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Abstract. In recent years, interval constraint-based solvers have shown their
ability to efficiently solve complex instances of non-linear numerical CSPs. How-
ever, most of the working systems are designed to deliverpoint-wisesolutions
with an arbitrary accuracy. This works generally well for systems with isolated
solutions but less well when there is acontinuum of feasible points(e.g. under-
constrained problems, problems with inequalities). In many practical applica-
tions, such large sets of solutions express equally relevant alternatives which need
to be identified as completely as possible. In this paper, we address the issue of
constructingconciseinner and outer approximations of the complete solution set
for non-linear CSPs. We propose a technique which combines theextreme vertex
representationof orthogonal polyhedra [1–3], as defined in computational ge-
ometry, with adaptedsplitting strategies[4] to construct the approximations as
unions of interval boxes. This allows for compacting the explicit representation
of the complete solution set and improves efficiency.

1 Introduction

Many practical problems require solving constraint satisfaction problems (CSPs) with
numerical constraints. A numerical CSP (NCSP),(V, C,D), is stated as a set of vari-
ablesV taking their values in domainsD over the reals and subject to a finitely many set
of constraintsC. In practice, the constraints can be equalities or inequalities of arbitrary
type and arity, usually expressed using arithmetic expressions. In this paper we address
the case of NCSPs withnon-isolated solutions. Such a case is often encountered in
real-world engineering applications where under-constrained problems, problems with
inequalities or with universal quantifiers are ubiquitous. In practice, a set of non-isolated
solutions often expresses a spectrum of equally relevant choices, as the possible moving
areas of a mobile robot, the collision regions between objects in mechanical assembly,
or different alternatives of shapes for the components of a kinematic chain. These alter-
natives need to be identified as precisely and completely as possible.

Interval constraint-based solvers (e.g. Numerica [5], ILOG Solver [6]) take as in-
put an NCSP and generate a set of boxes whichconservativelyenclose each solution.
They have proven particularly efficient in solving challenging instances of NCSPs with
non-linear constraints. However, when applied to problems with non-isolated solutions
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they provide enclosures that are either prohibitively verbose or poorly informative (see
Section 2).

In contrast, a number of set-based approaches have been developed, notably in the
areas of robust control, automation and robotics, which provide promising alternatives
to the point-wise techniques. They consist in covering the spectrum of non-isolated so-
lutions using a reduced number of subsets ofRn. Usually, these subsets are chosen with
known and simple properties (e.g. interval boxes, polytopes, ellipsoids). In recent years,
several authors have proposed set covering algorithms with interval boxes [7–10]. Most
existing box-covering algorithms are however limited by their restrictive applicability
conditions or by their high average time and space complexities in the general case. The
enhanced set-based technique we propose builds on the following observations. Firstly,
the union of boxes produced by the complete interval-based solving of NCSPs can be
seen as anorthogonal polyhedron1. Enhanced representations from computational ge-
ometry can be used to reduce the verbosity of such geometrical objects. We propose
to use theExtreme Vertex Representation(EVR) of orthogonal polyhedra [1–3] for this
purpose. Secondly, when there are non-isolated solutions, dichotomous splitting is not
the most adapted branching strategy. It might lead to unnecessarily dividing entirely fea-
sible regions. We propose to use another scheme based on splitting around the negation
of feasible regions [4] which is an extension of thenegation testproposed for univer-
sally quantified constraints in [10]. The resulting algorithm applies to general constraint
systems. It produces inner and outer approximations of the feasible sets in the form of
unions of interval boxes. The preliminary experiments show that it improves efficiency
as well as the compactness and quality of the output representation.

2 Examples

We start by giving two small introductory examples which illustrate the inadequacy of
point-wise approaches to the case of NCSPs with non-isolated solutions. The first ex-
ample illustrates how the point-wise approach can be sometimes misused when applied
to NCSPs with non-isolated solutions. Since point-wise techniques inherently assume
the existence of isolated solutions, the interval splitting process they use for branching is
sometimes prematurely stopped as soon as a solution is detected within an interval. This
leads to poorly informative approximations of the complete solutions sets, as shown by
the following example. The first example, calledWP, is a 2D simplification of the de-
sign model for a kinematic pair consisting of a wheel and a pawl. The constraints deter-
mine the regions where the pawl can touch the wheel without blocking its motion.WP
= {20 <

√
x2 + y2 < 50, 12y/

√
(x− 12)2 + y2 < 10, x ∈ [−50, 50], y ∈ [0, 50]}.

