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Abstract

The call stack of a program execution can be a very good
information source for intrusion detection. Thereisno prior
work on dynamically extracting information from call stack
and effectively using it to detect exploits. In this paper, we
propose a new method to do anomaly detection using call
stack information. The basic idea is to extract return ad-
dresses from the call stack, and generate abstract execu-
tion path between two program execution points. Experi-
ments show that our method can detect some attacks that
cannot be detected by other approaches, while its conver-
gence and false positive performance is comparable to or
better than the other approaches. We compare our method
with other approaches by analyzing their underlying prin-
ciples and thus achieve a better characterization of their
performance, in particular, on what and why attacks will be
missed by the various approaches.

1 Introduction

A lot of research has focused on anomaly detection by
learning program behavior. Most of the methods proposed
were based on modeling system call traces. However, there
has not been much improvement on system call based meth-
ods recently in part because system calls themselves only
provide limited amount of information. Invoking system
calls is only one aspect of program behavior. We can also
use other aspects, such as the information contained in the
call stack, for intrusion detection purposes.

There is prior work on using finite state automata (FSA)
to model program behavior. Wagner et al. proposed
to statically generate a non-deterministic finite automa-
ton (NDFA) or a non-deterministic pushdown automaton
(NDPDA) from the global control-flow graph of the pro-
gram [17]. The automaton was then used to monitor the
program execution online. Sekar et al. proposed to gener-
ate a compact deterministic FSA by monitoring the program
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execution at runtime [16]. Both methods were proposed as
system-call-based. However, what is really appealing is that
both implicitly or explicitly used the program counter in-
formation to construct states. The program counter (PC)
indicates the current execution point of a program. Because
each instruction of a program corresponds to a distinct PC,
this location information may be useful for intrusion detec-
tion.

In addition to the current PC, a lot of information can
be obtained about the current status and the history (or the
future, depending on how it is interpreted) of program exe-
cution from the call stack, particularly in the form of return
addresses. Thus, the call stack can be a good information
source for intrusion detection. However, to the best of our
knowledge, there is no prior work on dynamically extract-
ing information from the call stack and effectively using this
information to detect exploits.

In this paper, we propose a new anomaly detection
method, called VtPath, that utilizes return address informa-
tion extracted from the call stack. Our method generates
the abstract execution path between two program execu-
tion points, and decides whether this path is valid based on
what has been learned on the normal runs of the program.
We also developed techniques to handle some implementa-
tion issues that were not adequately addressed in [16], us-
ing techniques that are much simpler than those described
in [17].

Based on our understanding of the principles behind Vt-
Path and the approaches in [17, 16], we believe the VtPath
method can detect some attacks that cannot be detected by
the other approaches. We developed several attacks in our
experiments to verify that this is indeed the case. Our ex-
perimental results also show that the VtPath method has
similar convergence and false positive performance as the
deterministic FSA based approach.

Another contribution of this paper is that we attempt to
compare the various approaches by analyzing their under-
lying principles and thus achieve a better characterization
of their performance, particularly on what and why attacks



will be missed by the various approaches.

The rest of the paper is organized as follows. Section
2 describes the related research. Section 3 presents the Vt-
Path method. Section 4 discusses important implementation
issues. Section 5 presents experimental evaluation results.
Section 6 presents the comparison of the VtPath method to
other approaches. Section 7 summarizes the paper and dis-
cusses future work.

2 Redated Work

The callgraph model Wagner et al. proposed character-
izes the expected system call traces using static analysis of
the program code [17]. The global control-flow graph is
naturally transformed to a NDFA. This automaton is non-
deterministic because in general which branch of choices
will be taken cannot be statically predicted. The NDFA can
then be used to monitor the program execution online. The
operation of the NDFA is simulated on the observed system
call trace non-deterministically. If all the non-deterministic
paths are blocked at some point, there is an anomaly. It was
stated that there were no false alarms because all possible
execution paths were considered in the automaton.

Wagner et al. pointed out that the callgraph model allows
some impossible paths. Basically, if a function is called
from one place but returns to another, the model will al-
low the impossible path, which should not occur in any
normal run. We refer to this as the impossible path prob-
lem. To solve it, Wagner et al. proposed a complex push-
down automaton model, called the abstract stack model, in
which the stack forms an abstract version of the program
call stack. Namely, everything but the return addresses is
abstracted away. We use a similar virtual stack structure
for our method, but we avoid the complex generation and
simulation of pushdown automata. In addition, our method
dynamically extracts information from call stack at runtime,
while both of the above models only dynamically monitor
system calls.

One main problem of the above models is that the mon-
itor efficiency is too low for many programs. The moni-
tor overhead is longer than 40 minutes per transaction for
half of the programs in their experiments [17]. This is
because of the complexity of pushdown automata and the
non-determinism of the simulation. Also, too much non-
determinism may impair the ability to detect intrusions.
This problem is not well addressed in the paper. There may
be scalability problem too because of the human efforts in
refining models for some libraries.

Giffin et al. refined the ideas behind the above mod-
els [7]. Their approach applies static analysis on binary
executables, so it is not dependent on any programming lan-
guage, but on working platforms. They developed many op-
timization and obfuscation techniques to improve the preci-

sion and efficiency. In particular, “inserting null calls” is
their main technique to largely decrease the degree of non-
determinism and help solve the impossible path problem,
and consequently, increase the precision. This technique
requires the rewriting of the executables and the change of
the call name space. This may be appropriate for remote
execution systems, which is the application context of their
approach. However, this technique may be inappropriate
or undesired under the common host-based anomaly detec-
tion environment. In addition, Giffin et al. reported high
efficiency (low overhead) in their experiments. They added
large delay per real system call to simulate network round
trip time (RTT), and small delay (4 magnitudes lower than
the simulated RTT delay) for each null call inserted. It is
possible that most of the run time was spent on the simu-
lated RTT delay, and the relative overhead appeared small
even if many null calls were added. In particular, the net-
work delay for thousands of null calls inserted is only com-
parable to the delay for one real system call. The relative
overhead may not appear so small under the common host-
based anomaly detection environment with no network de-
lay involved.

