
 1

The 1999 DARPA Off-Line Intrusion Detection
Evaluation

Richard Lippmann, Joshua W. Haines, David J. Fried, Jonathan Korba, Kumar Das
Lincoln Laboratory MIT, 244 Wood Street, Lexington, MA 02173-9108
Email: rpl@sst.ll.mit.edu or jhaines@sst.ll.mit.edu

Abstract. Eight sites participated in the second DARPA off-line intrusion de-
tection evaluation in 1999. A test bed generated live background traffic similar
to that on a government site containing hundreds of users on thousands of
hosts. More than 200 instances of 58 attack types were launched against vic-
tim UNIX and Windows NT hosts in three weeks of training data and two
weeks of test data. False alarm rates were low (less than 10 per day). Best de-
tection was provided by network-based systems for old probe and old denial-
of-service (DoS) attacks and by host-based systems for Solaris user-to-root
(U2R) attacks. Best overall performance would have been provided by a com-
bined system that used both host- and network-based intrusion detection. De-
tection accuracy was poor for previously unseen new, stealthy, and Windows
NT attacks. Ten of the 58 attack types were completely missed by all systems.
Systems missed attacks because protocols and TCP services were not analyzed
at all or to the depth required, because signatures for old attacks did not gen-
eralize to new attacks, and because auditing was not available on all hosts.
Promising capabilities were demonstrated by host-based systems, by anomaly
detection systems, and by a system that performs forensic analysis on file sys-
tem data.

Keywords: intrusion detection, evaluate, attack, audit, test bed

1 Introduction

The potential damage that can be inflicted by attacks launched over the internet
keeps increasing due to a growing reliance on the internet and more extensive con-
nectivity. Intrusion detection systems have become an essential component of com-
puter security to detect attacks that occur despite the best preventative measures.
Comprehensive discussions of alternate approaches to intrusion detection are avail-
able in [1,2,16]. Some approaches detect attacks in real time and can be used to
monitor and possibly stop an attack in progress. Others provide after-the-fact foren-
sic information about attacks and can help repair damage, understand the attack
mechanism, and reduce the possibility of future attacks of the same type. More ad-
vanced intrusion detection systems detect never-before-seen, new, attacks, while the
more typical systems detect previously seen, known attacks.

 2

The widespread deployment and high cost of both commercial and government-
developed intrusion detection systems has led to an interest in evaluating these sys-
tems. Technical evaluations that focus on algorithm performance are essential for
ongoing research. They can contribute to rapid research progress by focusing efforts on
difficult technical areas, they can produce common shared corpora or data bases which
can be used to benchmark performance levels, and they make it easier for new re-
searchers to enter a field and explore alternate approaches. System evaluations that
focus on additional practical issues including cost, ease of use, and traffic handling
capacity are also useful for determining capabilities of complete deployable systems.
Without careful evaluations, installing an intrusion detection system could be detri-
mental because it might lead to a relaxation of vigilance based on unproven assump-
tions concerning system performance. It might also lead to inefficient use of trained
personnel if systems produce many difficult-to-analyze false alarms. A careful assess-
ment of intrusion detection systems is essential to understand capabilities and limita-
tions and construct an effective security posture that makes use of detection and pre-
vention mechanisms.

It is difficult and costly to perform reliable, systematic evaluations of intrusion de-
tection systems. As a result, few such evaluations have been performed. Table 1 sum-
marizes characteristics of important past evaluations that have compared multiple
intrusion detection systems. It includes early studies which describe a methodology
that can be used for technical evaluations [4,18,19], the most recent and extensive
system evaluation of commercial products that we are aware of [22], and the real-time
[5] and off-line [12,14] components of the 1998 DARPA intrusion detection evalua-
tion. The first column in Table 1 provides the first author and date of the study, the
second column indicates the number of intrusion detection systems evaluated, and the
third column provides the number of attack types used and also the number of unique
victim machines attacked. The fourth column indicates whether the study analyzed the
number of false alarms produced for normal background traffic and also the duration

Table 1. Characteristics of past intrusion detection evaluations.

Study IDs Attacks/
Victims

False
Alarms

Stealth Comments

Puketza
1994
[18,19]

2 4/1 Yes/
Un-
known

No Automated Attacks and Simple
Telnet Traffic

Debar
1998 [4]

3 4/1 Yes/
Un-
known

No Automated Attacks and FTP Traf-
fic

Shipley
1999 [22]

10 12/4 No/
None

Yes Product Comparison of 10 Com-
mercial IDs

Durst
1999 [5]

4 19/4 Yes/
Hours

Yes 1998 DARPA Real-Time Evalua-
tion

Lippmann
2000 [12]

10 38/4 Yes/
Weeks

Yes 1998 DARPA Off-Line Evaluation,
Distribute Standard ID Corpus

 3

of background traffic used to measure false alarm rates. The next column indicates
whether stealthy versions of attacks were used in an attempt to evade intrusion detec-
tion systems, and the final column provides additional comments on the study.

