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Abstract. In recent years, interval constraint-based solvers have shown their
ability to efficiently solve complex instances of non-linear numerical CSPs. How-
ever, most of the working systems are designed to defieémt-wisesolutions

with an arbitrary accuracy. This works generally well for systems with isolated
solutions but less well when there isantinuum of feasible poin{g.g. under-
constrained problems, problems with inequalities). In many practical applica-
tions, such large sets of solutions express equally relevant alternatives which need
to be identified as completely as possible. In this paper, we address the issue of
constructingconciseinner and outer approximations of the complete solution set
for non-linear CSPs. We propose a technique which combinesdineme vertex
representatiorof orthogonal polyhedra [1-3], as defined in computational ge-
ometry, with adaptedplitting strategieg4] to construct the approximations as
unions of interval boxes. This allows for compacting the explicit representation
of the complete solution set and improves efficiency.

1 Introduction

Many practical problems require solving constraint satisfaction problems (CSPs) with
numerical constraints. A numerical CSP (NCS),C, D), is stated as a set of vari-
ablesy taking their values in domair® over the reals and subject to a finitely many set
of constraints. In practice, the constraints can be equalities or inequalities of arbitrary
type and arity, usually expressed using arithmetic expressions. In this paper we address
the case of NCSPs withon-isolated solutionsSuch a case is often encountered in
real-world engineering applications where under-constrained problems, problems with
inequalities or with universal quantifiers are ubiquitous. In practice, a set of non-isolated
solutions often expresses a spectrum of equally relevant choices, as the possible moving
areas of a mobile robot, the collision regions between objects in mechanical assembly,
or different alternatives of shapes for the components of a kinematic chain. These alter-
natives need to be identified as precisely and completely as possible.

Interval constraint-based solvers (e.g. Numerica [5], ILOG Solver [6]) take as in-
put an NCSP and generate a set of boxes whatservativelyenclose each solution.
They have proven particularly efficient in solving challenging instances of NCSPs with
non-linear constraints. However, when applied to problems with non-isolated solutions
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they provide enclosures that are either prohibitively verbose or poorly informative (see
Section 2).

In contrast, a number of set-based approaches have been developed, notably in the
areas of robust control, automation and robotics, which provide promising alternatives
to the point-wise techniques. They consist in covering the spectrum of non-isolated so-
lutions using a reduced number of subsetR®f Usually, these subsets are chosen with
known and simple properties (e.g. interval boxes, polytopes, ellipsoids). In recent years,
several authors have proposed set covering algorithms with interval boxes [7—10]. Most
existing box-covering algorithms are however limited by their restrictive applicability
conditions or by their high average time and space complexities in the general case. The
enhanced set-based technique we propose builds on the following observations. Firstly,
the union of boxes produced by the complete interval-based solving of NCSPs can be
seen as aorthogonal polyhedroh Enhanced representations from computational ge-
ometry can be used to reduce the verbosity of such geometrical objects. We propose
to use theExtreme Vertex Representati(EVR) of orthogonal polyhedra [1-3] for this
purpose. Secondly, when there are non-isolated solutions, dichotomous splitting is not
the most adapted branching strategy. It might lead to unnecessarily dividing entirely fea-
sible regions. We propose to use another scheme based on splitting around the negation
of feasible regions [4] which is an extension of tegation tesproposed for univer-
sally quantified constraints in [10]. The resulting algorithm applies to general constraint
systems. It produces inner and outer approximations of the feasible sets in the form of
unions of interval boxes he preliminary experiments show that it improves efficiency
as well as the compactness and quality of the output representation.

2 Examples

We start by giving two small introductory examples which illustrate the inadequacy of
point-wise approaches to the case of NCSPs with non-isolated solutions. The first ex-
ample illustrates how the point-wise approach can be sometimes misused when applied
to NCSPs with non-isolated solutions. Since point-wise techniques inherently assume
the existence of isolated solutions, the interval splitting process they use for branching is
sometimes prematurely stopped as soon as a solution is detected within an interval. This
leads to poorly informative approximations of the complete solutions sets, as shown by
the following example. The first example, calldéP, is a 2D simplification of the de-
sign model for a kinematic pair consisting of a wheel and a pawl. The constraints deter-
mine the regions where the pawl can touch the wheel without blocking its matBn.
={20 < /2?2 + y2 < 50, 12y/+/(x — 12)2 + y2 < 10, = € [-50,50], y € [0,50]}.
Figure 1 shows the output produced by a point-wise solver when the existence of point-
wise solutions is abusively assunred.

