Mining Long-Term Search History
to Improve Search Accuracy

Bin Tan, Xuehua Shen, ChengXiang Zhai
Department of Computer Science
University of Illinois at Urbana-Champaign

ABSTRACT

Long-term search history contains rich information about a user’s
search preferences. In this paper, we study statistical language
modeling based methods to mine contextual information from long-
term search history and to exploit it for more accurate estimates of
the query model. The experiments on a web search test collection
show that the algorithms are effective in improving retrieval accu-
racy for both fresh and recurring queries. The best performance is
achieved when using the combination of related past searches and
clickthrough data as the main source of search context.

Categories and Subject Descriptors: H.3.3 [Information Search
and Retrieval]: Retrieval models

General Terms: Algorithms
Keywords: Search history, query expansion, context

1. INTRODUCTION

Most existing retrieval systems, including the web search en-
gines, suffer from the problem of “one size fits all”: the decision of
which documents to return is made based only on the query, with-
out consideration of a particular user’s preferences and search con-
text. When a query (e.g. “jaguar”) is ambiguous, the search results
are inevitably mixed in content (e.g. containing documents on the
jaguar cat and on the Jaguar car), which is certainly non-optimal
for the user, who is burdened by having to sift through the mixed
results. Therefore, instead of relying solely on the query, which is
usually just a few keywords, retrieval systems should exploit the
user’s search context, which can reveal more about the user’s true
information need. Indeed, contextual retrieval has been identified
as a major challenge in information retrieval research [1].

There are a wide variety of search contexts, from the user’s back-
ground and interests, personal document collection (e.g. emails and
saved web pages), to what activities the user is doing before submit-
ting the query (e.g. reading an article on wildlife). In this paper, we
focus on the user’s search history, which is often kept in log format
and records what queries the user made in the past and what results
he/she chose to view. This is arguably the most important form of
search context for the reasons below. First, a user’s background

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

KDD'’ 06, August 20-23, 2006, Philadelphia, Pennsylvania, USA.
Copyright 2006 ACM 1-59593-339-5/06/0008 ...$5.00.

and interests can be learned from the user’s search history (e.g., by
looking at the topics covered by the past queries). For example,
if there have been a lot of queries like “car racing” and “Porsche
club”, the user is probably interested in sports cars and “jaguar” is
likely to mean the car. Second, from the user’s past (implicit) indi-
cation of document relevance we can predict his/her reaction to the
current retrieved documents. For example, if the user searched with
the same query “jaguar” before and clicked on Jaguar US’s home-
page link, we have high confidence that the user would do it again
this time, and it makes good sense to list that webpage in the top.
Even when there is no exact occurrence of the current query in his-
tory, we may still find similar queries like “car racing” to be helpful.
Because the relevance judgment is usually only inferred from user
activities (e.g. clicking on a link, viewing/saving/bookmarking a
page), this belongs to the category of implicit feedback, which has
been studied in [3, 4, 8, 5] and shown to effectively improve re-
trieval accuracy. Finally, search history is readily available without
extra user efforts. In the web search domain, user search history
can be obtained by a proxy from web logs, or by a search engine
using HTTP redirects. If privacy is a concern, we can use browser
plug-ins and perform result reranking at the client-side [6].

Search history can be divided into short-termand long-termtypes.
Short-term search history is limited to a single search session, which
contains a (normally consecutive) sequence of searches with a co-
herent information need and usually spans a short period of time.
Often, a user composes an initial query, views the returned docu-
ments, and if unsatisfied, modifies the query and repeats the search
process. All these activities, which form the short-term search his-
tory, shed light on the current information need and make useful
search context. As shown in [5], queries and clickthrough data in
the short-term search history provide implicit feedback that can be
used to estimate a more accurate query language model and im-
prove retrieval performance.

Long-term search history is, in contrast, unlimited in time scope
and may include all search activities in the past. Compared with
short-term search history, it has several advantages. There is no
need to detect session boundaries (determining whether a previous
search shares the same information need as the current one), which
is often a difficult task. Nor do we need to limit the context to the
contiguous chain of searches in a session; any search in the past that
is related to the current one should be leveraged. This also means
that we may find context for the very first query in a chain, which
is impossible if the search history is constrained to be short-term.

