the set of variables that can be
modified by Ak. C is a set of sets of constraints C1, ..., one set Ck for each agent
Ak. Constraints in Ck involve only variables in Vk.

Consider that the variables in Vi are xi,1, ..., xi,vi
, and variables in Vi can

be considered identical with other variables in the sets of variables of the other
agents. We denote by V i

i a set of newly generated distinct variables xi
i,1, ..., x

i
i,vi

(typically obtained by duplicating Vi).
By P(S) we denote the set of subsets of the set S, including S itself. As

difference to the standard convention, in this article we will consider that ∅ 6∈
P(S).

Definition 9. The simplified version of the DisCSP P=(A,V,D,M,C), is a
DisCSP P’=(A,V’,D’,M’,C’) such that:

– V ′i = ∪0<k≤|A|V
k
i , where V k

i = {xk
i,j |∀xi,j ∈ Vi}

– M ′
i = {x

i
i,j |∀xi,j ∈Mi}

– D′i,j = P(Di,j).
The constraints are translated such that a tuple is feasible when the whole

Cartesian product defined by a valuation is feasible. C

Vi

V i
i

i denotes the trans-
lation of the constraints in Ci, such that they involve the variables V i

i instead
of the corresponding initial variables in Vi.

– C ′i = C

Vi

V i
i

i ∪k∈P({1..|A|}) {x
i
i,j ⊆ ∩kxk

i,j}

where {xi
i,j ⊆ ∩kxk

i,j} denotes a constraint requiring that the value of xi
i,j is a

subset of the valuation of xk
i,j (a valuation of a variable is a set).

Lemma 1. The simplified version of a DisCSP is equivalent to the initial
DisCSP.

Proof. Let us consider a DisCSP, P, and its simplified version P’.
One can easily check that any solution, s, of P satisfies P’. Actually, an

agent can propose a set containing only the assignment in s of the corresponding
variable and these proposals satisfy all added constraints.

Similarly, let s be a solution of P’. The intersection of all xk
i,j variables for all

k satisfy P. This is a result of the fact that all the Cartesian products defined
by this intersection are feasible.

Inference rules has to be added to the solver of each local agent:

Rule 2 (N→(x6=a))→ (N→(x6=c)),∀c, c ⊆ a.

where N denotes an aggregate-set.

Rule 3 (N1→(x6=a))∧(N2→(x6=b))... → ((N1∪N2...)→(x6=a∪b...)), where
N1∪N2 denotes the union of the sets of aggregates in the compatible aggregate-
sets N1, and N2.

The dots show that the rule can be applied for combining simultaneously more
than two nogoods. This rule can be generalized for Cartesian products T1, and
T2 as follows:

Rule 4 (N1→(x6∈T1))∧(N2→(x6=T2))... → ((N1∪N2...)→(x6=T1∪T2...)), where
N1∪N2 denotes the union of the aggregates in N1, and N2.

The dots show that the rule can be applied for combining simultaneously more
than two Cartesian products.

Additionally, value reordering strategy has to be enforced in each agent:

Rule 5 The agents will propose first, tuples corresponding to Cartesian products
that are disjoint to the conclusion of any valid nogood and initial constraint.

Now we can show that AAS over P’ emulates AAS’ over P.

Theorem 1. AAS applied to the simplified version of a DisCSP emulates AAS’
on its initial formulation.

Proof. Each variable has only one modifier and no agent proposes aggregates.
However, the proposal of an agent is now a set of (sub)domains defining a Carte-
sian product.

The proposals of an agent will be constrained to be coherent with the received
aggregates and a new assignment is announced on each modification, as in AAS’.

Due to the fact that values as sets, the nogoods are also Cartesian products,
as in AAS’.

Due to the dynamic value reordering strategy enforced, the agents propose
first all possible Cartesian products of P that are completely feasible given their
nogoods. After all these alternatives are proposed, as AAS’ does, all remaining
values will be removed by the added inference rules mentioned in this subsection,
which together rule out the whole SS of the corresponding agent and lead to
backtracking.

Remark 15. It is remarkable to note that AAS’ can be obtained even from simpli-
fied versions of AAS, where local computation of Cartesian products is disabled
(replaced with finding simple tuples).

6 Conclusions

Two important related families of algorithms for solving distributed problems
have important differences in the implementation details. These are the Asyn-
chronous Aggregation Search (AAS) techniques, which rely on signatures for
their allowing aggregated proposals on the same variables, and AAS without
signatures (AAS’) that rely on re-forwarding proposals and intersection of agent
views for reaching similar results.

In this paper it is shown how, despite the quite deep differences between the
basic operations of AAS and AAS’, one can perfectly implement AAS’ based on
an AAS implementation, by a ’trick’ in problem formulation and local inference
rules.

References

1. Paul R. Johnson and Robert H. Thomas. The maintenance of duplicated databases.
RFC#677 NIC#31507 Network Working Group, January 27 1975.

2. Marius-Călin Silaghi. Asynchronously Solving Distributed Problems with Privacy
Requirements. 2601, Swiss Federal Institute of Technology (EPFL), CH-1015
Ecublens, June 27, 2002.