The second example consists of 4 non-linear inequality constraints involving 3 vari-
ables:P3={z? <y, Iny+1> 2 22 <1, 232 +In(152+1) < y+1, z €
[—15,15], y € [1,200], z € [-10, 10]}. Using an efficient implementation of classical

! Informally, an orthogonal polyhedron is such that its facets are axis-parallel hyper-rectangles.
2 |t was solved using a combination ibGenerateBoundandlloSplitin ILOG Solver 5.2.
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Fig. 1. The solution set ofVP is approximated by 6 boxes (at precision = 2)

point-wise technique$the computation had to be stopped after 10 hours and produced
more than 260000 small boxes. The alternative set-based technique we propose could
reduce the complete output to 1376 boxes and produced the result in 1.41 seconds (see
Table 1). This small example was one of our most successful and hence does not objec-
tively illustrate the power of our technique, however it clearly illustrates how point-wise
approaches can be unadapted to the complete solving of certain classes of problems.

3 Background and Definitions

3.1 Interval Arithmetic

The finite nature of computers precludes an exact representation i&falseThe real
setR is in practice approximated by a finite $&f, = F U {—o00, +o0}, whereF is a
finitely many set of reals. In interval-based constraint sol@rssually corresponds to
the floating-point numbers. For eatle F, we denotdt = min{f € F, | | < f},

7 =max{f € F | f <l}. The set of intervals with bounds ., denoted by, is
partially ordered by set inclusion. Anterval box or aboxfor short B =1; x ... x I,

is a Cartesian product efintervals inl. We denoteB|; = I;. A canonical intervals a
non-empty interval of the formig, 7], [I—, ] or [1,"]. Some extended definitions can be
found in [10]. Two boxesA andB, are called disjoint ifA # B and3i : sup(A[;) <
inf(B|;) Vsup(B|;) < inf(A|;). We denotes byts(S) the set of points represented
by S, e.g.pts(S) = {z | z € B € S}if Sis aset of boxes. Two sets of disjoint boxes,
U, andi-, are equivalent, denoted biy = U, if pts(U1) = pts(Usz).

3.2 Relations and Approximations

Let ¢(z4,...,x,) be areal constraint with arity. Therelation defined byc, denoted
by p., is the set of tuples iR™ satisfyingc. Letvars(p.) = vars(c) = {z1,...,2,}.

% The implementation was based on ILOG solver 5.2 (see Section 6).
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The relation defined by the negationg, of ¢ is given byR"™ \ p.. In this paper, each
boxB € I and relatiorp C R™ is associated with real variables, the projection &
on a subsetX, of its variables is denoted | x . We denote byR,, the set of relations
defined on subsets of thevariables,pp the relation defined by an NCSP, andpc
theglobal relationdefined by the conjunction of constraints in a constrain€set

A relation can be approximated by a computer-representable superset or subset.
The former is acompleteapproximation but may contain points that are not solutions.
Conversely, the latter isgoundapproximation but may lose certain solutions. In partic-
ular, a relation can be approximated conservatively by the smallest (w.r.t. set inclusion)
union of boxes (called thieest outer approximatignor more coarsely by the smallest
box (called thenterval hull), containing it. Beside that, the relation can also be approx-
imated by the greatest union of boxes (calledhibst inner approximatigncontained
in it. The readers are referred to [11] for rigorous definitions.

The computation of these ideal approximations relies on the noticomtfacting
operators An outer-box contracting operator [10] narrows down the variable domains
by discarding values that are locally inconsistent udiog consistency. In this paper
we use a generic notion defined as follows:

Definition 1 (Outer-bound Contracting Operator, 0C). An outer-bound contracting
operator is a functioroC : I" x P(R"™) — I" U {0} such thatvB € I", p € P(R")
these properties hold:

(i) oc(B,p) C B (Contractiveness)
(i) oc(B,p) 2 BNp (Completeness)

In numerical domains, the outer-bound contracting operators usually enforce either
Box Hull, kB or Boundconsistency [12, 5], generally referred to as bound-consistency
in the rest of the paper. For simplicity, given a set of constraintse useC instead of
pe in the notation of contracting operators.

Proposition 1. Given a set of constraintg;, and a bounding boxB. The boxB is
completely infeasible (w.r.f) if there is som&C operator that contract$B, C) to an
empty set, i.e30C : 0C(B,C) = 0 = B is infeasible (w.r.tC).

3.3 Union Approximations

In general, the computation of the best inner and outer approximations is intractable.
Therefore, in this paper we consider the problem of computing inner and outer approx-
imations of a relatiop C R™ in the form ofunions of disjoint boxes

Definition 2 (Outer Union Approximation, Union®). Union®(p) is a set of dis-
joint boxed/ € P(I") such thatpts(Uf) D p.

Definition 3 (Inner Union Approximation, Union?). Unionz(p) is a set of disjoint
boxed/ € P(I") such thatpts(U) C p.