Although the extension from short-term to long-term seems nat-
ural and promising, the full potential of long-term search history
cannot be reached easily. This is because long-term history in-
evitably involves a lot of noisy information that is irrelevant (some-
times even distractive) to the current search; only those searches

that are related to the current one should be considered as useful
context. For example, searches like “iraq war” that are irrelevant
to the current query “jaguar” would not be helpful, and such noise
can overwhelm the signal of related past searches. For this rea-
son, when exploiting short-term search history we need to detect
session boundaries first, so that only those searches with the same
information need are used. Unfortunately, most existing studies on
long-term search context fail to address this problem, even though
they still tend to get positive results; they often use all available
context as a whole (or divide it into chunks by time), without dis-
tinguishing between relevant and irrelevant parts. For example, the
current query and different (time-wise) chunks of history (browsed
web pages) are interpolated in [8] for personalized search, and user
profiles are constructed from indexed desktop documents in [9] to
rerank search results.

In this paper, we systematically study how to exploit a user’s
long-term search history to improve search accuracy. We propose
mixture models to represent a user’s information need and apply
statistical language modeling techniques to discover and exploit
relevant context from the search history. We develop several algo-
rithms to combine the mined search context with the original query
to obtain improved estimates of the query models. We then evaluate
them on a test set of Web search histories collected from some real
users. We find that the mined history information, especially the
clickthrough information, can substantially improve retrieval per-
formance for both recurring and fresh queries. We also find that
although recent history tends to be much more useful than remote
history (especially for fresh queries), the entire history is all useful
for improving the accuracy of recurring queries.

The rest of the paper is organized as follows. In Section 2, we
introduce a context-sensitive information retrieval approach that al-
lows us to incorporate contextual information mined from search
history. In Section 3, we define the search history mining task and
cast it as a query language model estimation problem. In Section 4,
we develop several algorithms based on statistical language models
to mine long-term search history. We describe how we build a test
set by collecting users’ web search history in Section 5 and present
our experiment results in Section 6. Section 7 concludes our work.

2. CONTEXT-SENSITIVE INFORMATION
RETRIEVAL

Traditional retrieval models take the retrieval problem as match-
ing a query with a set of documents, and thus are inadequate for
modeling personalized and contextual search. Previous work [5, 7]
has proposed to use statistical language models for context-sensitive
search. We follow this approach in this paper. As the background,
we briefly describe here how context-sensitive search can be achieved
through statistical language modeling.

A language model is a probabilistic model of text. In retrieval,
we often use the simplest unigram language models (i.e., word dis-
tributions) to model both queries and documents. In the Kullback-
Leibler (KL) divergence retrieval method [10], the retrieval task is
taken as computing a query language model 6, for the query g and a
document language model 6, for each document d and then scoring
the document according to their KL divergence D(64](04), which
is defined as

p(wl0q)

D(o4lI6a) = 3 pluwlf)log 250

weV

)

They are often not strictly what we define as search history
(queries and viewed results), but being instead all documents (web
pages and/or emails) the user has viewed over a long period of time.

where w is a word in the vocabulary set V.

Clearly, with this method, our main task is to estimate 6,4 and
04. We estimate the document model 6, using Bayesian smoothing
with Dirichlet prior [11]:

c(w; d) + pp(wlfc)
|d| + p

where c¢(w; d) is the count of w in d, |d| is the document length,
p(wl|@c) is the collection language model and p is the Dirichlet
prior. In our study, we use the TREC web corpus WT10g to esti-
mate the collection language model p(w|f¢) and set w to 10, which
is optimized for the contextless baseline and suitable for short snip-
pet texts.

When no other evidence is available (i.e., being contextless), the
query model 6, can be estimated solely based on the query text
using the Maximum Likelihood Estimator (MLE):

p(w|0a) =)

p(w]6,) = % @3

where c(w; ¢) is the count of w in ¢ and |g| is the query length. But
when there is contextual information mined from search history, we
can incorporate it as additional evidence to improve our estimate
of the query language model. This natural incorporation of extra
information is why language models are particularly suitable for
modeling context-sensitive search.

Specifically, given search history H, we can estimate the context-
sensitive query model p(w|@q,7) as

p(wl|0q,1r) = Ap(w|fq) + (1 = N)p(w|0n) 4)

where p(w|64) is the context-independent language model esti-
mated using query text only, p(w|0g) is a history language model
learned from search history, and A € [0, 1] is the interpolation
weight.