Results are not shown in Table 1 because many studies were informal and didn’t
provide detailed information and because metrics differ widely across studies. The
primary performance metric in all studies is the attack detection rate for each attack
type used. This metric depends on details of the attacks and on the specific version of
the intrusion detection system that was tested. It also is insufficient when used alone.
It must be combined with false alarm rates for normal traffic to assess the human
workload required to operate intrusion detection systems and dismiss false alarms.
False alarm rates above hundreds per day make a system excessively expensive to
deploy, even with high detection accuracy. Unless a system provides forensic informa-
tion which makes alerts or putative detections easy to analyze, security analysts will
not trust alerts and may spend many hours each day dismissing false alarms. Low false
alarm rates combined with high detection rates, however, mean that alerts can be
trusted and that the human labor required to confirm detections is minimized. Only
recent DARPA evaluations have measured false alarm rates with a large quantity of
rich background traffic. Other important metrics used by some studies include cost of
commercial systems, ease of software installation and use, traffic handling capacity,
and run-time memory and CPU requirements.

As can be seen from Table 1, evaluations have become more complex and extensive
over the years. Initial evaluations included few systems, few attack types, did not
include stealthy attacks, and included little normal background traffic to evaluate false
alarm rates. The 1998 off-line DARPA evaluation includes 10 systems, 38 attack
types, weeks of rich background traffic, stealthy attacks, and also led to a corpus or
data base of attacks and background traffic that is being widely used for evaluation
and development of intrusion detection systems. The first two evaluations in Table 1
describe initial research programs designed to develop a methodology for intrusion
detection evaluation [4,18,19]. Both studies incorporated scripting software to provide
repeatability by automating generation of attacks and background traffic. Few attack
types were used in these studies and background traffic consisted either of a small
number of automated telnet or FTP sessions. Both studies demonstrated the impor-
tance of repeatability for intrusion detection system development. Initial low detection
and high false alarm rates were improved by cyclical testing and development with
repeatable attacks and background traffic. The second study [4] also noted that gener-
ating realistic normal background traffic was complex and time-consuming in hetero-
geneous computing environments.

Many product comparisons of commercial intrusion detection systems have been
published in the past few years. The third entry in Table 1 is a recent comprehensive
product evaluation. It includes three host-based and seven network-based commercial
intrusion detection systems which were evaluated using more than 12 attack types
and four victim machines. This study also included stealthy probe or scan attacks
and stealthy packet modifications described in [17] designed to elude intrusion detec-
tion systems. This study did not provide detailed per-attack detection results, but
mentions that no system detected all attacks and that stealthy attacks successfully

 4

eluded many systems. Most of the systems evaluated rely on attack “signatures” to
detect old or known attacks. New signatures can often be added by hand or
downloaded from a remote site. This evaluation focused on practical system charac-
teristics such as ease of use and cost, and did not measure false alarm rates for nor-
mal background traffic. It did, however, use network load-generating software to
demonstrate that some network-based intrusion detection systems fail to detect at-
tacks at high network loads.

The last two rows in Table 1 are for real-time and off-line DARPA 1998 evalua-
tions. As can be seen from the table, the off-line evaluation is the most complex
performed to date. It was an initial attempt at a comprehensive evaluation which
included background traffic to measure false alarm rates, many attacks, and more
than eight different intrusion detection systems. This exploratory evaluation was
limited. It included only intrusion detection systems developed under DARPA spon-
sorship, only attacks against UNIX hosts, and background traffic designed to be
similar to traffic on one Air Force base. Six research groups participated in this
statistically-blind evaluation to provide unbiased measurement of current perform-
ance levels. The off-line evaluation, performed by MIT Lincoln Laboratory, included
weeks of training and test traffic, more than 300 instances of 38 attack types, and
resulted in an archival 1998 intrusion detection corpus or database [12,14]. This
corpus can be processed simultaneously at many sites to evaluate and develop re-
search systems and it continues to be used for algorithm development and as a base-
line for future evaluations. The real-time evaluation, performed by the Air Force
Research Laboratory (AFRL), evaluated a smaller number of systems which have
real-time implementations using a more complex network, fewer attacks, and four
hours of traffic [5]. Results of the 1998 evaluation helped determine the strengths
and weaknesses of alternative technical approaches and had a strong influence on
DARPA intrusion detection research goals. Further off-line and real-time evaluations
which build on the initial 1998 effort were performed in 1999. This paper reports on
the results of the off-line 1999 evaluation. Results and lessons learned from the 1998
off-line evaluation are first summarized, the 1999 off-line evaluation is described,
1999 results are presented, and suggestions are provided for future evaluations. Fur-
ther details on the 1999 off-line evaluation are available in [3,10,13,14].