*P(S) denotes the power set 6f i.e., the se{ A | A C S}.
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Definition 4 (Undiscernible Union Approximation, Union"). Union(p) corre-
sponding toUnion® (p) and Union”(p) is a set of disjoint boxe& € P(I") such
that pts(U) = cl(pts(Union® (p)) \ pts(Union” (p))).5

Several authors have recently addressed the issue of comfilitingn® approx-
imations. In [7], a recursive dichotomous split is performed on the variable domains.
Each box obtained by splitting is tested for inclusion using interval arithmetic tools.
The boxes obtained are hierarchically structuredasees The authors have demon-
strated the practical usefulness of such techniques in robotics, automation and robust
control. In [8], a similar algorithm is presented. However, only binary or ternary sub-
sets of variables are considered when performing the splits. The approach is restricted
to classes of problems with convexity properties. The technique proposed in [9] alge-
braically constructs the unions using Bernstein polynomials which makes it possible to
use guaranteed algebraic inclusion tests for boxes. The approach is restricted to poly-
nomial constraints. A technique of extending consistent domains of a particular class
of constraints has also been proposed in [13]. Finally, [10] has addressed the issue of
computingUnion? for universally quantified constraints usinggation test¢see Sec-
tion 4.1), and [4] has extended the negation test in combination with enhanced splitting
strategies to computingnion® for classic NCSPs. Hereafter, we give abstractions of
conventions in computing union approximations wheheion* is assumed to exist.

Definition 5 (Feasibility Checker, FC). A feasibility checker is a functio®C : 1 x
R, — {feasible,infeasible,unknown} such that:

(i) FC(B,p) = feasible = Blyars(p) S p
(i) FC(B,p) = infeasible = Blyurs(p) € 7p
(iii) FC(B, p) = unknown A B|yars(p) C B'lvars(p) = FC(B', p) = unknown

Definition 6 (Interval-Based Precision).Given an NCSPP = (V,C, D), a precision
(vector),e, and a feasibility checkeFC. A search technique which computes the union
approximations is calledhaving the precisior (w.r.t. FC) if there is some set/, of
disjoint boxes whose sizes are not greater thdoomponent-wise) such that:

U = Union”;VB € U : FC(B, pp) = unknown Q)

4 EVR and Complementary-Boxing

Interval-based search techniques for NCSPs are essentially bisectional. Variables are
instantiated using intervals. When the search reaches an interval that contains no so-
lutions it backtracks, otherwise the interval is recursively split into two halves up to

an established resolution. The most successful techniques enhance this process by ap-
plying an0C operator to the overall constraint system, after each split. In most known
algorithms, the general policy is to perform splitting intervals until canonical intervals
are reached or their widths are not greater than a predefined precision, i.e. it simply has

® cl is the standard closure operator. Informallynion“ (p) is a set of undiscernible boxes
enclosing the boundary ¢f



6 X.-H. Vu, D. Sam-Haroud and M.-C. Silaghi

a predefined interval-based precision. This policy, referred tOMBQdichotomous
maintaining bound-consistency) in the rest of the paper, generates verbose outer and
inner union approximations. The first reason is that the orthogonal splitting policy in-
troduces artificial convexity deficiencies and generates a significant number of nearly
aligned boxes along boundaries of constraints. The second reason is that entirely feasi-
ble boxes might be unnecessarily split. The improvements we propose are presented in
the two next subsections.

4.1 Better Splitting Decisions Using Complementary-Boxing

We now recall the techniques which constrdi¢hion” [10] and Union® [4] by

soon isolating feasible regions under new abstract concepts in order to be integrated
with the techniques described in Section 4.2. Given a relaipand a boxB, the
negation tesiperforms a kind ofoC operator on(B, —p). A kind of splitting oper-

ator (calledICAb3 ) splitting around a box obtained by a negation test for a nu-
meric constraint and dichotomizing this box was proposed in [10]. Herein, the pro-
posed negation approach (callggiAb5 ) to universally quantified constraints recur-
sively performdCAb3 . on the first active constraint until a predefined interval-based
precision reached. In [4], a similar splitting operator was employed, which is based
on the negation test, herein callBg,, for numeric constraints. However, the approach
(calledUCA9, which was proposed for NCSPs, computes negation tests for all con-
straints and then chooses the best for the split. In additi@A6has memorized old

Bg’s for computing newB,’s and performed some mixed splitting strategies based
on equalities/inequalities. Hereafter, we employ the negation test to define a contract-
ing operator, calle€Complementary-Box contracting operatamd a splitting operator,
calledBox splitting operatorThe followings give abstract definitions of those ones.

Definition 7 (Complementary-Box Contracting Operator, CBC). A Complementary-
Box contracting operator is a functiaBC : 1" x P(R") — 1"U{(} such thatB € 1",
p € P(R™) these properties hol8:

(i) cBCc(B,p) C B (Contractiveness)
(i) B\ CBC(B, p) C p (Complementariness)

A box resulting from the application of @BC operator to a bounding bo®, and a
relation,p, is called a&Complementary-Bowith respect tgp within B. Complementary-
Boxingrefers the process of identifying the Complementary-Box. The following prop-
erties characterizeBC operators.