Figure 1 shows the output produced by a point-wise solver when the existence of point-
wise solutions is abusively assumed.2

The second example consists of 4 non-linear inequality constraints involving 3 vari-
ables:P3 = {x2 ≤ y, ln y + 1 ≥ z, xz ≤ 1, x3/2 + ln(1.5z + 1) ≤ y + 1, x ∈
[−15, 15], y ∈ [1, 200], z ∈ [−10, 10]}. Using an efficient implementation of classical

1 Informally, an orthogonal polyhedron is such that its facets are axis-parallel hyper-rectangles.
2 It was solved using a combination ofIloGenerateBoundsandIloSplit in ILOG Solver 5.2.
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Fig. 1. The solution set ofWP is approximated by 6 boxes (at precision = 2)

point-wise techniques,3 the computation had to be stopped after 10 hours and produced
more than 260000 small boxes. The alternative set-based technique we propose could
reduce the complete output to 1376 boxes and produced the result in 1.41 seconds (see
Table 1). This small example was one of our most successful and hence does not objec-
tively illustrate the power of our technique, however it clearly illustrates how point-wise
approaches can be unadapted to the complete solving of certain classes of problems.

3 Background and Definitions

3.1 Interval Arithmetic

The finite nature of computers precludes an exact representation of thereals. The real
setR is in practice approximated by a finite setF∞ = F ∪ {−∞,+∞}, whereF is a
finitely many set of reals. In interval-based constraint solvers,F usually corresponds to
the floating-point numbers. For eachl ∈ F, we denotel+ = min{f ∈ F∞ | l < f},
l− = max{f ∈ F∞ | f < l}. The set of intervals with bounds inF∞, denoted byI, is
partially ordered by set inclusion. Aninterval box, or aboxfor short,B = I1× . . .×In

is a Cartesian product ofn intervals inI. We denoteB|i = Ii. A canonical intervalis a
non-empty interval of the forms[l, l], [l−, l] or [l, l+]. Some extended definitions can be
found in [10]. Two boxes,A andB, are called disjoint ifA 6= B and∃i : sup(A|i) ≤
inf(B|i) ∨ sup(B|i) ≤ inf(A|i). We denotes bypts(S) the set of points represented
by S, e.g.pts(S) = {x | x ∈ B ∈ S} if S is a set of boxes. Two sets of disjoint boxes,
U1 andU2, are equivalent, denoted byU1 ≡ U2, if pts(U1) = pts(U2).

3.2 Relations and Approximations

Let c(x1, . . . , xn) be a real constraint with arityn. Therelation defined byc, denoted
by ρc, is the set of tuples inRn satisfyingc. Let vars(ρc) = vars(c) = {x1, . . . , xn}.

3 The implementation was based on ILOG solver 5.2 (see Section 6).
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The relation defined by the negation,¬c, of c is given byRn \ ρc. In this paper, each
boxB ∈ In and relationρ ⊆ Rn is associated withn real variables, the projection ofB
on a subset,X, of its variables is denoted byB|X . We denote byRn the set of relations
defined on subsets of then variables,ρP the relation defined by an NCSP,P , andρC
theglobal relationdefined by the conjunction of constraints in a constraint setC.

A relation can be approximated by a computer-representable superset or subset.
The former is acompleteapproximation but may contain points that are not solutions.
Conversely, the latter is asoundapproximation but may lose certain solutions. In partic-
ular, a relation can be approximated conservatively by the smallest (w.r.t. set inclusion)
union of boxes (called thebest outer approximation), or more coarsely by the smallest
box (called theinterval hull), containing it. Beside that, the relation can also be approx-
imated by the greatest union of boxes (called thebest inner approximation) contained
in it. The readers are referred to [11] for rigorous definitions.

The computation of these ideal approximations relies on the notion ofcontracting
operators. An outer-box contracting operator [10] narrows down the variable domains
by discarding values that are locally inconsistent usingBox consistency. In this paper
we use a generic notion defined as follows:

Definition 1 (Outer-bound Contracting Operator, OC). An outer-bound contracting
operator is a functionOC : In × P(Rn) → In ∪ {∅} such that∀B ∈ In, ρ ∈ P(Rn)
these properties hold:4

(i) OC(B, ρ) ⊆ B (Contractiveness)
(ii) OC(B, ρ) ⊇ B ∩ ρ (Completeness)

In numerical domains, the outer-bound contracting operators usually enforce either
Box, Hull, kB or Boundconsistency [12, 5], generally referred to as bound-consistency
in the rest of the paper. For simplicity, given a set of constraintsC, we useC instead of
ρC in the notation of contracting operators.

Proposition 1. Given a set of constraints,C, and a bounding box,B. The boxB is
completely infeasible (w.r.t.C) if there is someOC operator that contracts(B, C) to an
empty set, i.e.∃OC : OC(B, C) = ∅ ⇒ B is infeasible (w.r.t.C).

3.3 Union Approximations

In general, the computation of the best inner and outer approximations is intractable.
Therefore, in this paper we consider the problem of computing inner and outer approx-
imations of a relationρ ⊆ Rn in the form ofunions of disjoint boxes.

Definition 2 (Outer Union Approximation, UnionO). UnionO(ρ) is a set of dis-
joint boxesU ∈ P(In) such thatpts(U) ⊇ ρ.

Definition 3 (Inner Union Approximation, UnionI). UnionI(ρ) is a set of disjoint
boxesU ∈ P(In) such thatpts(U) ⊆ ρ.