In the following sections, we will describe how to compute the
context-sensitive query model p(w|6q,) based on long-term search
history, and how to estimate .

3. SEARCH HISTORY MINING

In a typical scenario of information retrieval, after a query is
submitted, the retrieval system will return a set of result documents
with titles and summaries displayed. The user can then select to
view the full texts of some results (usually by clicking on them).
Thus the search history generally includes three components: past
queries, their search results, and the information on which results
were clicked/viewed (also known as clickthrough data).

Formally, let ¢; be a query, D, be the set of its result documents,
Ci(Cs C D) be the set of clicked ones, and ¢; be ¢;’s submission
time. If gx is the current query, its search history H} consists of
all previous queries qi,qz,- - ,qr—1 ordered by time, and their
corresponding D;’s and €;’s.

As described previously, we can use the following interpolation
formula to compute the context-sensitive query model for the cur-
rent query gx:

p(ww%ka) =)‘Qkp(ww%) + (1 -)\Qk)P(w|9Hk) (5)

where A, is the weight on the original query, and 8, is the history
model for gy.

The goal of search history mining is to estimate the best history
model @g, from g;’s history Hy, the one that is most informative
of the user’s search context and thus can bring greatest increase in
retrieval accuracy. There are several challenges in this task: First,
a past search can contain different components (query, results and

clickthrough). We should find the best way to combine these pieces
of contextual information. Second, as we have discussed, not all
past queries are equally important. We need to identify queries re-
lated to the current one and weight them appropriately. Third, when
the search history has hundreds or thousands of entries, efficiency
may become a concern. These issues will be addressed in the next
section.

4. HISTORY LANGUAGE MODELS

In this section, we discuss how to compute the history language
model 6, , which is regarded as the search context of the current
query g and to be interpolated with 6,, . Our strategy is to first
generate a unit history model for each history query, and then com-
bine them to get the overall history model.

4.1 Unit History Model

For each past query ¢; € Hy, we will estimate a language model
0; that captures the user’s information need at that particular mo-
ment. We call this a unit history model, because it represents a
basic unit of search history that can be integrated to produce the
overall history model. We use the following formula to compute it:

p(w]0:) = Aqp(wl|fg,) + (1 — Aq)-
oc Edjeei p(w|0dj) +onC Edjewei P(w|9dj)
oc|Ci| + one|NC;|

where), is the interpolation weight on the original query model,
fq; and 64, are the query and document language models, and
NG; = D; — €, is the set of non-clicked results. The fraction in
the above formula is essentially a weighted average of result docu-
ment models, with o and on ¢ being the weights on clicked and
non-clicked results, and |€| and [NC| being the number of clicked
and non-clicked results.

Below we discuss three special degenerated cases for setting the
parameters, each involving a single component of search history
(namely, query, documents and clickthrough):

(6)

e)\, = 1: (6) simplifies to
p(wl]0:) = p(w|fy;) O
The unit history model is based on query text only.
e)\, =0,0c = onc: (6) simplifies to

2a;ep, P(wl0a;)

wll;) = —4——— 8

p(wl6:) T ®)

The unit history model makes use of result documents only

by averaging document models. Because query texts are usu-

ally short, the user’s information need can often be better in-

ferred from these result documents. This resembles pseudo

feedback, and we expect the formula to give higher perfor-
mance than the previous one.

e)\, =0,0¢c # 0,0nc = 0: (6) simplifies to

w|0q.
p(w]f;) = M)
|Ci

The unit history model is generated from clicked result doc-
uments only. Because clicked documents reflect a user’s im-
plicit feedback, the constructed language model should be
more accurate than the one in (8), where clickthrough infor-
mation is not used. If there are no clicks (€; = @), the query
(and its unit history model) is ignored when this formula is
used.

The general form of (6) combines different components of search
history. Typically, we set cc > onc > 0, so that clicked results
receive more weight than non-clicked ones. On our data set, we
find that the setting A\, = 0,0¢ = 20,0n¢ = 1 achieves good
performance.

4.2 Overall History Model

We use a weighted average of the unit history models of past
queries as the overall history model:

P, Aip(w]0:)
Zth‘ €Hy Ai
We discuss two general weighting schemes below.