The method proposed by Sekar et al. does not have the
problems related to non-determinism. Instead of statically
analyzing the source code or binary, the method (we call it
the FSA method) generates a deterministic FSA by monitor-
ing the normal program executions at runtime. Each distinct
program counter at which a system call is made is a state.
System calls are used as the labels for transitions. The FSA
can then be used to monitor the program execution online.
If the stack crashes, or a state or transition does not exist,
there may be an anomaly. There are false positives also be-
cause some legal transitions or states may never occur dur-
ing training. Because each transition is deterministic, the ef-
ficiency is high and the method will not miss intrusions due
to non-determinism. The FSA method also suffers from the
impossible path problem mentioned earlier in this section.
This problem was not addressed in the paper. Also, some
implementation issues were not adequately addressed. The
way DLLs were handled is so simple that some intrusions
on the DLLs may be missed. We will have a more detailed
discussion on these issues later in the paper.

Ashcraft et al. proposed to use programmer-written com-
piler extensions to catch security holes [1]. Their basic
idea is to find violations of some simple rules using system-
specific static analysis. One example of these rules is “inte-
gers from untrusted sources must be sanitized before use”.
While we agree that their method or this kind of methods
can be very useful in finding programming errors, we do not
think it is a panacea that can solve all the problems. A lot
of security requirements are subtle and cannot be described
in simple rules. For example, their range checker can only
guarantee “integers from untrusted sources are checked for



range”, but not “checked for the right range”, because “the
right range” is very subtle and too instance-specific to be
developed for each instance of untrusted integers. As a re-
sult, sometimes we can decide whether an action should be
permitted only by checking whether this action occurs be-
fore in normal situations. We think dynamic monitoring
based anomaly detection methods, such as our method and
the FSA method, are still important even if there are many
static bug removers. In fact, these two kinds of approaches
are good complements to each other. The static methods
can remove many logically obvious bugs, and because we
cannot remove all the bugs, dynamic monitoring can help
detect the exploits on the remaining holes. Another problem
with Ashcraft’s approach is that the rules have to be system-
specific because “one person’s meat is another person’s poi-
son”. The human efforts to develop these rules may not be
as easy. If the rules developed are not precise enough to
generate low false positives, the programmers will just think
of some ways to bypass the rule checking.

There are many methods that only model system call
traces. The N-gram method models program behavior us-
ing fixed-length system call sequences [8, 5]; data min-
ing based approaches generate rules from system call se-
quences [12, 11]; Hidden Markov Model (HMM) and Neu-
ral Networks were used [19, 6]; algorithms originally devel-
oped for computational biology were also introduced into
this area. In [20], Wespi et al. presented a novel technique
to build a table of variable-length system call patterns based
on the Teiresias algorithm. Teiresias algorithm was initially
developed for discovering rigid patterns in unaligned bio-
logical sequences [14, 4]. This algorithm is quite time and
space consuming when applied on long traces containing
many maximal patterns. Wespi et al. announced that their
method worked better than N-gram. However, N-gram gen-
erated the highest scores it could possibly generate on all
their intrusion traces. This may suggest the attacks they
chose are inherently easy to detect. So although Wespi’s
method generated higher looking scores, this does not nec-
essarily mean it works better.

Cowan et al. proposed a method, called StackGuard, to
detect and prevent buffer overflow attacks [2, 3]. Stack-
Guard is a compiler technique for providing code pointer
integrity checking to the return address. The basic idea is
to place a “canary” word next to the return address on the
stack, and check if this word was modified before the func-
tion returns. This is a good idea and may work well with
buffer overflow attacks, but it is not effective in detecting
many other kinds of attacks.

All methods described above have their advantages and
disadvantages. In the next section, we will develop a new
method that combines some advantages of the automaton
based methods while avoiding their problems. Our method
trains the model by monitoring at runtime, so it is closer to

the FSA method.

3 TheVtPath Mode

Although closely related, our method has many prop-
erties that the FSA method does not possess. It uses call
stack history as well as the current PC information. This
can help detect more intrusions. It explicitly lists which
function boundaries a transition traverses. This makes the
model more precise. Our method is able to handle many im-
plementation issues, such as signal handling. These issues
were not considered for the FSA method. Also, our method
handles DLL functions just like statically linked functions.
This avoids the potential problems for the FSA method re-
lated to its unnecessary simplification. Our model is called
VtPath because one main concept we use is called virtual
path.

3.1 Background

Each instruction corresponds to a distinct program
counter. However, it is neither necessary nor possible in
efficiency to follow all these program counters. The FSA
method records the program counter information at each
system call. This is a good choice because system calls
are where the program interacts with the kernel. In our ap-
proach, we also record program counter information at each
system call. In the future, we may record information at
other places as well, for example, when each jump or func-
tion call instruction is executed. We make the following
assumption:

Assumption The program counter and call stack can be
visited with low runtime overhead when each system call is
made.

Using kernel-level mechanism to intercept system calls
can achieve low runtime overhead. Our experiments later
will show the overhead for pure algorithm execution is ac-
tually very low.

We will discuss how to handle DLLs later in the paper.
In this section we assume all the functions that the program
invokes are statically linked. We use relative program coun-
ters because the program may be loaded at different places
for different runs, but the relative positions within program
memory space will remain the same.

3.2 Virtual Stack Lists and Virtual Paths

As each system call is made, we extract the system call
name and the current PC, as the FSA method does. In
addition, we also extract all the return addresses from the
call stack into a virtual stack list A = {ag,a1,...,an-1},
where n is the number of frames in the call stack, and a,,_1
is the return address of the function last called. The current



PC is then added into the list A as item a,,. For example,
assume a function f() is called within the main() function.
Then there are three elements in the virtual stack list when a
system call in function f() is made. ag and a, are the return
addresses of main() and f(), respectively; a5 is the current
PC. The virtual stack list denotes a history of all unreturned
functions.

Our model uses a virtual path to denote a transition be-
tween two system calls. Assume A = {ao,ay,...,a,} and
B = {bg,b1,...,bn} are the virtual stack lists for the cur-
rent and the last system calls, respectively. Note that the
two system calls may be called in different functions. We
compare the lists A and B from the beginning, until we find
the first subscript / so that a; # b;. As shown in Figure 1,
the virtual path between the two system calls is defined as:

P =b,, — Ezit;...;bj11 — Ezit; by — ay;

Entry — ajy1;...; Entry — ay, Q)

where Entry and Exit are two specially defined PCs de-
noting the entry and exit points of any function.