4 P(S) denotes the power set ofS, i.e., the set{A | A ⊆ S}.
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Definition 4 (Undiscernible Union Approximation, UnionU ). UnionU (ρ) corre-
sponding toUnionO(ρ) andUnionI(ρ) is a set of disjoint boxesU ∈ P(In) such
thatpts(U) = cl(pts(UnionO(ρ)) \ pts(UnionI(ρ))).5

Several authors have recently addressed the issue of computingUnionO approx-
imations. In [7], a recursive dichotomous split is performed on the variable domains.
Each box obtained by splitting is tested for inclusion using interval arithmetic tools.
The boxes obtained are hierarchically structured as2k-trees. The authors have demon-
strated the practical usefulness of such techniques in robotics, automation and robust
control. In [8], a similar algorithm is presented. However, only binary or ternary sub-
sets of variables are considered when performing the splits. The approach is restricted
to classes of problems with convexity properties. The technique proposed in [9] alge-
braically constructs the unions using Bernstein polynomials which makes it possible to
use guaranteed algebraic inclusion tests for boxes. The approach is restricted to poly-
nomial constraints. A technique of extending consistent domains of a particular class
of constraints has also been proposed in [13]. Finally, [10] has addressed the issue of
computingUnionI for universally quantified constraints usingnegation tests(see Sec-
tion 4.1), and [4] has extended the negation test in combination with enhanced splitting
strategies to computingUnionO for classic NCSPs. Hereafter, we give abstractions of
conventions in computing union approximations whereUnionU is assumed to exist.

Definition 5 (Feasibility Checker, FC). A feasibility checker is a function,FC : In ×
Rn → {feasible, infeasible, unknown} such that:

(i) FC(B, ρ) = feasible⇒ B|vars(ρ) ⊆ ρ
(ii) FC(B, ρ) = infeasible⇒ B|vars(ρ) ⊆ ¬ρ
(iii) FC(B, ρ) = unknown ∧B|vars(ρ) ⊂ B′|vars(ρ) ⇒ FC(B′, ρ) = unknown

Definition 6 (Interval-Based Precision).Given an NCSP,P = (V, C,D), a precision
(vector),ε, and a feasibility checker,FC. A search technique which computes the union
approximations is calledhaving the precisionε (w.r.t. FC) if there is some set,U , of
disjoint boxes whose sizes are not greater thanε (component-wise) such that:

U ≡ UnionU ; ∀B ∈ U : FC(B, ρP ) = unknown (1)

4 EVR and Complementary-Boxing

Interval-based search techniques for NCSPs are essentially bisectional. Variables are
instantiated using intervals. When the search reaches an interval that contains no so-
lutions it backtracks, otherwise the interval is recursively split into two halves up to
an established resolution. The most successful techniques enhance this process by ap-
plying anOC operator to the overall constraint system, after each split. In most known
algorithms, the general policy is to perform splitting intervals until canonical intervals
are reached or their widths are not greater than a predefined precision, i.e. it simply has

5 cl is the standard closure operator. Informally,UnionU (ρ) is a set of undiscernible boxes
enclosing the boundary ofρ.
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a predefined interval-based precision. This policy, referred to asDMBC(dichotomous
maintaining bound-consistency) in the rest of the paper, generates verbose outer and
inner union approximations. The first reason is that the orthogonal splitting policy in-
troduces artificial convexity deficiencies and generates a significant number of nearly
aligned boxes along boundaries of constraints. The second reason is that entirely feasi-
ble boxes might be unnecessarily split. The improvements we propose are presented in
the two next subsections.

4.1 Better Splitting Decisions Using Complementary-Boxing

We now recall the techniques which constructUnionI [10] and UnionO [4] by
soon isolating feasible regions under new abstract concepts in order to be integrated
with the techniques described in Section 4.2. Given a relation,ρ, and a box,B, the
negation testperforms a kind ofOC operator on(B,¬ρ). A kind of splitting oper-
ator (calledICAb3 c) splitting around a box obtained by a negation test for a nu-
meric constraint and dichotomizing this box was proposed in [10]. Herein, the pro-
posed negation approach (calledICAb5 ) to universally quantified constraints recur-
sively performsICAb3 c on the first active constraint until a predefined interval-based
precision reached. In [4], a similar splitting operator was employed, which is based
on the negation test, herein calledBq, for numeric constraints. However, the approach
(calledUCA6), which was proposed for NCSPs, computes negation tests for all con-
straints and then chooses the best for the split. In addition,UCA6has memorized old
Bq’s for computing newBq’s and performed some mixed splitting strategies based
on equalities/inequalities. Hereafter, we employ the negation test to define a contract-
ing operator, calledComplementary-Box contracting operatorand a splitting operator,
calledBox splitting operator. The followings give abstract definitions of those ones.