2 Summary of the 1998 Off-Line Evaluation

The DARPA 1998 Intrusion Detection Evaluation was an initial attempt to perform a
comprehensive technical evaluation of intrusion detection technology. As noted
above, this evaluation had limited goals. It was designed to evaluate only DARPA
funded intrusion detection technology, and not complete deployable intrusion detec-
tion systems or commercial systems. It was also designed to measure false alarm
rates using background traffic similar to that on one Air Force base and to measure
detection rates of remotely-initiated attacks against UNIX hosts. Figure 1 shows the
current version of an isolated test bed network which was first developed for the
1998 off-line evaluation. Scripting techniques which extend the approaches used in
[4,18] are used to generate live background traffic which is similar to traffic that

 5

flows between the inside of one Air Force base and the outside internet. This ap-
proach was selected for the evaluation because hosts can be attacked without degrad-
ing operational Air Force systems and because corpora containing background traffic
and attacks can be widely distributed without security or privacy concerns. A rich
variety of background traffic is generated in the test bed which looks as if it were
initiated by hundreds of users on thousands of hosts. The left side of Figure 1 repre-
sents the inside of the fictional Eyrie Air Force base created for the evaluations and
the right side represents the outside internet. The 1998 evaluation did not include the
Windows NT victim machine or the inside sniffer shown on the left of Figure 1, but
instead focused exclusively on UNIX and router attacks. Automated attacks were
launched against three inside UNIX victim machines (SunOS, Solaris, Linux) and
the router from outside hosts. More than 300 instances of 38 different attacks were
embedded in seven weeks of training data and two weeks of test data. Machines
labeled “sniffer” in Figure 1 run a program named tcpdump [11] to capture all pack-
ets transmitted over the attached network segment.

Six research sites participated in the blind 1998 evaluation and results were ana-
lyzed to determine the attack detection rate as a function of the false alarm rate.
Performance was evaluated for old attacks included in the training data and new
attacks which only occurred in the test data. Detection performance for the best sys-
tems was above 60% correct at and below a false alarm rate of 10 false alarms per
day for both old and new probe attacks and attacks where a local user illegally be-
comes root (U2R). Detection rates were mixed for denial of service (DoS) attacks and
remote-to-local (R2L) attacks where a remote user illegally accesses a local host.
Although detection accuracy for old attacks in these two categories was roughly
80%, detection accuracy for new and novel attacks was below 25% even at high false
alarm rates. These results demonstrated that current intrusion detection systems do
not detect new attacks well and refocused research goals on techniques which can

INSIDEINSIDE
((Eyrie Eyrie AF Base)AF Base)

SunOSSolarisSolarisNTNT

CISCO
ROUTER

AUDIT
DATA

SNIFFER DATAFILE SYSTEM DUMPS

Linux

INSIDE
SNIFFER

OUTSIDE
SNIFFER

100’S OF
EMULATED PC’S

AND
WORKSTATIONS

1000’S OF
EMULATED

WORKSTATIONS
AND WEB SITES

OUTSIDEOUTSIDE
(Internet) (Internet)

Figure 1. Block diagram of 1999 test bed.

 6

detect new attacks. Results of the real-time evaluation generally agreed with those of
the off-line evaluation. Detection rates for the systems and attacks in common were
similar. Two interesting results from the off-line evaluation were that slow stealthy
scans were not well detected by some intrusion detection systems and false alarm
rates of a network-based system used by the Air Force were similar to those of a
reference keyword-based system used in the off-line evaluation.

3 Conclusions from the 1998 Evaluation

The 1998 evaluation uncovered a widespread interest in obtaining training and test
corpora containing normal traffic and attacks to develop and evaluate intrusion de-
tection systems. To date, more than 90 sites have downloaded all or part of the 1998
off-line intrusion detection archival corpus from a Lincoln Laboratory web site [14].
Information from sites which have downloaded this corpus indicates that it is being
used to evaluate and develop both commercial and research intrusion detection sys-
tems (e.g. [23]) and to train security analysts. A processed subset of this corpus was
also redistributed as part of a contest sponsored by the International Conference on
Knowledge Discovery in Databases [6]. This conference attracted 24 participants
who used modern approaches to pattern classification to achieve high performance
on a constrained intrusion detection task.

The 1998 evaluation also demonstrated that is possible to evaluate a diverse col-
lection of intrusion detection systems but that this is more complex than initial
analyses suggested. All components of the evaluation from designing and managing
the test bed to generation background traffic, to scoring systems, to automating,
running, marking ground truth, and verifying attacks included added complexities
caused by the wide variety of traffic, attacks, and intrusion detection systems in-
cluded. For example, labeling attacks involved annotating every network packet
associated with each attack. This was partially automated, but it required extensive
hand correction and analyses which had to be customized for each attack. Experi-
ences of the Lincoln Laboratory evaluators led to suggestions for reducing the cost
and complexity of the evaluation. These included simplifying scoring procedures,
requesting more detailed and formal system descriptions from participants, more
fully automating attack generation and verification, and automating more of the
daily procedures required to continuously run the test bed. Experiences by the many
participants and others also led to suggestions for improving the evaluation process.
These included providing training data containing no attacks to train anomaly detec-
tors, simplifying scoring procedures, exploring false alarm rates with a richer range
of background traffic, providing a written security policy, and performing more de-
tailed analyses of misses and false alarms. All of these suggestions were incorporated
in the 1999 evaluation.