B A

b, &,
b|-1 al 1
bl =——) al
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Figure 1. The virtual path from the last system
call to the current system call, whose virtual
stack lists are B and A, respectively.

The definition of the virtual path abstracts the execution
between two system calls. The program sequentially returns
from some functions (corresponding to the return addresses
b1 t0 b;), and then gradually enters some other functions
(corresponding to the return addresses a; to a,,_1). We tra-
verse the virtual stack lists back to a common function (cor-
responding to the return address a;_; and b;_1, which are
equal), below which both system calls are made.

For recursive functions, the control flows generally are
very data-driven. The virtual stack lists obtained may be
different for each distinct set of parameters, which results
in a lot of distinct virtual paths. This could make training
harder to converge or result in higher false positive rates.
We modified our method to avoid this problem. A common
property of recursion in virtual stack lists is that the same

return address occurs repeatedly. When our method finds
out that a pair of return addresses are the same, all the return
addresses between them are removed from the virtual stack
list, including one end of the pair. This reflects the fact
that we only record each function at most once in the call
history.

3.3 Training Phase

During training, we use a hash table, called RA (return
address) table, to save all the return addresses ever occurred
in the virtual stack lists of system calls. If the return ad-
dress is the last item in a virtual stack list (the current PC
item), the corresponding system call number is saved with
it. Another hash table, called VP (virtual path) table, is used
to save all the virtual paths. Virtual paths are denoted in a
compact string form.

The return addresses and virtual paths are gradually
added during many normal program runs. For each run,
we assume there is one null system call with empty virtual
stack list before the first real system call, and another one
after the last real system call. The virtual path between the
null system call and the first real system call, whose virtual
stack listis A = {ag,a1,...,a,}, is:

P = Entry — ao;...; Entry — a, 2

The virtual path between the last real system call, whose
virtual stack listis B = {bg, b1, ..., b}, and the null sys-
tem call is:

P =b,, — Exit;...;by — Exit; ?3)
3.4 Online Detection Phase

After training, we can use the hash tables to monitor the
program execution online. As each system call is made, we
record its virtual stack list. Like in the training, we also as-
sume there are null system calls at the beginning and the end
of the program run. There may be several types of anomaly
phenomena:

o If we cannot get the virtual stack list, the stack must
be corrupted. This is a stack anomaly. This kind of
anomalies often happens during a coarse buffer over-
flow attack.

e Assume the current virtual stack list is A =
{ap,a1,...,a,}. We check whether each item is in
the RA table. If any return address is missing, this is a
return address anomaly.

e If a,, does not have the correct system call, this is a
system call anomaly.



e \We generate the virtual path between the last and the
current system call according to the equations (1), (2)
or (3). If the virtual path is not in the VP table, this is
avirtual path anomaly.

One problem for the FSA method is that the intruder
could possibly craft an overflow string that makes the call
stack looks not corrupted while it really is, and thus evading
detection. Using our method, the same attack would prob-
ably still generate a virtual path anomaly because the call
stack is altered. Our method uses and saves more informa-
tion in training, so it is harder for attacks to evade detection.

3.5 Impossible Path Problem

Our method can help solve the impossible path problem
mentioned before. Assume the attacker can somehow mod-
ify the return address within a function f(), so that the pro-
gram enters function f() from one call point and exits from
another. This will not trigger an alarm for the FSA method
because all the transitions are legal. Our experiments later
will show carefully designed attacks exploiting this problem
can fool callgraph and abstract stack methods as well. This
kind of attacks can help the intruder because some critical
part of the program could be jumped, for example, some
permission checking code. The intruder can also use the
technique to repeat the execution of some program part to
create race conditions.

Our method will disallow the virtual path between the
last system call before the call stack alteration point and the
first system call after the alteration point. This is because
in the call stack, the return addresses of function f() for
these two system calls will be different. These two return
addresses will be included, resulting in an invalid virtual
path.

4 Implementation I ssues

Wagner et al. addressed some implementation issues for
their statically generated models [17]. If not handled prop-
erly, these issues will also affect the effectiveness of the dy-
namic monitoring approaches. However, Sekar et al. only
addressed one of the issues regarding DLLs [16]. More-
over, we believe that their method simplifies the behavior of
DLLs so much that many intrusions on these DLLs may be
missed. We find that some of these implementation issues
are much easier to handle at runtime than at static analy-
sis because some information is only available at runtime.
Wagner et al. also pointed out this as the second principle
in their paper [17].

4.1 Non-Standard Control Flows

For optimization and convenience, some non-standard
control flows, such as function pointers, signal handlers and
setjmp() function, are often used in programming. Wagner
et al. stated that these features are always used in real appli-
cations of interests for intrusion detection [17]. They also
found that function pointers and setjmp() are extensively
used in some library functions.

Signals A signal handler is a function that is invoked
when the corresponding signal is received. The program
suspends the current execution and turn to the signal han-
dler. It continues the execution from the suspended point
after the signal handler returns. It is hard to consider signal
handling in the model because a signal may occur anytime
during the program execution. The problem is further com-
plicated if signal handlers can be called within each other.
If we treat signal handler calls as ordinary function calls in
training, there will be false positives when signals occur at
new places.

When the first system call in a signal handler is executed,
we save the information about the last system call, includ-
ing its virtual stack list. The last system call is then set
to the null system call. When the signal handler returns,
we restore the information about the last system call. This
framework can be easily extended for the multi-level signal
handler case. Each execution of signal handlers is treated
like a program run. The same techniques used for training
and online detection before can still be applied here with
signal handlers.