Proposition 2. Given a set of constraintg;, and a bounding boxB. The boxB is
completely feasible (w.r.€) if there is some&BC operator that contract$B, C) to an
empty set, i.e9CBC : CBC(B,C) = () = B is feasible (W.r.tC).

Proposition 3. Given an0C operator. The functiorf : I x P(R") — I"U{0} defined
by f(B, p) = 0C(B, —p) is aCBC operator.

5 In[11], this operator was named “Back-Boxing Contracting operator”. In this paper, we change
its name and notation to avoid confusions with the namesake given in [14].
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Proof. By definitionB; = f(B, p) = 0C(B, —p). The contractiveness @ operators
impliesB¢ C B, i.e. the contractiveness 0BC operators. In addition to the complete-
ness ofoC operators we havB N —p C By € B = B\ By C p. This implies the
complementariness @BC operators.

Definition 8 (Monotonicity). A contracting operator C or CBC), u, is called
monotonousf B C B’ = (B, p) C u(B', p).

Proposition 4. Given a set ofn. 0C operators,{0C}, and a set ofn CBC opera-
tors, {CBC }, which enforce the monotonicity, whese;, and CBC;, are defined irk-
dimensionk < n). The functionf : I" x R,, — {feasible, infeasible, unknown}
defined by the following rules is a feasibility checker:

(i) f(B,p) = infeasible < 0Ck(Blyars(p), p) = 0, Wherek = |vars(p)|
(i) f(B,p) = feasible < CBCk(B|yars(p), p) = 0, wherek = |vars(p)|

Proof of Proposition 4 is straightforward due to Proposition 1, Proposition 2 and
Definition 5. Proposition 4 gives a way to construct a feasibility checker figrand
CBC operators enforcing the monotonicity. Proposition 2 and Proposition 3 imply that
CBC operators can be constructed bg operators and thaComplementary-Boxing
makes it possible to isolate completely feasible regids, CBC(B, p), w.r.t. some
constraints. When applying@BC operator to a box with respect to a constraint results
in an empty set, it can be deduced that the box completely satisfies that constraint.
We then define a splitting operator based on Complementary-Boxes, which consists of
splitting around Complementary-Boxes, to isolate the feasible regions.

Definition 9 (Box Splitting Operator: BS). A Box splitting operator is a functioBs :
I" x I" — P(I"), which takes as input two boxes such that the former contains the
latter, splitting the outer box along some facets of the inner’one.

Feasible boxes D Feasible D Infeasible
ﬂ{.t. c Bounding box
I
/ﬁ [,ﬁ
: C/
77 \
Complementary-Box
Splitting planes of BS operator Splitting plane of DS operator
@ ®)

Fig. 2. (a) Box Splitting: splitting around a box (e.g. Complementary-Box); (b) Dichotomous
Splitting: splitting the original domain of a variable into two halves

In the algorithm we proposeBox splitting which partitions a region around a
Complementary-Box, is applied in combination with dichotomous splitting. The lat-
ter is used either when Complementary-Boxing produces no reduction or when Box
splitting results in too small boxes. Figure 2 illustrates the notion of Box splitting.

" This is a generic definition for partitioning a region around a box contained in it, given in [14].
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4.2 Concise Approximations near Boundaries Using EVR

Stop Contracting over Inactive Dimensiond/\e first observe that a better alignment of
boxes near boundaries of the solution space can be obtained by finely controlling appli-
cations of contracting operators during search. More precisely, whenever a dimension,
of abox,B, is bounded by;, one can prevent contracting operators from contradng
over this dimension in order to obtain better alignments and performances. Given a box,
B, a constraint set;, and a precision vectar, A dimensiong, of B is called aractive
dimensionif sup(B|;) — inf(BJ;) > &; and the corresponding variable;,, occurs in

some active constraint. Otherwise, it is calledraactive dimensionA contracting oper-

ator which only works on active dimensions of boxes is callegs#ricted-dimensional
contracting operatoff11]. We denote byoC.4 and CBC,4 the restricted-dimensional
contracting operators correspondingtbandCBC operators, respectively.

Compacting Aligned BoxesOnce a better alignment is obtained, the question is how
such a set of aligned boxes can be compacted into a smaller set. We propose to use the
Extreme Vertex RepresentatiVR) of orthogonal polyhedra for that purpose. The
basic idea is that the finite unions of boxes delivered by a box-covering solver define
orthogonal polyhedrdor which improved representations can be used. An orthogonal
polyhedron can be naturally represented as a finite union of disjoint boxes. Such a rep-
resentation is called tHgisjoint Box RepresentatigidBR) in computational geometry.