 7

4 Overview of the 1999 Evaluation

The 1999 evaluation was a blind off-line evaluation, as in 1998, but modified
based on suggestions from 1998 and also with major extensions to enhance the
analysis and cover more attack types. Figure 1 shows a block diagram of the 1999
test bed. Major changes for 1999 are the addition of a Windows NT workstation as a
victim, the addition of an inside tcpdump sniffer machine, and the collection of both
Windows NT audit events and inside tcpdump sniffing data for inclusion in archival
data provided to participants. Not shown in this figure are new Windows NT work-
stations added to support NT attacks, new inside attacks, and new stealthy attacks
designed to avoid detection by network-based systems tested in 1998. The Windows
NT victim machine and associated attacks and audit data were added due to in-
creased reliance on Windows NT systems by the military. Inside attacks and inside
sniffer data to detect these attacks were added due the dangers posed by inside at-
tacks. Stealthy attacks were added due to an emphasis on sophisticated attackers who
can carefully craft attacks to look like normal traffic. In addition, two new types of
analyses were performed. First, an analysis of misses and high-scoring false alarms
was performed for each system to determine why systems miss specific attacks and
what causes false alarms. Second, participants were optionally permitted to submit
attack forensic information that could help a security analyst identify important
characteristics of the attack and respond. This identification information included
the attack category, the name for old attacks, ports/protocols used, and IP addresses
used by the attacker.

Another major change in 1999 was a focus on determining the ability of systems
to detect new attacks without first training on instances of these attacks. The 1998
evaluation demonstrated that systems could not detect new attacks well. The new
1999 evaluation was designed to evaluate enhanced systems which can detect new
attacks and to analyze why systems miss new attacks. Many new attacks were thus
developed and only examples of a few of these were provided in training data.

5 Test Bed Network and Background Traffic

The inside of the simulated Eryie Air Force base shown in Figure 1 contains four
victim machines which are the most frequent targets of attacks in the evaluation
(Linux 2.0.27, SunOS 4.1.4, Sun Solaris 2.5.1, Windows NT 4.0), a sniffer to cap-
ture network traffic, and a gateway to hundreds of other inside emulated PCs and
workstations. The outside simulated internet contains a sniffer, a gateway to hun-
dreds of emulated workstations on many other subnets and a second gateway to thou-
sands of emulated web servers. Data collected to evaluate intrusion detection systems
include network sniffing data from the inside and outside sniffers, Solaris Basic
Security Module (BSM) audit data collected from the Solaris host, Windows NT
audit event logs collected from the Windows NT host, nightly listings of all files on

 8

the four victim machines, and nightly dumps of security-related files on all victim
machines.

Custom software automata in the test bed simulate hundreds of programmers, sec-
retaries, managers, and other types of users running common UNIX and Windows
NT application programs. In addition, custom Linux kernel modifications provided
by the AFRL allow a small number of actual hosts to appear as if they are thousands
of hosts with different IP addresses. Figure 2 shows the average number of connec-
tions per day for the most common TCP services. As can be seen, web traffic domi-
nates but many other types of traffic are generated which use a variety of services.
User automata send and receive mail, browse web sites, send and receive files using
FTP, use telnet and ssh to log into remote computers and perform work, monitor the
router remotely using SNMP, and perform other tasks. In addition to automatic traf-
fic, the test bed allows human actors to generate background traffic and attacks when
the traffic or attack is too complex to automate. Background traffic characteristics
including the overall traffic level, the proportion of traffic from different services,
and the variability of traffic with time of day are similar to characteristics measured
on a small Air Force base in 1998. The average number of background-traffic bytes
transmitted per day between the inside and outside of this test bed is roughly 411
Mbytes per day, with most of the traffic concentrated between 8:00 AM and 6:00
PM. The dominant protocols are TCP (384 Mbytes), UDP (26 Mbytes), and ICMP
(98 Kbytes). These traffic rates are low compared to current rates at some large
commercial and academic sites, but are representative of traffic measured at the
beginning of this project. These rates also lead to sniffed data file sizes that can still
be transported over the internet without practical difficulties. The flat test bed struc-
ture without firewalls or other protective devices simplifies maintenance and attack
generation. Future evaluations will include firewalls, more complex architectures,

1

10

100

1000

10000

100000

http smtp ftp-
data

telnet finger ftp pop3 time ssh irc ident

TCP SERVICE

C
O

N
N

E
C

TI
O

N
S

 P
E

R
 D

A
Y

Figure 2. Average connections per day for dominant TCP services.

 9

attacks against firewalls, and more complex attacks including man-in-the-middle
attacks that take advantage of a network hierarchy.

6 Attacks

Twelve new Windows NT attacks were added in 1999 along with stealthy versions of
many 1998 attacks, new inside console-based attacks, and six new UNIX attacks.
The 56 different attack types shown in Tables 2 and 3 were used in the evaluation.
Attacks in normal font in these tables are old attacks from 1998 executed in the clear
(114 instances). Attacks in italics are new attacks developed for 1999 (62 instances),
or stealthy versions of attacks used in 1998 (35 instances). Details on attacks includ-
ing further references and information on implementations are available in [3,9,10,13].
Five major attack categories and the attack victims are shown in Tables 2 and 3. Pri-
mary victims listed along the top of these tables are the four inside victim hosts,
shown in the gray box of Figure 1, and the Cisco router. In addition, some probes
query all machines in a given range of IP addresses as indicated by the column labeled
“all” in Table 2.