For Linux, when a signal handler is called upon the re-
ceipt of a signal, a sigreturn system call is inserted into the
stack frame. It will be called when the signal handler re-
turns, to clean up the stack so that the process can restart
from the suspended point. If we find a new sigreturn sys-
tem call in the call stack when a system call is made, we
know a signal handler was executed. If we encounter sigre-
turn, the signal handler just returned. Our method is simpler
than Wagner’s method because it does not need to monitor
the signals received or signal handler registrations.

setjmp()/longjmp() calls and function pointers The
setjmp()/longjmp() library functions are useful for excep-
tion and error handling. The setjmp() call saves the stack
context and environment for later use by longjmp(), which
restores them. After the longjmp() call is finished, the ex-
ecution continues as if the corresponding setjmp() call just
returned. Function pointers are used to dynamically choose
a function to call at runtime.

It is hard to handle them statically because it is hard to
predict statically the value of a function pointer, or which
setjmp() call is corresponding to a longjmp() call. Wag-
ner et al. can only come up with some rough solutions
that make the model more permissive than necessary or add



more nondeterminism because their methods do not train at
runtime. For our method, there is no such problem because
it does not need to be aware of function pointers or the li-
brary calls. In detection phase, if a new function is called
through a function pointer, or a new longjmp()/setjmp() pair
appears, our method will generate an anomaly. It is reason-
able to generate an anomaly here because some new situa-
tions have happened that never occurred before in training.

4.2 Dynamically Linked Libraries

One problem for both our method and the FSA method
is related to dynamically linked libraries (DLLS). The dif-
ficulty is that the functions within DLLs may be loaded at
different relative locations (comparing to the static portion)
for different program runs, so the program counters may
change from run to run. The methods Wagner et al. pro-
posed do not have the above problem because they do not
use PC information for online monitoring.

The FSA method tried to solve this problem by travers-
ing the stack back to the statically linked portion. Using the
virtual stack list concept, this means that the FSA method
uses the last item in the list that is in the statically linked
portion as the state. The behavior of a function in DLLs
is simplified to a list of system calls that can be generated
by this function and all functions it called. There will be
states that have many transitions pointing to themselves la-
beled with these system calls. This simplifies the model
for DLLs a lot. However, intrusions may also occur in the
DLLs. For example, the intruder may install the Trojan ver-
sion of a DLL. The FSA method may make the model for
DLLs too simple to detect these intrusions. As detailed in
a later section, for security critical daemon programs in our
experiments, most system calls are actually made in DLLs.

We model the functions in DLLs just like any statically
linked function. During training, we use a “block” lookup
table to save the information for each executable memory
block of each forked process, including the start address, the
block length, the name (with full path) and the offset of the
file from which the memory block was loaded. We use the
block length, file name and offset but not the start address
to match the same memory blocks in different runs. When
we get a return address, we can use the block lookup table
to decide which memory block it is in and what the relative
PC within the block is. These two pieces of information
together can uniquely distinguish a return address. Each
return address is denoted by a global block index and an
offset within the block.

There can be another kind of anomaly: block anomaly.
This happens when we cannot match a memory block to
any memory block occurred during training. This can be
because the intruder is trying to load another DLL.

For Linux, there is a pseudo file named “maps” under

the process’s information pseudo file system “/proc”. This
file contains all the memory block information we need.
There are structures containing similar information under
other flavors of UNIX, such as Solaris.

Using the above approach, we can match a dynamically
loaded code block to the same code blocks in other runs,
although this block may be loaded to a different place. A
return address can be uniquely distinguished, and the func-
tions in DLLs can be modeled and checked just like stati-
cally linked functions.

4.3 Threads

Currently, there are many different ways to implement
threads. As far as we can distinguish which thread gen-
erates a system call, there is no problem for applying our
method on multi-threaded applications. For Linux, differ-
ent threads actually have different process IDs, so we can
distinguish threads by distinguishing their 1Ds. For other
flavors of UNIX, we can try to find other ways to distin-
guish threads.

5 Experimental Evaluation

In this section, we present results from our experiments.
We first describe the experiments on comparing VtPath with
FSA in terms of convergence time, false positives, over-
head, and detection of common root exploits. We then de-
scribe the experiments on evaluating the effectiveness of
VtPath against some attacks, including impossible path ex-
ploits, that can evade several other detection models, and
discuss the lessons learned.

5.1 Experiments on Comparing VtPath with FSA

Sekar et al. conducted experiments on normal data for
some security-critical daemon programs [16]. They showed
FSA uniformly worked better than N-gram in the sense
of convergence speed, false positive rates and overhead.
We conducted similar experiments to compare our VtPath
method with FSA.

If all functions are statically linked, for the same pro-
gram run, whenever there is a new transition for FSA, there
is also a new virtual path for VtPath. This is because the vir-
tual path contains all the information of the corresponding
transition. So generally speaking, virtual paths are more
specific than transitions. For VtPath, we should expect a
slower convergence speed, a higher false positive rate and a
higher detection rate. When DLLs are involved, the situa-
tion is somewhat complicated. As FSA simplifies DLL be-
havior model, it should have even faster convergence speed,
fewer false positives, and lower detection rate. But there
are situations where the simplification may also increase the



convergence time and false positives. This is because one
intra DLL function transition may map to different transi-
tions at different DLL function call points, due to stack tra-
verse to the statically linked portion. The situation becomes
severe if some frequently called DLL functions have many
intra-function transitions. For programs using a lot of sig-
nal handling, the convergence time and false positive rates
of VtPath will benefit from its signal handling mechanism.

We conducted experiments on security critical daemon
programs f t pd and ht t pd. We used the original FSA im-
plementation from the authors, and compared VtPath with
it. For fairness, all the comparison was based on data col-
lected from the same program runs. The experiments were
conducted on a RedHat 7.2 workstation with dual Pentium
111 500MHz processors. We used WebStone 2.5 benchmark
suite to generate HTTP traffic [13]. The files and visiting
distribution were copied from our laboratory web server.
For FTP experiments, we wrote some scripts using the “ex-
pect” tool. These scripts can execute commands that mimic
some common user activities, such as downloading or up-
loading files and directories. The scripts were randomly ex-
ecuted to exercise the FTP server. The files were copied
from one lab user’s home directory.

We found out some bugs in the original FSA implemen-
tation, which contributed to higher false positive rates and
slower convergence. We modified the programs and created
our own FSA implementation. We will present our results
for the VtPath implementation and both FSA implementa-
tions.