Definition 7 (Complementary-Box Contracting Operator,CBC). A Complementary-
Box contracting operator is a functionCBC : In×P(Rn) → In∪{∅} such that∀B ∈ In,
ρ ∈ P(Rn) these properties hold:6

(i) CBC(B, ρ) ⊆ B (Contractiveness)
(ii) B \ CBC(B, ρ) ⊆ ρ (Complementariness)

A box resulting from the application of aCBC operator to a bounding box,B, and a
relation,ρ, is called aComplementary-Boxwith respect toρ within B. Complementary-
Boxingrefers the process of identifying the Complementary-Box. The following prop-
erties characterizeCBC operators.

Proposition 2. Given a set of constraints,C, and a bounding box,B. The boxB is
completely feasible (w.r.t.C) if there is someCBC operator that contracts(B, C) to an
empty set, i.e.∃CBC : CBC(B, C) = ∅ ⇒ B is feasible (w.r.t.C).

Proposition 3. Given anOC operator. The functionf : In×P(Rn) → In∪{∅} defined
byf(B, ρ) = OC(B,¬ρ) is aCBC operator.

6 In [11], this operator was named “Back-Boxing Contracting operator”. In this paper, we change
its name and notation to avoid confusions with the namesake given in [14].
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Proof. By definitionBf = f(B, ρ) = OC(B,¬ρ). The contractiveness ofOC operators
impliesBf ⊆ B, i.e. the contractiveness ofCBC operators. In addition to the complete-
ness ofOC operators we haveB ∩ ¬ρ ⊆ Bf ⊆ B ⇒ B \ Bf ⊆ ρ. This implies the
complementariness ofCBC operators.

Definition 8 (Monotonicity). A contracting operator (OC or CBC), µ, is called
monotonousif B ⊆ B′ ⇒ µ(B, ρ) ⊆ µ(B′, ρ).

Proposition 4. Given a set ofn OC operators,{OCk}, and a set ofn CBC opera-
tors, {CBCk}, which enforce the monotonicity, whereOCk and CBCk are defined ink-
dimension (k ≤ n). The functionf : In×Rn → {feasible, infeasible, unknown}
defined by the following rules is a feasibility checker:

(i) f(B, ρ) = infeasible⇔ OCk(B|vars(ρ), ρ) = ∅, wherek = |vars(ρ)|
(ii) f(B, ρ) = feasible⇔ CBCk(B|vars(ρ), ρ) = ∅, wherek = |vars(ρ)|

Proof of Proposition 4 is straightforward due to Proposition 1, Proposition 2 and
Definition 5. Proposition 4 gives a way to construct a feasibility checker fromOC and
CBC operators enforcing the monotonicity. Proposition 2 and Proposition 3 imply that
CBC operators can be constructed byOC operators and thatComplementary-Boxing
makes it possible to isolate completely feasible regions,B \ CBC(B, ρ), w.r.t. some
constraints. When applying aCBC operator to a box with respect to a constraint results
in an empty set, it can be deduced that the box completely satisfies that constraint.
We then define a splitting operator based on Complementary-Boxes, which consists of
splitting around Complementary-Boxes, to isolate the feasible regions.

Definition 9 (Box Splitting Operator: BS). A Box splitting operator is a functionBS :
In × In → P(In), which takes as input two boxes such that the former contains the
latter, splitting the outer box along some facets of the inner one.7

(a)

Bounding box

Splitting plane of DS operator

(b)

Splitting planes of BS operator

Complementary-Box

Feasible boxes

w.r.t. c

c

Feasible Infeasible

c

Fig. 2. (a) Box Splitting: splitting around a box (e.g. Complementary-Box); (b) Dichotomous
Splitting: splitting the original domain of a variable into two halves

In the algorithm we propose,Box splitting, which partitions a region around a
Complementary-Box, is applied in combination with dichotomous splitting. The lat-
ter is used either when Complementary-Boxing produces no reduction or when Box
splitting results in too small boxes. Figure 2 illustrates the notion of Box splitting.

7 This is a generic definition for partitioning a region around a box contained in it, given in [14].
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4.2 Concise Approximations near Boundaries Using EVR

Stop Contracting over Inactive Dimensions. We first observe that a better alignment of
boxes near boundaries of the solution space can be obtained by finely controlling appli-
cations of contracting operators during search. More precisely, whenever a dimension,i,
of a box,B, is bounded byεi, one can prevent contracting operators from contractingB
over this dimension in order to obtain better alignments and performances. Given a box,
B, a constraint set,C, and a precision vector,ε. A dimension,i, of B is called anactive
dimensionif sup(B|i) − inf(B|i) > εi and the corresponding variable,xi, occurs in
some active constraint. Otherwise, it is called aninactive dimension. A contracting oper-
ator which only works on active dimensions of boxes is called arestricted-dimensional
contracting operator[11]. We denote byOCrd and CBCrd the restricted-dimensional
contracting operators corresponding toOC andCBC operators, respectively.