The upper row of Table 2 lists probe or scan attacks. These attacks automatically
scan a network of computers or a DNS server to find valid IP addresses (ipsweep,
lsdomain, mscan), active ports (portsweep, mscan), host operating system types
(queso, mscan), and known vulnerabilities (satan). All of these probes except two
(mscan and satan) are either new in 1999 (e.g. ntinfoscan, queso, illegalsniffer) or are
stealthy versions of 1999 probes (e.g. portsweep, ipsweep). Probes are considered
stealthy if they issue ten or fewer connections or packets or if they wait longer than 59
seconds between successive network transmissions. Stealthy probes are similar to clear
probes because they gather similar information concerning IP addresses, vulnerable
ports, and operating system types. They differ because this information is gathered at a
slower rate and because less, but more focused, information is gathered from each
attack instance. For example, stealthy port sweeps are slow and focus only on ports
with known vulnerabilities. The new “illegalsniffer” attack is different from the
other probes. During this attack, a Linux sniffer machine is installed on the inside

 Solaris SunOS NT Linux All
Probe
(37)

portsweep
queso

portsweep
queso

ntinfoscan
portsweep

lsdomain
mscan
portsweep
queso
satan

illegal-sniffer
ipsweep
portsweep

DoS
(65)

neptune
pod
processtable
selfping
smurf
syslogd
tcpreset
warezclient

arpoison
land
mailbomb
neptune
pod
processtable

arppoison
crashiis
dosnuke
smurf
tcpreset

apache2
arppoison
back
mailbomb
neptune
pod
processtable
smurf
tcpreset
teardrop
udpstorm

Table 2. Probe and Denial of Service (DoS) attacks.

 10

network running the tcpdump program in a manner that creates many DNS queries
from this new and illegal IP address.

The second row of Table 2 contains denial of service (DoS) attacks designed to dis-
rupt a host or network service. New 1999 DoS attacks crash the Solaris operating
system (selfping), actively terminate all TCP connections to a specific host (tcpreset),
corrupt ARP cache entries for a victim not in others’ caches (arppoison), crash the
Microsoft Windows NT web server (crashiis), and crash Windows NT (dosnuke).

The first row of Table 3 contains Remote to Local (R2L) attacks. In these attacks,
an attacker who does not have an account on a victim machine gains local access to
the machine (e.g. guest, dict), exfiltrates files from the machine (e.g. ppmacro), or
modifies data in transit to the machine (e.g. framespoof). New 1999 R2L attacks in-
clude an NT PowerPoint macro attack (ppmacro), a man-in-the middle web browser
attack (framespoof), an NT trojan-installed remote-administration tool (netbus), a
Linux trojan SSH server (sshtrojan), and a version of a Linux FTP file access-utility
with a bug that allows remote commands to run on a local machine (ncftp). The sec-
ond row of Table 3 contains user to root (U2R) attacks where a local user on a ma-
chine is able to obtain privileges normally reserved for the UNIX super user or the
Windows NT administrator. All five NT U2R attacks are new this year and all other
attacks except one (xterm) are versions of 1998 U2R attacks that were redesigned to
be stealthy to network-based intrusion detection systems evaluated in 1998. Tech-
niques used to make these U2R attacks stealthy are described in [3,10,13]. They
include running the attack over multiple sessions, embedding the attack in normal
user actions, writing custom buffer overflow machine code that does not spawn a
root-level shell but simply “chmod’s” a file, bundling the complete attack into one
shell script, setting up delayed “time bomb” attacks, and transferring the attack and
the attack output using common network services. The bottom row in Table 3 con-
tains Data attacks. This is a new attack type added in 1999. The goal of a Data attack
is to exfiltrate special files which the security policy specifies should remain on the
victim hosts. These include “secret” attacks where a user who is allowed to access
the special files exfiltrates them via common applications such as mail or FTP, and
other attacks where privilege to access the special files is obtained using a U2R at-

 Solaris SunOS NT Linux Cisco
R2L (56) dict

ftpwrite
guest
httptunnel
xlock
xsnoop

dict
xsnoop

dict
framespoof
netbus
netcat
ppmacro

dict
imap
named
ncftp
phf
sendmail
sshtrojan
xlock
xsnoop

snmpget

U2R
(37)

eject
fdformat
ffbconfig
ps

loadmodule casesen
ntfsdos
nukepw
sechole
yaga

perl
sqlattack
xterm

DATA
(13)

secret ntfsdos
ppmacro

secret
sqlattack

Table 3. Remote to Local (R2L), User to Root (U2R), and Data attacks.

 11

tack (ntfsdos, sqlattack). Note that an attack could be labeled as both a U2R and a
Data attack if one of the U2R attacks was used to obtain access to the special files.
The “Data” category thus specifies the goal of an attack rather than the attack
mechanism.

Attack implementation was simplified for U2R attacks in 1999 by integrating at-
tack automation software with the automaton used to generate telnet sessions. This
made it easier to embed attacks within normal telnet sessions. In addition, attack
verification was simplified by running all attacks from a separate dedicated machine
and sniffing traffic to and from that machine. This made it easier to collect network
traffic generated by each attack. Custom software was required to change routing
tables in the test bed gateways whenever the IP address of the dedicated attacker
machine changed. This made it possible to isolate network traffic generated by at-
tacks for all but inside attacks which were launched from the console of a victim and
for attacks which installed trojans or other types of malicious software on inside
machines Any network traffic for these two types of attacks had to be extracted from
inside sniffer data by hand.