5.1.1 Convergence

The training process is considered as converged if the nor-
mal profile stops increasing (i.e., with no new behavior
added). The convergence speed is important because the
faster the training converges the less time and effort are
needed. For FSA, the normal profile consists of states and
transitions. There is always a new transition whenever there
is a new state because the state is a part of the corresponding
transition. The above statements are also true for VtPath if
we use “return address” instead of “state” and “virtual path”
instead of “transition”. Therefore, we believe that the num-
ber of virtual paths or transitions is a good metric to mea-
sure convergence speed because the profile stops increasing
if this number stops increasing. These numbers are plotted
against the numbers of system calls used for training, which
are presented in logarithmic scale.

We made a program to start the daemon program, and
simultaneously record the traces for both methods. When
the number of system calls made exceeds a preset limit, the
program stops the daemon program. By this way, we gen-
erate traces with different lengths. We apply these traces
incrementally starting from the shortest traces for training

on both methods. Every time a trace is applied, the profile
is copied and the convergence metric is calculated.

Figure 2 shows the results for ft pd. The solid line
with star marks is for VtPath; the dashed line with square
marks is for our FSA implementation; the dotted line with
circle marks is for the original FSA implementation. The
interesting thing is that the number of virtual paths actu-
ally increases more slowly than the number of transitions.
This may be due to the DLL or signal handling related is-
sues discussed at the beginning of this section. The original
FSA implementation generates even more number of transi-
tions. For VtPath and our FSA implementation, the profile
increase stops after about 5M system calls are processed.
The ht t pd experiments show similar results in terms of
the comparisons between the methods.
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Figure 2. Convergence on f t pd

In our ht t pd experiments, less than 1% of the system
calls are actually made in the statically linked portion. For
more than 30% of the system calls, FSA has to go back
at least 3 call stack frames to find a return address in stat-
ically linked portion. This means at least 3 levels of DLL
functions are called for 30% of the system calls. These facts
may suggest that DLLs are very important, and the simplifi-
cation of DLL behavior by FSA may have severely impaired
its detection capability.

5.1.2 FalsePositives

For f t pd experiments, we collect several normal testing
traces ranging from 1M to several million system calls for
each method, with a script execution distribution slightly
different from what was used for the convergence experi-
ments. As Sekar et al. argued in [16], this is to account for
the fact that things may change between the training and de-
tecting times. We use the profiles saved in the convergence
experiments to analyze these testing traces. Like what Sekar



et al. did in [16], each mismatched return address (state) or
virtual path (transition) is counted as a false positive. The
false positive rates are calculated as the number of false pos-
itives over the number of system calls in each trace, and
averaged over the several testing traces for each method.

Figure 3 shows the relationship between the average
false positive rate and the number of system calls used for
training for f t pd experiments. Note both axes are in log-
arithmic scale. VtPath has almost the same false positive
rates as our FSA implementation. Actually, using the pro-
files corresponding to more than 1M system calls, there is
no false positives on all testing traces. The original FSA
implementation generates much higher false positive rates
at most points. Our ht t pd experiments show similar re-
sults in terms of comparisons between the methods.
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Figure 3. False positive rates on f t pd

5.1.3 Runtimeand Space Overhead

We use the same user-level mechanism to intercept system
calls as FSA. As pointed out by Sekar et al. [16], this mech-
anism incurs relatively high runtime overhead. They esti-
mated that system call interception incurs 100% to 250%
runtime overhead, while the overhead of their algorithm ex-
ecution is only about 3%. For real applications, we want to
use kernel-level mechanisms that incur much lower system
call interception overhead. In this section, we only compare
the algorithm execution overhead for both methods.

We use the average process time per system call stop
to evaluate the algorithm runtime overhead. In our exper-
iments, for FSA, the value is about 350 milliseconds for
training and 250 milliseconds for detection. For VtPath, the
value is about 150 milliseconds for both training and de-
tection. It is interesting that the VtPath algorithm actually
executes faster because, theoretically, it should be a little
bit slower since it needs to do more work. The reason may

be that we paid much attention on efficiency for our VtPath
implementation.

The space overhead for VtPath, however, is higher than
FSA. This is because it needs to save more information of
call stack. For our f t pd experiments, the profiles that the
FSA code creates are about 10K bytes, while the profiles
that the VtPath code creates are about 30K bytes. These
profiles should require less spaces when loaded into mem-
ory because the profiles saved on disk are human readable.

5.1.4 Detection of Common Exploits

We have also tested VtPath and FSA against several recent
local and remote root exploits, namely efstool (local root),
dhepd v3.0.1rc8, and gdm v2.0betal-4. Both VtPath and
FSA successfully detected all of these exploits in our exper-
iments.

5.2 Impossible Path Exploits and Beyond

We implemented two example attacks, including an im-
possible path exploit first introduced in [17], to demonstrate
the effectiveness of the VtPath approach. The attacks were
realized and tested on a RedHat 7.3 machine.

We evaluate the implementation of our approach as well
as related approaches such as abstract stack, N-gram, call-
graph, and FSA, under the same conditions to determine
how effective the approaches are against the test attacks we
develop. In our experiments, we use working implementa-
tions of N-gram and FSA we received from the authors (the
bugs we found do not impair the detection ability of FSA
for our test attacks). For abstract stack and callgraph, we do
not have access to the implementations and thus we do all
the tests manually using the algorithms described in [17].

Our approach is able to detect both attacks 1 and 2 de-
scribed below. None of the other approaches we analyze
detect either of them. We have also tested our approach
against the mimicry attacks described in [18]. We find that
our approach as well as FSA is able to detect the mimicry
attacks. However, we find a way to improve the mimicry at-
tacks to make them invisible to FSA. We achieve this by ma-
nipulating the stack contents that are analyzed by FSA im-
plementation in such a way that FSA will mistakenly trace
back to a legitimate system call in the text segment. The
masked mimicry attack we develop will not be detected by
the FSA implementation. VtPath, however, will still be able
to detect both the original and the masked mimicry attack.
We plan to describe our improvements of mimicry attacks
to evade IDS in a separate paper.

In Section 5.2.3 and Section 5.2.4, we will present our
critique of the attacks 1 and 2 we implemented and consider
some general ideas behind the possible attacks against the
detection models discussed in this paper.