Compacting Aligned Boxes. Once a better alignment is obtained, the question is how
such a set of aligned boxes can be compacted into a smaller set. We propose to use the
Extreme Vertex Representation(EVR) of orthogonal polyhedra for that purpose. The
basic idea is that the finite unions of boxes delivered by a box-covering solver define
orthogonal polyhedrafor which improved representations can be used. An orthogonal
polyhedron can be naturally represented as a finite union of disjoint boxes. Such a rep-
resentation is called theDisjoint Box Representation(DBR) in computational geometry.
The EVR is a way of compacting DBR [1–3]. We now recall some basic concepts re-
lated to EVR. We refer the reader to [2, 3] for further details. The concepts are presented
for a particular type of orthogonal polyhedra, calledgriddy polyhedra. A griddy polyhe-
dron [3] is generated from unit hyper-cubes with integer-valued vertices. Since arbitrary
orthogonal polyhedra can be obtained from griddy ones by a bijection between vertex
indices of the former and integer-valued vertices of the later, the results on EVR are not
affected by this simplification. For simplicity, polyhedra are assumed to live inside a
bounded subsetX = [0,m]d ⊆ Rd (in fact, the results will hold also forX = Rd

+). Let

x = (x1, ..., xd) be a grid point of the elementary gridG = {0, 1, ...,m − 1}d ⊆ Nd.
For every pointx ∈ X, bxc is the grid point corresponding to the integral part of the
components ofx. The elementary box associated withx is the closed subset ofX of
the formB(x) = [x1, x1 + 1]× ...× [xd, xd + 1]. The set of all boxes is denoted byB.
A griddy polyhedronP is a union of elementary boxes, i.e. an elementary of 2B.

Definition 10 (Color Function). Let P be a griddy polyhedron. The color function
c : X → {0, 1} is defined as follows: ifx is a grid point thenc(x) = 1 ⇔ B(x) ⊆ P ;
otherwise,c(x) = c(bxc).

We say that a grid pointx is black (respectively, white) and thatB(x) is full (re-
spectively, empty) whenc(x) = 1 (respectively0). A canonical representation scheme

for 2B (or 2G ) is a setE of syntactic objects such that there is some bijective function
Ψ : E → 2B.

Definition 11 (Extreme Vertex). A grid point x is called an extreme ifτ(x) = 1,
whereτ(x) denotes the parity of the number of black grid points inN (x) = {x1 −
1, x1} × ...× {xd − 1, xd} (the neighborhood ofx).
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Fig. 4. Constraint boundary: (a) unaligned boxes produced by standard covering; (b) stop con-
tracting over inactive dimensions and combine aligned boxes using EVR

Figure 3 illustrates the notion of EVR on a simple example. The fundamental the-
orem presented in [2, 3] shows that any griddy polyhedron can be canonically repre-
sented by the set of its extreme vertices (and their colors). The extreme vertex rep-
resentation improves the space required for storing orthogonal polyhedra by an order
of magnitude [1–3]. It also enables the design of efficient algorithms for fundamen-
tal operations on orthogonal polyhedra (e.g. membership, set-theoretic operations) [1–
3]. In particular, effective transformation between DBR and EVR can be proposed for
low-dimensional or small-size (i.e.m is small) polyhedra [1, 3]. For example, in three-
dimension, the average experimental (time) complexity of converting an EVR to a DBR
is far less than quadratic but slightly greater than linear in the number of extreme ver-
tices [1]. Results in [3] also imply that, in fixed dimension, the time complexity of
converting a DBR to an EVR using XOR operations is linear in the number of boxes
in DBR. We propose to exploit these effective transformation schemes to produce a
compact representation of contiguous aligned boxes using the following procedure:

1. Produce a better alignment of the boxes along the boundaries of constraints. This
is done by preventing the unnecessary application of contracting operators over
inactive dimensions. Figure 4 shows the better alignment produced for a set of
nearly aligned boxes of an undiscernible approximation. The original set of 8 small
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boxes (Figure 4-a) reduces to two groups of 4 aligned boxes (Figure 4-b) without
altering the predefined interval-based precision.

2. The set of aligned boxes in each group,S1, is converted to EVR and then back to
DBR to get a set of combined boxes,S2 (containing only one box in this case). Due
to the properties of EVR,S2 is more concise thanS1. Figure 4-b shows how this
conversion procedure reduces the two groups of 4 boxes to two (gray) boxes.

Such a procedure can theoretically be applied in any dimension. Due to the effi-
ciency of EVR in low dimension, we however restrict its application to low-dimensional
or small-size regions of the search space in our implementation (see Section 5).

5 Algorithms

We now present an algorithm calledUCA6-Plus (Figures 5 and 6). It takes as input
a non-linear NCSP,P = (V, C,D), and returns theUnionI andUnionU approxi-
mations ofρP . UCA6-Plus is an extension ofUCA6 [4] to include the application
of extreme vertex representation of orthogonal polyhedra and the use of restricted-
dimensional contracting operators. Hereafter,B denotes a bounding box of the cur-
rent subproblem. Originally, this bounding box is set toD. For convenience, we denote
UnionX (B ∩ ρC) byUnionX (B, C), whereX ∈ {O, I,U}. UCA6-Plus constructs
the approximationsUnionI(B, C) andUnionU (B, C), henceUnionO(B, C) can be
computed as the union of these two approximations.