4.3 Equal Weighting

With equal weighting, unit history models of different past queries
are assigned equal weights:

p(wl|fr,) = (10)

i =1,Vq € Hy (11)

If the unit history models only rely on query texts (7), and queries
are assumed to be of equal length, the probability of a term in the
overall history model is proportional to its global frequency in all
queries of the history. Similar things can be said about (8) and (9)
for search results and those clicked ones.

This simple weighting scheme suffers from the problem that, as
it tries to assign equal weights to every piece of search history, none
of them obtains much weight to be influential. It produces a global
but weak description of the user’s long-term interests.

4.4 Discriminative Weighting

As we have discussed in Section 1, out of all past searches, only
those that are related to the current query are important as its con-
text. We should therefore concentrate the weight mass on them,
and ignore other random, noisy parts of the search history. We call
this approach discriminative weighting, as we are selective about
which parts of search history to use according to the current query.

Generally, the more similar to the current query a previous query
is, the more weight it should have in the computation of the overall
history model. Below we describe several methods for calculating
similarity scores between two queries, which can be used as inter-
polation weights in (10).

4.4.1 Cosine Smilarity

For each query ¢;, we compute a TF-IDF vector v; that corre-
sponds to the concatenation of all its result documents:

N+1
Vi [UJ] = dfzﬂ) v c(w, dj) lOg m, (12)
J i

where v; [w] is the element in the TF-1DF vector that corresponds
to term w, N is the number of documents in the background cor-
pus (WT10g), and DF'(w) is w’s document frequency. We choose
to use concatenation of result documents rather than query text be-
cause query text is usually very short, so there may not be enough
overlapping between two queries, even if they are related.

The cosine similarity between two vectors is defined as

Vi 'Uj
cos(vi, v;) oros] (13)

and is always in [0, 1].

Since cos(v;, vy) measures how close g; is related to g, we can
naturally use it for A; in (10).

4.4.2 EM Estimation
Here we present a more principled approach, in which \; is de-
rived from mixture weights in a generative model.
Suppose there is a mixture model Omix:
k—1
P(w|0nix) = pep(w|0c) + pgp(wl0y,) + > pip(wlé:), (14)
=1
where 6¢ is the background language model estimated from the
corpus (WT10g), 64, is MLE from the current query g ’s text, and
¢ is MLE from the concatenation of result documents of ¢;, a past
query in Hy:

Zdjemi c(w; dy)

Pl = = (15)
e, g and p; are mixture weights and constrained by
k—1
po+ g+ Y =1 (16)
=1

Let A denote the set of mixture weights (uc, g, ps). We want
to choose A™ to maximize the log likelihood for the mixture model
to generate the result documents of g:

A" = argmax, logp(Dk|A)
= argmax, Z Z c(w; dj) log p(w|Omix) (17)

d; €Dy wed;

From (14) and (17), it can be easily seen that, the closer ¢; is
related to g, the larger mixture weight (u;) ¢; will have in the
mixture model (because it fits D better). Indeed, p; reaches its
maximum when D; is identical to Dy. Therefore, we can use p;
for \; in (20).

To estimate these mixture weights, we use the EM algorithm. Let
wj be the j-th word in the concatenation of all result documents in
Dg. The Q-function is

S ((ZesIA) log pop(wl0c)

+p(Zoj|A"™) log pigp(w;0g,)

k—1
+ 3 p(ZIA) log pip(wilé)) (18)

i=1
where L = Zdjegi |d;] is the sum of g, ’s result document lengths,

A isthe set of parameters at the n-th iteration, and Zc;, Zy;, Zi;
are the hidden variables, indicating the events of w; being gener-
ated by 6¢, 0, , ¢: respectively.
In the E-step, we have
(n)

p(w,;|0
p(ZejIA™) = ko p(w;lfo)

(n) (n) k=1 (n)

po p(w;il0c) + pg " p(w;l|0q,) + 3277 wy plwjléi)

1§ p(w;16g,)

P(Zqi|A™) =

(n) -1 ,(n)

() (| i
p(Zi;|AM) = py p(w;ldi)

s p(w;|0c) + 1§ p(w;18g,) + SETE 1™ pw;|ey)

In the M-step, we have

(n+1) E]L'I:1 p(ch\A("))
pe =T

(n+1) 25:1 P(qu|A<n))
Hao =

D p(w;10¢) + p5 p(w;10g,) + EFE ™ plw; o)

(1) g1 P(Zig|AM)

Hoo =
Because we have computed 14, the mixture weight on g, we
may estimate Ay, in (5) based on it, instead of using a fixed value:

- Ha 19

Hq + Zf;11 Hi @)
This way, the weighting in the final contextual model 65 is very
flexible: when there is a rich amount of relevant search history (re-
flected by a large value of Ef;ll Wi compared to pg), there will
be significant weight on the history model 6, ; on the other hand,
when the search history is mostly irrelevant, the MLE model 6,
from query text will dominate. Moreover, all the weighting param-
eters (i.e., Ag,, and A;’s) will be estimated rather than manually set.