The EVR is a way of compacting DBR [1-3]. We now recall some basic concepts re-
lated to EVR. We refer the reader to [2, 3] for further details. The concepts are presented
for a particular type of orthogonal polyhedra, caltgaldy polyhedraA griddy polyhe-

dron [3] is generated from unit hyper-cubes with integer-valued vertices. Since arbitrary
orthogonal polyhedra can be obtained from griddy ones by a bijection between vertex
indices of the former and integer-valued vertices of the later, the results on EVR are not
affected by this simplification. For simplicity, polyhedra are assumed to live inside a
bounded subs& = [0, m]¢ C R? (in fact, the results will hold also faX = R%). Let

x = (z1,...,24) be a grid point of the elementary grigl= {0, 1, ...,m — 1}d C N4

For every pointk € X, |x] is the grid point corresponding to the integral part of the
components ok. The elementary box associated withis the closed subset & of

the formB(x) = [z1, 21 + 1] X ... X [z4, 24 + 1]. The set of all boxes is denoted By

A griddy polyhedronP is a union of elementary boxes, i.e. an elementaryof 2

Definition 10 (Color Function). Let P be a griddy polyhedron. The color function
¢: X — {0,1} is defined as follows: ik is a grid point therr(x) = 1 < B(x) C P;
otherwise¢(x) = ¢([x]).

We say that a grid point is black (respectively, white) and thBt(x) is full (re-
spectively, empty) when(x) = 1 (respectively0). A canonical representation scheme
for 28 (or Zg) is a setf of syntactic objects such that there is some bijective function
U:E— 9B,

Definition 11 (Extreme Vertex). A grid pointx is called an extreme if(x) = 1,
wherer(x) denotes the parity of the number of black grid points\iiix) = {z; —
1,21} X ... x {zqg — 1,24} (the neighborhood af).
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Fig. 4. Constraint boundary: (a) unaligned boxes produced by standard covering; (b) stop con-
tracting over inactive dimensions and combine aligned boxes using EVR

Figure 3 illustrates the notion of EVR on a simple example. The fundamental the-

orem presented in [2, 3] shows that any griddy polyhedron can be canonically repre-
sented by the set of its extreme vertices (and their colors). The extreme vertex rep-
resentation improves the space required for storing orthogonal polyhedra by an order
of magnitude [1-3]. It also enables the design of efficient algorithms for fundamen-
tal operations on orthogonal polyhedra (e.g. membership, set-theoretic operations) [1—
3]. In particular, effective transformation between DBR and EVR can be proposed for
low-dimensional or small-size (i.@2 is small) polyhedra [1, 3]. For example, in three-
dimension, the average experimental (time) complexity of converting an EVR to a DBR
is far less than quadratic but slightly greater than linear in the number of extreme ver-
tices [1]. Results in [3] also imply that, in fixed dimension, the time complexity of
converting a DBR to an EVR using XOR operations is linear in the number of boxes
in DBR. We propose to exploit these effective transformation schemes to produce a
compact representation of contiguous aligned boxes using the following procedure:

1. Produce a better alignment of the boxes along the boundaries of constraints. This
is done by preventing the unnecessary application of contracting operators over
inactive dimensions. Figure 4 shows the better alignment produced for a set of
nearly aligned boxes of an undiscernible approximation. The original set of 8 small
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boxes (Figure 4-a) reduces to two groups of 4 aligned boxes (Figure 4-b) without
altering the predefined interval-based precision.

2. The set of aligned boxes in each grodp, is converted to EVR and then back to
DBR to get a set of combined box&$, (containing only one box in this case). Due
to the properties of EVRS, is more concise thasf;. Figure 4-b shows how this
conversion procedure reduces the two groups of 4 boxes to two (gray) boxes.

Such a procedure can theoretically be applied in any dimension. Due to the effi-
ciency of EVR in low dimension, we however restrict its application to low-dimensional
or small-size regions of the search space in our implementation (see Section 5).

5 Algorithms

We now present an algorithm call&CA6-Plus (Figures 5 and 6). It takes as input
a non-linear NCSPP = (V,C, D), and returns th@Jnion” and Union* approxi-
mations ofpp. UCAB-Plus is an extension oUCAG6[4] to include the application
of extreme vertex representation of orthogonal polyhedra and the use of restricted-
dimensional contracting operators. Hereafldrdenotes a bounding box of the cur-
rent subproblem. Originally, this bounding box is seftoFor convenience, we denote
Union™ (B N p¢) by Union™ (B, C), whereX € {O,Z,U}. UCA6-Plus constructs
the approximation&Jnion” (B, C) andUnion" (B, C), henceUnion® (B, C) can be
computed as the union of these two approximations.