UCA6-Plus proceeds by recursively repeating three main steps:8 (i) usingOCrd
operators to contract the current bounding box to a tighter one;(ii) usingCBCrd opera-
tors to get a list of Complementary-Boxes w.r.t. each active constraint and w.r.t. the new
bounding box, the constraints that make empty Complementary-Boxes are removed; fi-
nally, (iii) combining Dichotomous splitting (DS) with Box splitting (BS) for the whole
set of active constraints. In practice, equalities usually define surfaces, we then do not
need to perform step(ii) for such constraints (see Figure 4).

getSplit() is a function returning the splitting mode to be used for splitting the cur-
rent box. The current splitting mode can be inferred from the history of the current box
(e.g. the splitting mode of the parent box). In contrast toDMBC, theDS operator used for
UCA6-Plus only tries to dichotomize over the active dimensions. This avoids split-
ting boxes into a huge number of tiny boxes. Moreover, inUCA6-Plus constraints are
removed gradually whenever an empty Complementary-Box is computed w.r.t. those
constraints. The dimension with the greatest size is preferred forDS. For the pruning
to be efficient,BS splits along some facet of a Complementary-Box only if that pro-
duces sufficiently large boxes, the Complementary-Box itself excepted. This estima-
tion is done using a pre-determinedfragmentation ratio. In Figure 5 and 6,Sinn and
Sund are global variables denoting the set of boxes (and active constraints, if exist) of
UnionI(B0, C0) andUnionU (B0, C0), respectively. We use a list,WList, to store
the subproblems waiting to be processed.

chooseTheBest() is a function choosing the best Complementary-Box and the
respective constraint based on some criteria to maximize the space surrounding the

8 UCA6does the similar steps, exceptsolveQuickly(), but it usesOC andCBC operators.
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function UCA6Plus(B0, C0, ε, FC, OCrd, CBCrd, Dstop)
Sinn := ∅; Sund := ∅; WList := ∅; /* Sinn, Sund are global lists to be return*/

if solveQuickly(B0, C0, ε, FC, OCrd, CBCrd, WList, Dstop) then return ;
while WList 6= ∅ do /* Waiting list of subproblems is not empty */

(< B, C >, {CB′
c}) := get(WList); /* set{CB′c} was optionally memorized*/

for each c ∈ C′ do /* C′ ⊆ C, it is set toC or dynamically computed based on{CB′c} */

CBc := CBCrd(B, c) or CBCrd(B ∩CB′
c, c) or B ∩CB′

c; /* depends onC′ */

if CBc = ∅ then C := C \ {c}; /* c is redundant inB (Proposition 2) */

if CBc = ∅ or CBc = B then C′ := C′ \ {c};
endforeach
if C = ∅ then

store(Sinn,B); /* No active constraint,B is feasible */

continue while; /* do the next loop ofwhile */

endif
Splitter := getSplit(); /* Get a splitting mode, heuristics can be used */

if Splitter = BS then /* The splitting mode is Box Splitting */

CBc := chooseTheBest(B, {CBc | c ∈ C′}); /* e.g. maximize surrounding regions*/

CB := enlarge(B,CBc, ZeroP lus); /* CBc ⊂ CB ⊆ B or CBc = CB = B */

< B1, . . . ,Bk >:= BS(B,CB); /* Box Splitting: failed or∃Bi ⊇ CB */

if C′ = ∅ or BS failed then Splitter := DS;
endif
if Splitter = DS then < B1, . . . ,Bk >:= DS(B); /* Dichotomous Splitting */

for i = 1 to k do
Ci := C; C′i := C′;
if Splitter = BS and Bi ∩CBc = ∅ then

Ci := Ci \ {c}; C′i := C′i \ {c} /* c is redundant (Complementariness ofCBC) */

if Ci = ∅ then
store(Sinn,Bi); /* No active constraint,Bi is feasible */

continue for; /* do the next loop offor */

endif
endif
solvable := solveQuickly(Bi, Ci, ε, FC, OCrd, CBCrd, WList, Dstop);
if not solvable then memorize(WList ← {CBc | c ∈ C′i}); /* This is optional */

endfor
endwhile

end /* UCA6Plus */

Fig. 5. The algorithmUCA6-Plus

Complementary-Box. The other Complementary-Boxes can be memorized for improv-
ing the Complementary-Boxing of child search nodes.enlarge(B, CBc, ZeroP lus) is
a function extendingCBc to CB by ZeroP lus (considered as a sufficiently small pos-
itive number) such that the result is still inB. This guarantees that no point satisfying
¬c is on the boundary ofCB except the points on the boundary ofB.