7 Participants and Scoring

Eight research groups participated in the evaluation using a variety of approaches to
intrusion detection. Papers by these groups describing high-performing systems are
provided in [7,8,15,20,21,24,25,26]. One requirement for participation in the evalua-
tion was the submission of a detailed system description that was used for scoring
and analysis. System descriptions described the types of attacks the system was de-
signed to detect, data sources used, features extracted, and whether optional attack
identification information was provided as an output. Most systems used network
sniffer data to detect Probe and DoS attacks against all systems [8,15,21,25] or BSM
Solaris host audit data to detect Solaris R2L and U2R attacks [7,15,25]. Two systems
produced a combined output from both network sniffer data and host audit data
[15,25]. A few systems used network sniffer data to detect R2L and U2R attacks
against the UNIX victims [15,25]. One system used NT audit data to detect U2R and
R2L attacks against the Windows NT victim [20] and two systems used BSM audit
data to detect Data attacks against the Solaris victim [15,25]. A final system used
information from a nightly file system scan to detect R2L, U2R, and Data attacks
against the Solaris victim [24]. The software program that performs this scan was
the only custom auditing tool used in the evaluation. A variety of approaches were
employed including expert systems that use rules or signatures to detect attacks,
anomaly detectors, pattern classifiers, recurrent neural networks, data mining tech-
niques, and a reasoning system that performs a forensic analysis of the Solaris file
system.

Three weeks of training data, composed of two weeks of background traffic with

no attacks and one week of background traffic with a few attacks, were provided to
participants from mid May to mid July 1999 to support system tuning and training.

 12

Locations of attacks in the training data were clearly labeled. Two weeks of unla-
beled test data were provided from late September to the middle of October. Partici-
pants downloaded this data from a web site, processed it through their intrusion
detection systems, and generated putative hits or alerts at the output of their intrusion
detection systems. Lists of alerts were due back by early October. In addition, par-
ticipants could optionally return more extensive identification lists for each attack.

A simplified approach was used in 1999 to label attacks and score alerts and new
scoring procedures were added to analyze the optional identification lists. In 1998,
every network TCP/IP connection, UDP packet, and ICMP packet was labeled, and
participants determined which connections and packets corresponded to attacks.
Although this approach pre-specifies all potential attack packets and thus simplifies
scoring and analysis, it can make submitting alerts difficult because aligning alerts
with the network connections and packets that generate alerts is often complex. In
addition, this approach cannot be used with inside attacks that generate no network
traffic. In 1999, a new simplified approach was adopted. Each alert only had to
indicate the date, time, victim IP address, and score for each putative attack detec-
tion. An alert could also optionally indicate the attack category. This was used to
assign false alarms to attack categories. Putative detections returned by participants
were counted as true “hits” or true detections if the time of any alert occurred during
the time of any attack segment and the alert was for the correct victim IP address.
Alerts that occur outside all attack segments were counted as “misses” or false
alarms. Attack segments correspond to the duration of all network packets and con-
nections generated by an attack and to time intervals when attack processes are run-
ning on a victim host. To account for small timing inconsistencies across hosts, an
extra 60 seconds leeway was typically allowed for alerts before and after the end of
each attack segment. The analysis of each system only included attacks which that
system was designed to detect, as specified in the system description. Systems
weren’t penalized for missing attacks they were not designed to detect and false
alarms that occurred during segments of out-of-spec attacks were ignored.

 The score produced by a system was required to be a number that increases as the
certainty of an attack at the specified time increases. All participants returned num-
bers ranging between zero and one, and many participants produced binary outputs
(0’s and 1’s only). If alerts occurred in multiple attack segments of one attack, then
the score assigned to that attack for further analysis was the highest score in all the
alerts. Some participants returned optional identification information for attacks.
This included the attack category, the name for old attacks selected from a list of
provided names, and the attack source and destination IP addresses, start time, dura-
tion, and the ports/services used. This information was analyzed separately from the
alert lists used for detection scoring. Results in this paper focus on detection results
derived from the required alert lists.

Attack labels were needed to designate attack segments in the training data and
also to score lists of alerts returned by participants. Attack labels were provided us-
ing list files similar to those used in 1998, except a separate list file was provided for
each attack specifying all segments of that attack. Entries in these list files include
the date, start time, duration, a unique attack identifier, the attack name, source and

 13

destination ports and IP addresses, the protocol, and details concerning the attack.
Details include indications that the attack is clear or stealthy, old or new, inside or
outside, the victim machine type, and whether traces of the attack occur in each of
the different data types that were collected.