UCAG-Plus proceeds by recursively repeating three main stefsusing0C 4
operators to contract the current bounding box to a tighter @heisingCBC.q opera-
tors to get a list of Complementary-Boxes w.r.t. each active constraint and w.r.t. the new
bounding box, the constraints that make empty Complementary-Boxes are removed; fi-
nally, (iii) combining Dichotomous splittind€) with Box splitting BS) for the whole
set of active constraints. In practice, equalities usually define surfaces, we then do not
need to perform stefi) for such constraints (see Figure 4).

getSplit() is a function returning the splitting mode to be used for splitting the cur-
rent box. The current splitting mode can be inferred from the history of the current box
(e.g. the splitting mode of the parent box). In contrasdkéBCtheDS operator used for
UCAG-Plus only tries to dichotomize over the active dimensions. This avoids split-
ting boxes into a huge number of tiny boxes. Moreovet)@®A6-Plus constraints are
removed gradually whenever an empty Complementary-Box is computed w.r.t. those
constraints. The dimension with the greatest size is preferrebisfofFor the pruning
to be efficient,BS splits along some facet of a Complementary-Box only if that pro-
duces sulfficiently large boxes, the Complementary-Box itself excepted. This estima-
tion is done using a pre-determin&dgmentation ratio In Figure 5 and 6S;,,,, and
S.unq are global variables denoting the set of boxes (and active constraints, if exist) of
Union” (B, Cy) and Union* (B, Cy), respectively. We use a listy List, to store
the subproblems waiting to be processed.

chooseTheBest() is a function choosing the best Complementary-Box and the
respective constraint based on some criteria to maximize the space surrounding the

8 UcAe6does the similar steps, exceptiveQuickly(), but it usesC andCBC operators.



Numerical CSPs with Non-isolated Solutions - COC0OS’'2002 11

function UC A6 Plus(Bo, Co, &, FC, 0Cra, CBCra, Dstop)
Sinn = 0; Sung := 0; W List := {; /¥ Sinn» Suna are global lists to be return*/
if solveQuickly(Bo,Co,¢,FC,0Cra, CBCra, W List, Dstop) then return;
while W List # () do /* Waiting list of subproblems is not empty */
(< B,C >,{CB',}) := get(W List); /* set{CB’ .} was optionally memorized*/
for eachc € C’ do I* ¢’ C C,itis set toC or dynamically computed based §&B’ .} */
CB. := CBC.4(B, ¢) or CBCa(B N CB',,c) or BN CB’,; /*depends o’ */
if CB. =0thenC :=C\ {c}; I* cis redundant irB (Proposition 2) */
if CB. =0or CB. =Bthen(C':=C"\ {c};

endforeach
if C = 0 then
store(Sinn, B); /* No active constraintB is feasible */
continue while; /* do the next loop ofwhile */
endif
Splitter := getSplit(); I* Get a splitting mode, heuristics can be used */

if Splitter = BS then /* The splitting mode is Box Splitting */
CB. := chooseTheBest(B,{CB. | c € C'}); I*e.g. maximize surrounding regions*/
CB := enlarge(B, CB., ZeroPlus); * CB. C CB C BorCB. = CB = B*/
< Bi,...,B, >:=Bs(B, CB); /* Box Splitting: failed oraB; D CB */
if C' = (0 or Bs failed then Splitter := DS;
endif
if Splitter = DS then < By,..., By >:=DS(B); /* Dichotomous Splitting */
fori =1tokdo
Ci:=C;C,:=C;
if Splitter = BS and B; N CB. = 0 then
Ci :=Ci\{c} Ci:=Ci\{c} I* ¢ is redundant (Complementarinessost) */

if C; = () then
store(Sinn, Bi); /* No active constraintB; is feasible */
continue for; I* do the next loop ofor */
endif
endif

solvable := solveQuickly(B;,C;,e,FC,0Cra, CBCra, W List, Dstop);
if not solvable then memorize(W List « {CB. | ¢ € C;}); /* Thisis optional *
endfor
endwhile
end * UCA6Plus*

Fig. 5. The algorithmUCAG6-Plus

Complementary-Box. The other Complementary-Boxes can be memorized for improv-
ing the Complementary-Boxing of child search nodegarge(B, CB., ZeroPlus) is
a function extending”B, to CB by ZeroPlus (considered as a sufficiently small pos-
itive number) such that the result is still B. This guarantees that no point satisfying
—c is on the boundary o B except the points on the boundaryBf