4.4.3 Hybrid Method

The EM estimation method, although shown to produce more ac-
curate weights, runs much slower than the cosine similarity method,
due to the fact that the EM algorithm usually needs many iterations
to converge, and each iteration is generally more complex than just
computing a cosine similarity value. This will be a big concern
for longer search history, when there are hundreds or thousands of
queries.

We observe on our data set that, with discriminative weighting,
only a small number of previous queries are most related to the
current query and receive non-insignificant weights (which is ex-
actly what we intend to see). Motivated by this, we first run the
cosine similarity method, identify the queries with highest similar-
ity scores, and keep them in a working set. We then run the EM
estimation method only on the queries in this working set, and as-
sign zero weights to other queries in the search history. We find
this approach yields similar retrieval accuracy as the original EM
method, yet runs almost as fast as the cosine method.

)\(Ik

5. DATA COLLECTION

To our knowledge, there is no publicly available collection of
search logs that contain reasonably long period of users’ search
history with implicit feedback information. Therefore, we chose
to create our own data set in the web search domain by making a
plug-in for the Firefox browser to record a user’s long-term search
history. Specifically, the plug-in saves to a log file all user search
activities that are captured from the browser, including queries is-
sued to the Google search engine, search results (with titles, sum-
maries and URLS) returned, and the information of which results
are clicked on. The plug-in collects search history in the back-
ground and is intentionally kept transparent from the user so that it
will not interfere with her normal search activities.

Four computer science students kept the plug-ins installed on
their personal computers for over a month and then submitted their
individual search logs to us (they were free to delete any sensi-
tive queries that they do not want to disclose). Next the users were
asked to pick at least 15 queries from their own search logs, starting
from the back (the most recent history). The queries selected from
the search logs would be evaluated to create a test data set. They
must satisfy the following conditions, so that there is room for po-
tential improvement of retrieval accuracy with long-term context.

1. A selected query should have at least one relevant document.
Thus misspelled queries and queries issued just to check for
the existence of something are excluded.

2. A selected query should either match the person’s interests
and background (e.g., computer science, pop music, football)

or belong to a search session (a chain of queries for the same
information need), being a reformulation of some previous

query.

For each query, we chose the top 20 results retrieved from Google
as the collection of documents (with Google’s ranking information
removed) to be scored by our retrieval methods. We only use their
snippet texts (title + summary). To evaluate these result documents,
the users were presented with the set of top 20 results retrieved from
Google and asked to judge whether each document was relevant or
not. If a query was a known-item search, i.e., if the user knew ex-
actly what the needed result would look like, then only that result
should be deemed relevant. Otherwise, if the user was exploring
some topic, then he/she should mark all results matching that topic
as relevant. For example, if the user has visited Jaguar US’s home-
page before and is searching for it again, only this result should be
considered relevant; if the user does not know Jaguar and searches
to learn about it, then a report of a new Jaguar model is also rele-
vant.

We distinguish two types of queries due to their different nature
and retrieval performance. If a query has occurred before in the
search history (in exact form or with keywords’ order changed) and
there are clicks associated with its earlier occurrence(s), it belongs
to the category of recurring queries. Otherwise, we call the query
fresh. Usually, the purposes of recurring queries are navigational
rather than informational or transactional [2]. Recurring queries are
also more likely to reflect the user’s long-term interests. It tends to
be easier to improve the retrieval performance of recurring queries,
as the user is very likely to choose exactly those results clicked on
in an earlier search.

Table 1 shows some statistics of the collected log data. The large
difference in the number of queries is due to some users not using
Firefox for all of their web searches.