5.2.1 Attack 1

As mentioned earlier, due to the lack of precision of many
program execution models, it may be possible for an at-
tacker to jump a security-critical section of a program code
without being detected by IDS. We refer to the class of at-
tacks that exploits this vulnerability as impossible path ex-
ploits (IPEs). The attack 1 we implement belongs to the IPE
class. To the best of our knowledge, this is the first working
implementation of the IPE attack.

Attack description. The attack works as follows. Con-
sider login_user() function, shown in Figure 4. There are
two possible execution paths in this function because of the
if() statement. If is_regular(user) returns true, path num-
ber one is followed. Otherwise, path number two is fol-
lowed. Suppose the function read_next_cmd() called at (1)
contains an overflow at the strcpy() statement. Then, an at-
tacker can substitute the return address of the function so
that the read_next_cmd() returns to (l1), the address where
the other read_next_cmd() would otherwise return.

void read_next_cmd(){
uchar input_buf[64];
umask(2); I sys_umask()
/I copy a command
strepy( &input_buf[0], getenv( "USERCMD"));
printf( "\n"); I sys_write()
}
void login_user(int user){
if(is_regular(user)){
/[ unprivileged mode
read_next_cmd(); // (1), this function will
/I be overflowed

// handle commands allowed to a regular user
return;
}
I/ privileged mode
read_next_cmd();  // (1), this function call
[/l will be skipped
/I ——> this is where the control will be
/I transferred after a ret in read_next_cmd() at (I)
seteuid(0);
system( "'rsync /etc/master.passwd ok@aeou.com:/ipe" );
/I and other privileged commands accessible only to
I/ superuser

Figure 4. Pseudo code for attack 1

None of the existing models except VtPath will be
able to differentiate between the sys.write() called when
read_next_cmd() at (1) is called and the sys write() called
when read_next_cmd() at (I1) is called. Consequently, be-

cause of imprecision of the models, including the ones for
N-gram, abstract stack, callgraph, and FSA, after the jump
an IDS would not detect an anomaly. The IDS would think
the program has followed a legitimate execution path num-
ber two.

VtPath can detect the attack since in addition to veri-
fying program counters and state transitions, it also sees
stack context for both invocations of read_next_cmd().
More specifically, it can see an invalid virtual path from
sys_umask() to sys write() in read_next_cmd() at (1), as the
return address of read_next_cmd() is changed by the over-
flow in strcpy().

5.2.2 Attack 2

Attack description. This attack works as follows. f(),
shown in Figure 5, is called from main() twice for the fol-
lowing two operations - checking a user name and checking
a password. f() selects which operation to perform based on
its parameter. The parameter is saved in a variable, mode.
The variable is modified by an attacker when the adjacent
local buffer, input, is overflowed. The local buffer is over-
flowed with a valid username and trailing zeros so that when
f(1) is called, the value of mode is changed to zero. Under
attack, instead of checking a user name and then checking
a password, f() checks a user name twice. As a result, an
attacker obtains access without knowing a password.

This attack will be detected by VtPath because it will see
an invalid path between the sys close() when f(1) is called
and the following sys write() in main(). N-gram, abstract
stack and callgraph models will not be able to detect the
attack because both branches in f() have the same system
calls and the system call sequence stays unchanged during
the attack. FSA will miss the attack because the transition
from sys _close() to sys write() is a valid FSA transition.

5.2.3 Observations

Based on the two attacks we described above, we can make
the following general observations. First, both attacks re-
quire a way to change the control flow of a program. For
our sample attacks we use buffer overflows. We realize that
buffer overflows are not always possible and will eventu-
ally become a less significant threat. However, we believe
our choice is justified given that over two-third of CERT’s
advisories in recent years were buffer overflows [15].
Second, programs that are vulnerable need to have a spe-
cific structure allowing, for example, a critical section to
be jumped. In attacks described above, we show two ex-
amples of the possible program structures that can be ex-
ploited, namely a security-critical if() or a function whose
argument controls execution and can be overflowed. For
the IPE in Attack 1, it is also necessary that there be a func-
tion that is called from more than one point in a program.



f(int arg){

int mode = arg; [l this variable is overflowed
char input[10];
fopen(); Il sys_open(), open passwd file

I overflow, changes’'mode’ variable => execution flow
scanf("%s", &input[0] );
if( mode == CHECK_UNAME ){ // check username?

fread(); Il sys read(), read from passwd file
fclose(); Il sys _close()

if(is valid user(input) ) ret = 1; elseret = 0;

}

elseif( mode == CHECK_PASSWD ){ // check password?

fread(); /I sys_read(), read from passwd file
fclose(); Il sys close()
if(is_valid_pass(input) ) ret = 1; elseret = 0;
}
return ret;
}
void main(){
printf( prompt ); Il sys write()
ret=f(0); /1 (1), read/check username

if(ret) ret =f(1); // (I), read/check password
/I'if username was correct

printf( "Authenticated\n" ); // sys write()

if(ret)

execve( "/bin/sh");

}

/I superuser mode

Figure 5. Pseudo code for attack 2

When the control flow of a vulnerable program is changed
as in Attack 1, the function is exploited and a jump occurs.

5.2.4 Generalizations

The attacks we describe here have a common property in
that they take advantage of the inherent limitations, or the
insufficient level of granularity, of the IDS model. The in-
formation (or audit data) as well as the modeling algorithm
used by an IDS model can be inadequate in a such a way that
some attacks do not manifest as anomalies. For instance,
attackers can exploit the fact that many anomaly-based IDS
only check their program behavior models at a time of a
system call [16, 17, 8]. Consider the example in Figure 6.
This attack will not be detected by any of the approaches
we described so far. VtPath will also be unable to detect the
attack unless the IP1 is somewhere else in the program at a
different level of nestedness so that there is an anomaly in
the stack contents that can be detected.