8 Results

An initial analysis was performed to determine how well all systems taken together
detect attacks regardless of false alarm rates. The best system was first selected for
each attack as the system which detects the most instances of that attack. The
detection rate for these best systems provides a rough upper bound on composite
system performance. Thirty seven of the 58 attack types were detected well by this
composite system, but many stealthy and new attacks were always or frequently
missed. Poorly detected attacks for which half or more of the attack instances were not
detected by the best system are listed in Table 4. This table lists the attack name, the
attack category, details concerning whether the attack is old, new, or stealthy, the total
number of instances for this attack, and the number of instances detected by the
system which detected this attack best. Table 4 contains 21 attack types and is
dominated by new attacks and attacks designed to be stealthy to 1998 network-based
intrusion detection systems. All instances of 10 of the attack types in Table 4 were

Name Category Details Total
Instances

Instances Detected
by Best System

ipsweep Probe Stealthy 3 0
lsdomain Probe Stealthy 2 1
portsweep Probe Stealthy 11 3
queso Probe New 4 0
resetscan Probe Stealthy 1 0
arppoison DoS New 5 1
dosnuke DoS New-NT 4 2
selfping DoS New 3 0
tcpreset DoS New 3 1
warezclient DoS Old 3 0
ncftp R2L New 5 0
netbus R2L New-NT 3 1
netcat R2L New-NT 4 2
snmpget R2L Old 4 0
sshtrojan R2L New 3 0
loadmodule U2R Stealthy 3 1
ntfsdos U2R New-NT 3 1
perl U2R Stealthy 4 0
sechole U2R New-NT 3 1
sqlattack U2R Stealthy 3 0
xterm U2R Old 3 1

Table 4. Poorly detected attacks where the best system for each attack detects
half or fewer of the attack instances.

 14

totally missed by all systems. These results suggest that the new systems developed for
the 1999 evaluation still are not detecting new attacks well and that stealthy probes
and U2R attacks can avoid detection by network-based systems.

Further analyses evaluated system performance at false alarm rates in a specified
range. The detection rate of each system at different false alarm rates can be deter-
mined by lowering a threshold from 1.0 to 0.0, counting the detections with scores
above the threshold as hits, and counting the number of alerts above the threshold
that do not detect attacks as false alarms. This results in one or more operating
points for each system which trade off false alarm rate against detection rate. It was
found that almost all systems, except some anomaly detection systems, achieved their
maximum detection accuracy at or below 10 false alarms per day on the 1999 corpus.
These low false alarm rates were presumably due to the low overall traffic volume,
the relative stationarity of the traffic, and the ability to tune systems to reduce false
alarms on three weeks of training data. In the remaining presentation, the detection
rate reported for each system is the highest detection rate achieved at or below 10
false alarms per day on the two weeks of test data.

Table 5 shows average detection rates at 10 false alarms per day for each attack

category and victim type. This table provides overall results and does not separately
analyze old, new, and stealthy attacks. The upper number in a cell, surrounded by
dashes, is the number of attack instances in that cell and the other entries provide the
percent correct detections for all systems with detection rates above 40% in that cell.
A cell contains only the number of instances if no system detected more than 40% of
the instances. Only one entry is filled for the bottom row because only probe attacks
were against all the victim machines and the SunOS/Data cell is empty because there
were no Data attacks against the SunOS victim. High-performance systems listed in

Table 5. Percent attack instances detected for systems with a detection rate
above 40% in each cell and at false alarm rates below 10 false alarms per day.

 DoS Probe R2L U2R Data
Solaris -19-

Expert-1: 63%
Expert-2: 53%

-5-
Expert-2: 60%
Expert-3: 50%

-12-
Expert-1: 50%
Forensics: 50%

-11-
Expert-1: 100%
Expert-2: 100%
Anomaly: 100%
Forensics: 73%

-6-
Expert-2: 100%
Forensics: 83%

NT -16-
Expert-1: 69%
Expert-2: 69%

-5-
Expert-1: 80%
Expert-2: 60%

-12- -13- -5-

SunOS -8-
DMine: 88%
Expert-1: 63%
Expert-2: 50%

-5-
PClassify: 60%

-3-
Expert-2: 67%

-3-

Linux -19-
Expert-1: 84%
DMine: 74%
Expert-2: 68%

-8-
Expert-3: 60%
DMine: 50%

-25-
Expert-2: 64%
Expert-1: 44%

-10- -4-

All -11-
Expert-1: 46%

 15

Table 5 include rule-based expert systems that use network sniffing data and/or So-
laris BSM audit data (Expert-1 through Expert-3 [15,25,21]), a data mining system
that uses network sniffing data (Dmine [8]), a pattern classification approach that
uses network sniffing data (Pclassify), an anomaly detection system which uses re-
current neural networks to analyze system call sequences in Solaris BSM audit data
(Anomaly [7]), and a reasoning system which performs a nightly forensic analysis of
the Solaris file system (Forensics [24]).

No one approach or system provides best performance across all categories. Best
performance is provided for probe and denial of service attacks for systems that use
network sniffer data and for U2R and Data attacks against the Solaris victim for
systems that use BSM audit data. Detection rates for U2R and Data attacks are gen-
erally poor for SunOS and Linux victims where extensive audit data is not available.
Detection rates for R2L, U2R, and Data attacks are poor for Windows NT which was
included in the evaluation for the first time this year.