Table 1: Statistics of search log data

userl | user2 | user3 | userd

days in search history 65 44 69 64

queries 1255 | 355 376 136

queries with > 1 clicks 607 238 207 79

avg. # clicks for query with > 1 clicks | 1.26 1.48 1.56 1.37

testing queries 71 63 19 17

fresh/recurring queries 54/17 | 59/4 | 12/7 | 13/4

avg. # rel. results per query 209 | 414 | 358 | 6.59

6. EXPERIMENT RESULTS

In this section, we empirically evaluate the performance of the
proposed methods on our data set of personal web search logs.
We will also study the influence on retrieval accuracy of individ-
ual components and different time cutoffs in search history.

We use the standard TREC mean average precision (MAP) and
precision at top 5 documents (Pr@5) as our evaluation metrics,
which respectively measure the system’s overall retrieval accuracy
and its performance for those documents that are most viewed. We
pool together the queries and judgments of all four users, so that
the evaluation result will be a weighted average over these users,
with the number of testing queries of each user as weights. We also
report the performance for fresh and recurring queries separately,
because they display very different behaviors.

6.1 Effects of Using Different Search History
Components

We first study how useful each search history component (i.e.,
query, documents and clickthrough) are as search context. Table
2 shows the performance of using only certain components with
the equal weighting and EM estimation methods. The rows “Con-
textless”, “Equal”, “EM” correspond respectively to the baseline
method of using only query text, equal weighting and discrimina-
tive weighting with EM estimation. The text in parentheses indi-
cate which component is used. For equal weighting, we set A4, to
0.1 for fresh queries and 0.02 for recurring queries, which perform
better than other values.

Table 2: Effectsof using different search history components

Fresh Recurring

MAP | pr@5 | MAP | pr@5

| Contextless | 0.371] 0.233 [0.265 [0.138 |
Equal (query) 0.355 | 0.228 | 0.309 | 0.206
Equal (docs) 0.387 | 0.264 | 0.396 | 0.231

Equal (clickthrough) | 0.394 | 0.258 | 0.470 | 0.250
Equal (combination) | 0.391 | 0.261 | 0.460 | 0.244
EM (query) 0.368 | 0.237 | 0.257 | 0.138
EM (docs) 0.404 | 0.275 | 0.390 | 0.244
EM (clickthrough) 0.425 | 0.274 | 0.772 | 0.331
EM (combination) 0.430 | 0.271 | 0.766 | 0.325

We find that from the search history, queries alone usually does
not help (except in the case of recurring queries with equal weight-
ing), probably because query texts are too short to make useful
search context. In contrast, result documents are able to improve
retrieval performance, especially for recurring queries. Finally,
clicked results yield the highest increase in search accuracy, sug-
gesting the usefulness of clickthrough as implicit feedback.

The fact that both result documents and clickthrough bring im-
provement in retrieval performance prompts us to combine them
by setting cc = 20onc¢ in (6), so that both result documents
and clickthrough are used in the computation of the history model.
However, we do not observe performance gain over using only
clickthrough.

6.2 Comparison of Contextual Models

Table 3: Retrieval accuracy of different methods
Fresh Recurring

MAP | pr@5 | MAP | pr@5
Contextless | 0.371 | 0.233 | 0.265 | 0.138
Equal 0.391 | 0.261 | 0.460 | 0.244
Cosine 0.409 | 0.265 | 0.705 | 0.325
EM 0.430 | 0.271 | 0.766 | 0.325
Hybrid 0.420 | 0.268 | 0.802 | 0.331

Table 3 shows the retrieval accuracy of different methods. The
rows “Contextless”, “Equal”, “Cosine”, “EM”, “Hybrid” correspond,
respectively, to the baseline method of using query text only, equal
weighting, discriminative weighting with cosine similarity, discrim-
inative weighting with EM estimation and the hybrid method. In
the methods that use search history, we combine result documents
and clickthrough by setting oc = 200 ¢ as before.

We observe that all contextual methods perform better than the
contextless one, indicating that long-term history indeed provides
helpful search context. We also find that recurring queries get a
lot more improvement from the use of search context than fresh
queries, because by nature recurring queries have more relevant
search history available as implicit feedback. As we have expected,
the discriminative weighting methods outperform the equal weight-
ing one, proving the advantage of selective use of search history.
Finally, we note that the EM estimation method achieves higher re-
trieval accuracy than the cosine similarity method, and the hybrid
method has comparable performance.

6.3 Effects of Using Different Search History
Lengths
To find out whether recent search history is most useful and
whether remote search history helps, we truncate the search his-
tory to different lengths (e.g., 1 day back from the current query),
and plot the change of MAP (of the EM weighting method) with
respect to time cutoff in Figure 1.