As [10, 9] proposed and [17] pointed out, it is important
that the intended behavior of a program is taken into account
in a model. If a program comes with a complete specifi-
cation of its intended behavior, any attack that causes the
program to behave differently or violating the specification
can be detected, provided that an IDS can check the pro-

fOf

I read in some large string z, syscalls are fine here
f00);

/I important: f1() has no system calls

/it copies zto x, z islarger than x, so x is overflowed,
/I after the ret instruction, the overflow code can

/I jJump anywhere within f(), aslong asit is between

/I £1() and the next system call;

/I for example, the code can jJump to IP1

f1();

if( cond ){
/I regular user privileges

return;

}

IPL:

/I superuser privileges
execve( "/bin/sh" );

}

Figure 6. Pseudo code for granularity attack

gram behavior against the specification precisely. For our
purposes, such an IDS will be considered to have a maxi-
mal level of granularity because it can detect all attacks that
cause the program to deviate from its intended behavior. In
most cases, an IDS has an inadequate level of granularity
and thus there are always attacks on the program that can
evade detection.

5.25 Importance of IPEs

We recognize that a successful execution of the attacks we
described above is contingent upon quite a few variables
and may not always be possible. It can be tempting to dis-
miss the problem of IPEs altogether as having little rele-
vance since finding an existing piece of code that is ex-
ploitable may not be easy. Besides, as with many other
attacks, the attacker is constrained by the need to perform
reconnaissance and to have access to the details of the envi-
ronment on the attacked host, particularly the IDS and other
protection tools used.

We must point out, however, that instead of looking
for vulnerable code, attackers can introduce IPE-vulnerable
code into open source products in the form of innocent im-
provements or legitimate bug fixes. In contrast to other se-
curity flaws that attackers may attempt to inject, changes



needed for IPEs can be made very subtle, which makes them
less likely to be detected by code inspection. One of the rea-
sons is that it is typically the structure of the code that makes
it vulnerable to IPE, not the actual commands. Furthermore,
it seems natural to assume that attackers will do everything
in their power to disguise the IPE-vulnerable code. This can
be done, for example, by gradually shaping the structure of
a program code over series of patches.

6 A Comparison of System Call Based

Anomaly Detection Approaches

In this section, we compare several anomaly detection
methods based on their underlying principles. These meth-
ods include N-gram, FSA, VtPath, callgraph, abstract stack,
and the method Wespi et al. proposed [20] (We call it Var-
gram because it uses variable length N-gram patterns). The
principles of the methods proposed in [7] are the same as
those of callgraph and abstract stack; thus, our analysis on
callgraph and abstract stack can also be applied to these
methods. Our comparison is based on the algorithmic ap-
proaches of the models as well as the types of information
they use. We analyze their performance characteristics in
terms of false positives, detection capability, space require-
ment, convergence time, and runtime overhead.

We also realize that the performance of the methods can
vary a lot due to their implementation details, such as is-
sues regarding signals, DLLs and system call parameters.
For example, some detection approaches are equipped with
mechanisms to predict static system call parameter values.
These mechanisms can also be applied to other detection
approaches with appropriate modification, either through
static analysis or dynamic monitoring. We can also develop
appropriate mechanisms regarding other implementation is-
sues for each approach. In this section, we ignore all the
implementation issues, and focus on the underlying princi-
ples.

State based approach and information captured. We
can model the execution of a program using a state diagram.
At the start of the program, the system is in the start state.
At each event occurrence, the system transits from one state
to another. At any point, it is in a valid state if and only if
the start state was valid and all the intermediate transitions
were also valid. Consider an instantiation of the monitored
program. To capture the normal behavior, the model tries to
capture the valid states and valid state transitions by moni-
toring the behavior of the program at different event points.
The model should also ignore the variables that are specific
to that particular run of the program. It tries to learn the be-
havior of program by generalizing the observed instances of
the program. However, it is not feasible to monitor the pro-
gram at every event. For the approaches we study here, the
states of the system are recorded only at the point of system

calls. The decision to monitor only at system calls is justi-
fiable because many attacks can manifest at the system call
level.

Possible variables which could be considered while
defining the states of the system include “contents of data
heap”, “registers”, “code segment”, “program stack”, “sys-
tem call and its arguments” and other system variables. The
objective of a model is to record only the relevant state vari-
ables. Using the state transition diagram of each run during
the training period, we would like to build a generalized
state transition diagram which represents the normal behav-
ior of the program. Data heap and register values are highly
specific to that particular run of the program and do not gen-
eralize well, so we can ignore them. Code segment might be
useful in some cases. System calls and their arguments are
certainly useful. Although some arguments of some system
calls are worth recording, many arguments can have many
possible values, resulting in a model with slow convergence
and high overhead. Call stack is important for learning the
flow of program. In general, using more information to de-
velop the intrusion detection model helps in attaining better
detection rate. But it may also cause higher runtime over-
head and more false positives.

N-gram and Var-gram choose to record only the system
calls. N-gram records fixed-length sequences of system
calls that occurred in the training data. Var-gram extracts
variable-length sequences of system calls that occur repeat-
edly. FSA chooses to store the current system call along
with its PC. The involvement of PCs makes it possible to
distinguish system calls with the same name but called at
different locations (location sensitive). VtPath keeps ad-
ditional entries from the call stack, which further distin-
guishes system calls called in different contexts (context
sensitive). N-gram can achieve some characteristics of loca-
tion or context sensitive by using larger N. We believe that
VtPath has better tradeoff considering the performance of
N-gram, FSA, and VtPath in experiments. Although they
are state based, abstract stack and callgraph models use a
different approach of learning the behavior of the program
by statically analyzing the source code. They only concern
about system calls at detection time as N-gram and Var-
gram do.

False positives False positives depend on how well the
model captures the normal behavior of a program while ig-
noring the information that does not generalize well. Call-
graph and abstract stack models do not have any false pos-
itive because they are statically derived from the source
code, and all possible paths of execution are encoded in the
grammar of the model. N-gram and Var-gram record se-
guences of system calls that occur in the training data. Any
path which is not covered in the training set may produce
a new sequence, thus raising a false positive. For N-gram,
the probability of the alert depends largely on the size of N.



The larger N is, the higher is the probability that new paths
will generate new N-length sequences. FSA tries to model
programs more accurately by taking into account the loca-
tions of system calls. This is logical because the location of
a system call determines what system call will be executed.
The model may generate a false positive if any valid system
call location or any valid transition between system call lo-
cations is not covered in training. \VVtPath on the other hand
models the program more strictly because valid transitions
must have valid return address combinations as well. So it
should generate a little bit more false positives than FSA.
Both FSA and VtPath essentially use diagrams. Comparing
to N-gram, the location or context sensitive property will
increase false positives, but on the other hand the digram
property will decrease false positives when comparing to
N-gram with large N.