The functionsolveQuickly() (Figure 6) constructsUnionI andUnionU approx-
imations for low-dimensional subproblems whose bounding box hasDstop active di-
mensions at the most. The output is compacted using EVR. The use ofOCrd andCBCrd
operators for the purpose of narrowing produces a better alignment of boxes along
the boundaries. This allows for using EVR to combine the contiguous aligned boxes.
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function solveQuickly(B, C, ε, FC, OCrd, CBCrd, WList, Dstop)
B′ := OCrd(B, C);
if B′ = ∅ then return TRUE; /* B is infeasible, the problem has been solved */

if isEpsilonBox(B′, C, ε, FC) then return TRUE; /* The problem has been solved */

if B′ has at mostDstop active dimensionsthen /* Resort to another technique */

< S ′inn, S ′und >:= DimStopSolver(B′, C, ε, FC, OCrd, CBCrd);
/* combine() does the conversions DBR→ EVR→ DBR in Dstop-dimension */

store(Sinn, combine(S ′inn)); /* Store in the global list of feasible boxes */

store(Sund, combine(S ′und)); /* Store in the global list of undiscernible boxes */

return TRUE; /* The problem has been solved */

endif
put(WList ←< B′, C >); /* put the subproblem into the waiting list */

return FALSE; /* The problem has not been solved yet */

end /* solveQuickly */

function isEpsilonBox(B, C, ε, FC)
if B has no active dimensionthen /* B is anε-bounded box in the variable space ofC */

switch FC(B, ρC) : /* Identify the feasibility ofB w.r.t.C */

casefeasible : store(Sinn,B); /* B is feasible, store it */

caseunknown : store(Sund, < B, C >); /* B is undiscernible, store it */

endswitch
return TRUE;

endif
return FALSE;

end /* isEpsilonBox */

Fig. 6. The functionsolveQuickly()

solveQuickly() uses a feasibility checker, calledFC, to check if anε-bounded box is
feasible, infeasible or unknown (then calledundiscernible). Though theFC in our
implementation usesOC andCBC operators for checking the feasibility ofε-bounded
boxes, it is however not restricted to a specific feasibility checker.

For efficiency,solveQuickly() allows resorting to a secondary search technique,
DimStopSolver(), to solve the low-dimensional subproblems whose bounding box
has at mostDstop active dimensions. Good candidates for smallDstop can be either
the 2k-tree based solver presented in [8] or a simple grid-based solver9. Variants of
DMBCor UCA6using the restricted-dimensional contracting operators can alternatively
be used. For a given subproblem,DimStopSolver() constructs the setsS ′inn andS ′und

which areUnionI andUnionU of the subproblem, respectively. These two sets are
represented in DBR. They are converted to EVR and then back to DBR to combine
each group of contiguous aligned boxes into a bigger equivalent box. This operation is
represented by the functioncombine() in Figure 6.

Proposition 5. Given a feasibility checker,FC. The algorithmUCA6-Plus computes
the union approximations and has a predefined interval-based precisionε w.r.t. FC.

9 A simple grid-based solver splits variable domains into a grid and solves the problem in each
grid element.
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Sketch of proof: The conclusion can be deduced, informally, from the observations:
(i) UnionI andUnionU are disjoint,UnionO = UnionI ∪UnionU ; (ii) No solu-
tion is lost due to the completeness ofOC operator;(iii) All the inner boxes (i.e. the boxes
in UnionI) are sound due to Definition 7 and Proposition 2;(iv) UnionU is equivalent
to a union of the boxes (before applying EVR-DBR conversions) which have no active
dimension (see the functionisEpsilonBox() in Figure 6) and cannot be classified as
feasible or infeasible using the feasibility checkerFC. That is due to the prop-
erties of EVR-DBR conversion and due to the fact that each box which has no active
dimension has the same feasibility (under feasibility checkers) with its projection, an
ε-bounded box, on the space defined by all the variables in the active constraints.

6 Preliminary Experiments

We now present a preliminary evaluation on the following small set of typical problems
(with different properties of constraints and solution space).

CD (Column Design), FD (Fatigue Design) andTD (Truss Design) are
three engineering design examples. Their complete descriptions are available at
http://imacsg4.epfl.ch:8080/PGSL/and http://liawww.epfl.ch/Coconut-benchs/. In Ta-
ble 1, the considered instance ofCD is the one that finds(a, b, e) ∈ [0.01, 2] ×
[0.01, 1] × [0.05, 0.1] given thatP = 400kN , H = 6m andL = 1m, wherea and
b are in meter,e is in decimeter. TheFD instance considered is the one that finds
(L, qf, Z) ∈ [10, 30]× [70, 90]× [0.1, 10] for a given number of years to fatigue failure
years = 100, whereZ is scaled up 100 times in unit. The considered instance ofTD is
a simplified one that findsx1, y1 ∈ [0.01, 10]. WP andP3were described in Section 2.
P2= {x2 ≤ y, ln y + 1 ≥ z, xz ≤ 1, x ∈ [−15, 15], y ∈ [1, 200], z ∈ [−10, 10]}.

For evaluation purposes, we have implemented the algorithmsDMBC, UCA6,
UCA6-Plus using the same data structure and the same standard contracting oper-
ators. We have also implemented a direct migration, calledUCA5, of ICAb5 in [10]
to solving NCSPs, and a version ofDMBCincluding the negation test. This enhanced
DMBC, calledDMBC+, can therefore check whether a box is completely feasible or not.
Our experiments discardedDMBCas a reasonable candidate for this kind of problems.
It usually produces a huge number of boxes, each of which isε-bounded.