1 ‘
——fresh
0.8f| —=—recurring
a 0.6
s o—O—o—o—9 &
> o
0.4f —H—+—n—&— e
@————"9”"9’
0.2
0 : y - L L
time cutoff (hours)
1 : :
—+—fresh
osl —e—recurring e
76/—4} @_e/@/e
o
< 0.6—,@3
=y
0 42W FioRr ke e e

0.2 : : : : : ;
0 10 20 30 40 50 60 70
time cutoff (days)

Figure 1. Effectsof different search history lengths: within 12
hours (top) & within 70 days (bottom)

We see that for fresh queries, the dominant increase in MAP
comes from the most recent history (especially within one hour),
while for recurring queries, although recent history is clearly more
important, remote history also contributes to the improvement in
retrieval accuracy. We believe the difference is due to recurring
queries being more likely to reflect a user’s long-term interests.

7. CONCLUSIONSAND FUTURE WORK

In this paper, we systematically explored how to exploit long-
term search history, which consists of past queries, result docu-
ments and clickthrough, as useful search context that can improve
retrieval performance. We emphasized the importance of discrimi-
native use of search history, by concentrating on the most relevant

past queries. We cast the search history mining problem as esti-
mating a more accurate query model from evidence in the search
history, and developed methods based on statistical language mod-
eling for this task. We collected real web search data as our test set
and shown in our experiments that the contextual methods can ef-
fectively improve search accuracy over the traditional, contextless
method for both fresh and recurring queries, with the EM-based
discriminative weighting scheme achieving best performance. We
also found through our study of different cutoffs in search history
that although recent history is more important, remote history is
also useful, especially for recurring queries..

The current work can be extended in several ways: First, the
mixture model used in this paper is quite simple. For example, we
just concatenate the result documents and treat them equally, ig-
noring their internal relationship (e.g., they may be clustered). A
more appropriate generative model should take these issues into ac-
count. Second, in the web search domain the result documents are
actually structured (e.g. they have URLSs) and it would be interest-
ing to explore how these structure elements could be used. Third,
we plan to implement our algorithms inside a web browser search
plug-in (UCAIR Toolbar [6]) to provide contextual search on the
client-side, which would greatly benefit people’s daily search.

8. ACKNOWLEDGMENT

This work is supported in part by the National Science Foun-
dation grants 11S-0347933 and 11S-0428472 and by a Google Re-
search Grant. We thank the graduate students who have helped us
collect the search history data and make the relevance judgments.

9. REFERENCES

[1] J. Allan et al. Challenges in information retrieval. In SGIR
Forum, volume 37, 2003.

[2] A. Z. Broder. A taxonomy of web search. SSGIR Forum,
36(2):3-10, 2002.

[3] T.Joachims. Optimizing search engines using clickthrough
data. In Proceedings of SGKDD 2002, pages 133-142,
2002.

[4] D. Kelly and J. Teevan. Implicit feedback for inferring user
preference: A bibliography. SGIR Forum, 37(2):18-28,
2003.

[5] X. Shen, B. Tan, and C. Zhai. Context-sensitive information
retrieval using implicit feedback. In Proceedings of SGIR
2005, pages 43-50, 2005.

[6] X. Shen, B. Tan, and C. Zhai. Implicit user modeling for
personalized search. In Proceedings of CIKM 2005, 2005.

[7] X. Shen, B. Tan, and C. Zhai. Implicit user modeling for
personalized search. In Proceedings of CIKM 2005, 2005.

[8] K. Sugiyama, K. Hatano, and M. Yoshikawa. Adaptive web
search based on user profile constructed without any effort
from users. In Proceedings of WMV 2004, pages 675-684,
2004.

[9] J. Teevan, S. T. Dumais, and E. Horvitz. Personalizing search
via automated analysis of interests and activites. In
Proceedings of SGIR 2005, 2005.

[10] C. Zhai and J. Lafferty. Model-based feedback in KL
divergence retrieval model. In Proceedings of the CIKM
2001, pages 403-410, 2001.

[11] C. Zhai and J. Lafferty. A study of smoothing methods for
language models applied to ad hoc information retrieval. In
Proceedings of ACM SGIR' 01, pages 334-342, Sept 2001.