The functionsolveQuickly() (Figure 6) construct&/nion” andUnion" approx-
imations for low-dimensional subproblems whose bounding box/has, active di-
mensions at the most. The output is compacted using EVR. The @8g,0dndCBC.4
operators for the purpose of narrowing produces a better alignment of boxes along
the boundaries. This allows for using EVR to combine the contiguous aligned boxes.
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function solveQuickly(B,C, e, FC,0Crq, CBCra, W List, Dstop)
B = DCrd(B,C);
if B’ = () then return TRUE; /* B is infeasible, the problem has been solved */
if isEpsilonBox(B',C, €, FC) then return TRUE; /* The problem has been solved */
if B’ has at mosD;.,, active dimensionthen /* Resort to another technique */
< S;nn, S;md >:= DimStopSolver(B’,C, e, FC,0Crq, CBCrq);
I* combine() does the conversions DBR- EVR — DBR in D¢, p-dimension */
store(Sinn, combine(S;nn)); /* Store in the global list of feasible boxes */
store(Sund, combine(Slund)); /* Store in the global list of undiscernible boxes */
return TRUE; * The problem has been solved */
endif
put(W List —< B',C >); /* put the subproblem into the waiting list */
return FALSE; * The problem has not been solved yet */
end I* solveQuickly */

function isEpsilonBox(B,C, ¢, FC)
if B has no active dimensiahen /* B is ane-bounded box in the variable space®f/

switchFC(B, pc) : /* Identify the feasibility of B w.r.t. C */
casefeasible : store(Sinn, B); /* B is feasible, store it */
caseunknown : store(Synd, < B,C >); /* B is undiscernible, store it */
endswitch
return TRUE;
endif

return FALSE;
end [* isEpsilonBox */

Fig. 6. The functionsolveQuickly()

solveQuickly() uses a feasibility checker, call&d, to check if ans-bounded box is
feasible, infeasible or unknown (then calledundiscerniblg. Though theFC in our
implementation useB8C and CBC operators for checking the feasibility efbounded
boxes, it is however not restricted to a specific feasibility checker.

For efficiency,solveQuickly() allows resorting to a secondary search technique,
DimStopSolver(), to solve the low-dimensional subproblems whose bounding box
has at mostD,;,, active dimensions. Good candidates for snial},, can be either
the 2-tree based solver presented in [8] or a simple grid-based oNariants of
DMB@r UCAG6using the restricted-dimensional contracting operators can alternatively

be used. For a given subproblemim.StopSolver() constructs the seﬁ;m andSlmd

which areUnion” and Union of the subproblem, respectively. These two sets are
represented in DBR. They are converted to EVR and then back to DBR to combine
each group of contiguous aligned boxes into a bigger equivalent box. This operation is

represented by the functieembine() in Figure 6.

Proposition 5. Given a feasibility checkeFC. The algorithmUCA6-Plus computes
the union approximations and has a predefined interval-based precisiort. FC.

% A simple grid-based solver splits variable domains into a grid and solves the problem in each
grid element.
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Sketch of proofThe conclusion can be deduced, informally, from the observations:
(i) Union? andUnion" are disjoint;Union® = Union” U Union"; (ii) No solu-
tion is lost due to the completenesgafoperatorf{iii) All the inner boxes (i.e. the boxes
in Union?) are sound due to Definition 7 and Propositiofi2} Union" is equivalent
to a union of the boxes (before applying EVR-DBR conversions) which have no active
dimension (see the functior EpsilonBozx() in Figure 6) and cannot be classified as
feasible or infeasible using the feasibility checkerC. That is due to the prop-
erties of EVR-DBR conversion and due to the fact that each box which has no active
dimension has the same feasibility (under feasibility checkers) with its projection, an
e-bounded box, on the space defined by all the variables in the active constraints.

6 Preliminary Experiments

We now present a preliminary evaluation on the following small set of typical problems
(with different properties of constraints and solution space).

CD (Column Design), FD (Fatigue Design) andTD (Truss Design) are
three engineering design examples. Their complete descriptions are available at
http://imacsg4.epfl.ch:8080/PGSahd http://liawww.epfl.ch/Coconut-benchsh Ta-
ble 1, the considered instance @D is the one that findga,b,e) € [0.01,2] x
[0.01,1] x [0.05,0.1] given thatP = 400kN, H = 6m andL = 1m, wherea and
b are in metere is in decimeter. Thé&=D instance considered is the one that finds
(L,qf, Z) € [10, 30] x [70,90] x [0.1, 10] for a given number of years to fatigue failure
years = 100, whereZ is scaled up 100 times in unit. The considered instandebois
a simplified one that finds,, y; € [0.01, 10]. WP andP3were described in Section 2.
P2={2? <y,Iny+1>z 22 <1,z €[-1515],y € [1,200], z € [-10,10]}.

For evaluation purposes, we have implemented the algoritbM8C UCAQ
UCAG6-Plus using the same data structure and the same standard contracting oper-
ators. We have also implemented a direct migration, callE€d\5 of ICAb5 in [10]
to solving NCSPs, and a version BMBdncluding the negation test. This enhanced
DMBCcalledDMBC+can therefore check whether a box is completely feasible or not.
Our experiments discarddaMBGCas a reasonable candidate for this kind of problems.