The tests shown in Table 1 ran withfragmentation ratio= 0.25,Dstop = 1, andFC
given by Proposition 4 (with the precision set to1). TheOC operator was implemented
with IloGenerateBoundsin ILOG Solver 5.2 [6]. The precision of the contracting op-
erators used for narrowing bounding boxes was set to1. Let ε be the interval-based
precision for the algorithms. The secondary search technique used forUCA6-Plus is
a simple grid-based one. The terms (DS) and (BS+DS) indicate the splitting strategies
enforced upon the algorithms,MEM means the memorization of Complementary-Boxes.
Each cell in the table has two rows. The first shows time and ratio of inner volume to
total volume, the second the number of boxes inUnionI andUnionU , respectively.

Other tests on tens of similar problems show that the best gains, in running time
and number of boxes, of the algorithmsUCA5, UCA6andUCA6-Plus over DMBC+
are obtained for problems with low-arity constraints (w.r.t. arity of problems, e.g.P2,
P3). In all the tests,UCA6-Plus (BS+DS) with eitherMEM or ¬MEM is better than the
other algorithms in running time and number of boxes. The best gains are obtained
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Table 1.Typical test results

Prob. ε
DMBC+
(DS),¬MEM

UCA6
(DS), MEM

UCA6-Plus
(DS), MEM

UCA5
(BS+DS),¬MEM

UCA6
(BS+DS), MEM

UCA6-Plus
(BS+DS),¬MEM

WP 0.1
22.07s / 0.992
2753 / 2620

6.73s / 0.992
2753 / 2620

5.98s / 0.991
2489 / 2147

5.11s / 0.994
1738 / 2788

4.77s / 0.994
1573 / 2791

3.97s / 0.993
1176 / 1585

TD 0.01
81.53s / 0.997
3900 / 2917

26.45s / 0.997
3900 / 2917

26.01s / 0.997
3895 / 1970

14.96s / 0.999
2832 / 3270

13.43s / 0.999
1313 / 3496

3.59s / 0.998
53 / 50

P3 0.1
>10h / n/a
>110000 / 150000

615.98s / 0.907
33398 / 38006

530.16s / 0.912
30418 / 28229

87.09s / 0.980
10784 / 29888

135.28s / 0.980
12113 / 38808

1.41s / 0.919
406 / 970

P2 0.1
>10h / n/a
>120000 / 180000

4959.76s / 0.973
108701 / 100027

4433.06s / 0.974
106320 / 78755

281.51s / 0.995
21872 / 55901

293.09s / 0.995
18722 / 55063

7.32s / 0.975
1873 / 3225

FD 0.1
3878.47s / 0.987
42178 / 66940

1278.82s / 0.987
42178 / 66940

740.05s / 0.984
42084 / 47138

394.29s / 0.992
51882 / 65536

439.07s / 0.992
26378 / 70170

211.91s / 0.986
10341 / 35126

CD 0.01
1308.63s / 0.638
8957 / 22132

468.21s / 0.638
8873 / 21974

389.12s / 0.619
8354 / 14857

538.21s / 0.830
12729 / 25079

493.57s / 0.828
9922 / 25344

352.96s / 0.616
2826 / 12922
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Fig. 7. Logarithmic charts for (a) running time, and (b) total number of boxes

when the non-linear constraints contain some nearly axis-parallel regions (e.g.P2, P3,
TD). UCA6-Plus (BS+DS) is slightly less accurate thanUCA5andUCA6 in volume
measure, but the situation is improved whenε is reduced (i.e. in higher precision).

The preliminary experiments are therefore encouraging enough to warrant further
investigations and in-depth evaluations based on other combinations of the control pa-
rameters and higher values ofDstop in combination with variants of2k-tree solvers.

7 Conclusion

Interval-constraint based solvers are usually designed to deliver point-wise solutions.
They are consequently inadequate for solving numerical problems with non-isolated
solutions. In this paper, we propose a box-covering technique for computing inner and
outer approximations of NCSPs that remedies this state of affairs. The approach works
for general non-linear NCSPs with mixed equality/inequality constraints, especially for
inequalities. It combines the compactness of extreme vertex representation of orthogo-
nal polyhedra with an adapted splitting policy. This allows for gains in performance and
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space requirements. The quality of the output is also enhanced byguaranteed feasible
boxeswhen solution space is solid. In practice, NCSPs with non-isolated solutions often
occur as subproblems of higher-dimensional problems. For such purposes, the feasibil-
ity checker can be relaxed or run with low precision, running time will hence be much
improved. In future work, we therefore plan to investigate collaboration strategies be-
tween our techniques and standard point-wise interval-based solvers. We will also study
alternative implementation schemes purely based on the extreme vertex representation
of orthogonal polyhedra, i.e. those do not performBS(B,CB) but considerB \CB as
an orthogonal polyhedron in EVR, especially for consistencies and propagations.
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