Detection capability In Section 5.2, we presented a few
specific attacks which will be missed by some detection ap-
proaches while detected by others. Detection capability of
an IDS depends on its granularity, which in turn is deter-
mined by the amount of relevant information the IDS is stor-
ing and its modeling technique. An IDS with more granu-
larity should have better detection capability.

All the approaches we study here try to model the sys-
tem call behavior of the program. Any attack that intro-
duces a new system call or causes very noticeable changes
in the system call sequences (e.g., common buffer over-
flow attacks) should be detected by all the approaches. It
is easier for FSA and VtPath to find Trojan horses because
program counters for system calls and return addresses for
function calls will probably change with the change in the
code, while system call sequences may not. FSA and Vt-
Path can also detect all the attacks where any system call is
made from invalid points. All other approaches will miss
these attacks if the system call sequences do not change.
VtPath provides another level of protection because it is
hard to jump or skip to another place in the program by
changing return addresses while avoiding detection. At-
tacks which have no effect on system call sequences and re-
turn addresses will evade all the approaches discussed here
(if no frequency or parameter value information is used).

For N-gram and Var-gram, the detection capability de-
pends on the statistical regularity of normal data and also
the properties of attack, in particular, how much the at-
tack sequences deviate from that normal behavior. How-
ever, there is no concrete research done on what types of
attack can be detected by N-gram and Var-gram. Due to
the context-insensitive treatment of function calls, callgraph
model allows IPE. As a result, all attacks that follow any
of these IPEs will go undetected. Abstract stack model
tries to remove this imprecision by including some context-
sensitive information. However, our experiments showed
that carefully designed IPEs can still evade detection by it.

The non-determinism may impair the detection capability
for both callgraph and abstract stack models. FSA checks
the transition between the PCs of two system calls. It suf-
fers from the same problems of the context-insensitive prop-
erty as callgraph. In particular, IPE can evade FSA. VtPath
stores all the system call points and all the allowed virtual
execution paths. It can be evaded if an attack changes the
call stack but somehow changes the virtual path to another
valid one.

Space requirement For N-gram and Var-gram, the main
space requirement is to store the system call sequences.
That depends on the number of different sequences and also
on the data structure used for storage. For example, storing
sequences in the form of array generally takes more space,
whereas tree structure takes less. For callgraph and ab-
stract stack models, the space requirement is proportional
to the number of NDFA transitions or the size of context
free grammars (CFGs), which is proportional to the number
of positions where function calls or system calls are made
in the program code. For FSA, the memory requirement is
proportional to the number of transitions in the automaton.
The upper bound on number of transitions is proportional to
the square of the number of places system calls are made in
the program code. But in general, the number of transitions
should be comparable to that of callgraph. For VtPath, the
space requirement is driven by the number of virtual paths.
In the extreme case, the number of virtual paths that pass
function boundaries can be exponential to the number of
function calls in program code. However, in general, the
number of virtual paths is at the same level as the number
of transitions for FSA or callgraph.

Convergence time By convergence time, we mean the
amount of training time or data required to have a stable
model. N-gram converges when most of the possible se-
guences are encountered in the training data set. This de-
pends on the value of N. As N increases, the size of re-
quired training data increases, possibly exponentially. Var-
gram converges when most of the “wanted” patterns appear
repeatedly and are extracted. The Teiresias algorithm Var-
gram uses is not suitable for incremental training usage, so
we can only check the convergence by training on data sets
with different sizes separately and comparing the resulting
patterns. For FSA, we need to cover most of the possi-
ble states and possible transitions. It is not necessary to
go through each path of execution. It therefore needs less
data and time to form the stable model. Abstract stack and
callgraph models do static analysis of the source code, so
they do not require any training data. Also they need just
one pass of the program. VtPath converges when most of
the possible virtual paths are covered. This will require a
somewhat larger data set than FSA. But as it is essentially
based on diagrams with call stack attached, it should take
less training data and time than N-gram with large V.



Runtime overheads Runtime overhead of IDS is due
to system call interception and processing time of the IDS
model. Because system call interception overhead is similar
for all the models, here we discuss only the processing time
of a model for each system call. N-gram and Var-gram need
to check if there are matches in the database for the system
call sequences starting from the current point. Using a trie
structure, this can be done in time linear to the sequence
length. For FSA (or VtPath), at each system call we need to
check if it has a valid state (or valid return addresses) and
there is a valid transition (or valid virtual path). Using a
hash table this will take constant time.

Non-determinism will aggravate the runtime overhead
for callgraph and abstract stack. In the callgraph model,
there could be multiple paths from the current state. Us-
ing efficient techniques, we can cover all the next possible
valid states in the time proportional to the number of states.
So for each system call, the upper bound of time overhead
is proportional to the number of states. In abstract stack
model, for each system call we need to go through each pos-
sible path in the CFG to determine the possible next states
and the stack contents. This may take exponential time in
some cases.

7 Summary

Call stack can be very useful for intrusion detection pur-
poses. In this paper, we developed a new method that can
dynamically extracts return address information from the
call stack and use it for anomaly detection. Our experiments
show that this method is effective in terms of both detec-
tion ability and false positive rates. We also compared vari-
ous related approaches to achieve a better understanding on
what and why attacks will be missed by these approaches.

The main advantages of FSA and VtPath are that they
are deterministic and location (context) sensitive. The main
advantages of callgraph and abstract stack are that they can
remove all false positives and do not require training. We
may be able to combine these methods together and have all
these advantages. Using binary analysis techniques similar
to those in [7], we can extract and generate all the possi-
ble system calls (with the corresponding PCs), return ad-
dresses, and virtual paths from executables. The profile
generated can then be used to dynamically monitor program
executions. We can avoid false positives because the profile
is generated by techniques similar to other static analysis
techniques compared in this paper. The determinism and
location sensitive properties are also kept. We will conduct
more research on this subject in the future.
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