It usually produces a huge number of boxes, each of whietbisunded.

The tests shown in Table 1 ran wittagmentation ratio= 0.25, D, = 1, andFC
given by Proposition 4 (with the precision setltp The 0C operator was implemented
with lloGenerateBounds ILOG Solver 5.2 [6]. The precision of the contracting op-
erators used for narrowing bounding boxes was sdt ticet ¢ be the interval-based
precision for the algorithms. The secondary search technique usedC#8-Plus is
a simple grid-based one. The ternds) and @S+DS) indicate the splitting strategies
enforced upon the algorithmigEM means the memorization of Complementary-Boxes.
Each cell in the table has two rows. The first shows time and ratio of inner volume to
total volume, the second the number of boxe®Jinion” andUnion", respectively.

Other tests on tens of similar problems show that the best gains, in running time
and number of boxes, of the algorithrd€A5 UCA6andUCAG-Plus over DMBC+
are obtained for problems with low-arity constraints (w.r.t. arity of problems,R2g.

PJ). In all the testsUCA6-Plus (BS+DS) with eitherMEM or —MEM is better than the
other algorithms in running time and number of boxes. The best gains are obtained
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Table 1. Typical test results
prop ¢ | DMBC* UCA6 UCAG-Plus UCA5 UCA6 UCA6-Plus
(DS), —MEM (DS), MEM (DS), MEM (BS+DS), —MEM | (BS+DS), MEM | (BS+DS), —MEM
WP | 0.1|2207570.992  [6.73570.992 |598570.991 |5.1Is/0.994 [4.775/0.994 [3.975/0.993
"~ | 2753/ 2620 275312620 2489/2147  |1738/2788 |1573/2791 |1176/1585
D |01 BL53570.997  [26.45570.997 |26.01570.997 | 14.96570.999 13.43570.999 3.595/0.998
¥43900/ 2917 3900/ 2917 3895/1970 |2832/3270 |1313/3496 |53/50
b3 |o1| >10N7n7a 615.98570.907 | 530.165/0.912| 87.095/0.980 | 135.28570.9801.415/0.919
| >110000/ 15000033398 / 38006 | 30418 /28229 |10784 /2988812113 /38808406 /970
p2 | 04| >10N7Na 4950.765 /0.9734433.065 /0.974281.515 / 0.99% 293.095 / 0.9957.325/ 0.975
"*| >120000 / 180000 108701 / 100027 106320 / 78755 21872 / 55901 | 18722 / 55063 | 1873 / 3225
D | o |3878.47510.987 | 1278.825/0.987740.0550.984| 394.29510.992439.075/0.992 211915/ 0.98¢
"~ 42178166940 | 42178/66940 | 42084 /47138 |51882 /65536 | 26378 /70170| 10341 / 35126
D |0.01] 1308:63570.638 |468.21570.638 | 389.12570.619 538.215/ 0.830 493.575 / 0.828 352.965  0.61¢
8957 / 22132 8873/21974 |8354/14857 |12729/25079|9922 /25344 | 2826 /12922
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when the non-linear constraints contain some nearly axis-parallel region®2eRg,
TD). UCA6-Plus (BS+DS) is slightly less accurate thddCA5and UCAGin volume
measure, but the situation is improved when reduced (i.e. in higher precision).

The preliminary experiments are therefore encouraging enough to warrant further
investigations and in-depth evaluations based on other combinations of the control pa-
rameters and higher values Bf;,,, in combination with variants af*-tree solvers.

7 Conclusion

Interval-constraint based solvers are usually designed to deliver point-wise solutions.
They are consequently inadequate for solving numerical problems with non-isolated
solutions. In this paper, we propose a box-covering technique for computing inner and
outer approximations of NCSPs that remedies this state of affairs. The approach works
for general non-linear NCSPs with mixed equality/inequality constraints, especially for
inequalities. It combines the compactness of extreme vertex representation of orthogo-
nal polyhedra with an adapted splitting policy. This allows for gains in performance and
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space requirements. The quality of the output is also enhancgddmpnteed feasible
boxesvhen solution space is solid. In practice, NCSPs with non-isolated solutions often
occur as subproblems of higher-dimensional problems. For such purposes, the feasibil-
ity checker can be relaxed or run with low precision, running time will hence be much
improved. In future work, we therefore plan to investigate collaboration strategies be-
tween our techniques and standard point-wise interval-based solvers. We will also study
alternative implementation schemes purely based on the extreme vertex representation
of orthogonal polyhedra, i.e. those do not perf@®iB, CB) but consideB \ CB as

an orthogonal polyhedron in EVR, especially for consistencies and propagations.
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