 Figure 3 shows the performance of the best intrusion detection system in each at-
tack category at a false alarm rate of 10 false alarms per day. The left chart compares
the percentage of attack instances detected for old-clear and new attacks and the
right chart compares performance for old-clear and stealthy attacks. The numbers in
parentheses on the horizontal axis below the attack category indicate the number of
instances of attacks of different types. For example, in Figure 3A, there were 49 old-
clear and 15 new denial-of-service attacks. Figure 3A demonstrates that detection of
new attacks was much worse than detection of old-clear attacks across all attack
categories, and especially for DoS, R2L, and U2R attacks. The average detection rate
for old-clear attacks was 72% and this dropped to 19% for new attacks. Figure 3B
demonstrates that stealthy probes and U2R attacks were much more difficult to detect
for network-based intrusion detection systems that used sniffing data. Those attacks
against the Solaris victim, however, were accurately detected by host-based intrusion
detection systems that used BSM audit data.

Figure 3. Comparison of detection accuracy at 10 false alarms per day for
(A) Old-Clear versus New attacks and (B) Old-Clear versus stealthy attacks.

0

20

40

60

80

100

DOS
(49/15)

Probe
(14/4)

R2L
(37/13)

U2R
(13/13)

Old-Clear
New

Probe (14-14) U2R (13-11) U2R (5-6)

Old-Clear
Stealthy

NETWORK SNIFFER UNIX BSM
HOST AUDIT

%
 A

TT
A

C
K

S
 D

E
TE

C
TE

D

A) Old-Clear Versus New B) Old-Clear Versus Stealthy

0

20

40

60

80

100

DOS
(49/15)

Probe
(14/4)

R2L
(37/13)

U2R
(13/13)

Old-Clear
New

Probe (14-14) U2R (13-11) U2R (5-6)

Old-Clear
Stealthy

NETWORK SNIFFER UNIX BSM
HOST AUDIT

%
 A

TT
A

C
K

S
 D

E
TE

C
TE

D

A) Old-Clear Versus New B) Old-Clear Versus Stealthy

 16

Attacks were detected best when they produced a consistent “signature” or se-
quence of events in tcpdump data or in audit data that was different from sequences
produced for normal traffic. A detailed analysis by participants demonstrated that
attacks were missed for a variety of reasons. Systems which relied on rules or signa-
tures missed new attacks because signatures did not exist for these attacks, and be-
cause existing signatures did not generalize to variants of old attacks, or to new and
stealthy attacks. For example “ncftp” and “lsdomain” attacks were visible in
tcpdump data, but were missed because no rules existed to detect these attacks.
Stealthy probes were missed because hard thresholds in rules were set to issue an
alert only for more rapid probes, even though slow probes often provided as much
information to attackers. Stealthy U2R attacks were missed by network-based sys-
tems because rules generated for clear versions of these attacks did not generalize to
stealthy versions and because attacker actions were not easily visible in sniffing data.
Many of the Windows NT attacks were missed due to lack of experience with Win-
dows NT audit data and attacks. A detailed analysis of the Windows NT attacks [10]
indicated that all but two of these attacks (ppmacro, framespoof) can be detected
from the 1999 NT audit data using attack-specific signatures which generate far
fewer than 10 false alarms per day.

Systems also missed attacks because particular protocols or services were not
monitored. For example, some systems missed the “arppoison” attack because the
ARP protocol was not monitored. Some missed the “snmpget” attack because the
SNMP service was not analyzed and some missed the “lsdomain” attack because the
DNS service was not analyzed. Finally, some systems missed attacks because a pro-
tocol or TCP service was not analyzed to the required depth. For example, the “lsdo-
main” attack requires a system to monitor traffic to the DNS server and also detect
when an “ls” command is successfully run on that server. The “selfping” command
also will not be detected by a network-based intrusion detection system unless telnet
sessions are extracted and analyzed to detect when a “ping” command is issued with
specific arguments.

Some inside attacks launched from the console of victims and did not generate
network traffic. They were detected well only on the Solaris victim by systems that
use BSM audit data. Other inside machine-to-machine attacks were detected as well
using inside sniffer data as attacks initiated from outside machines. One anomaly
detection system [7] provided good results. It analyzed system-call sequences ex-
tracted from BSM audit data and provided a high detection rate similar to that of the
best signature-based systems for Solaris U2R attacks, as shown in the upper right of
Table 5.

 The forensic information provided in identification list files was generally accu-
rate for attacks that were correctly detected. Table 6 shows results for four high-
performance systems that provided all optional identification information. The first
column in this table shows the system type. The second column shows the total num-
ber of attacks detected by each system (at the highest false alarm rate) followed by a
slash and the number of in-spec attacks that this system should have detected as
specified in the system description. The first two expert systems both detected
roughly 80 attacks each. They were combined systems that could have detected a

 17

maximum of roughly 170 in-spec attacks using both host-based and network-based
input data. The third system used network sniffing data alone and thus had fewer in-
spec attacks (102) and the fourth system used only Solaris file-system information
and thus had only 27 in-spec attacks. The remaining columns show the accuracy of
the identification information provided for detected attacks. The third column shows
the percentage of detected attacks where the attack category label was correct. The
fourth column shows the percentage of detected attacks where the names of old at-
tacks were correct. Participants were provided a list of names for old attacks before
the evaluation was run which were used to label attacks. Items in this column apply
only to old attacks that were detected. The next column shows the percentage of
detected attacks where 90% or more of the victim ports were identified and the final
column shows the percentage of detected attacks where all the source IP addresses
were correctly identified.

Table 6. Identification results for all attacks by four high-performance sys-
tems which provided all optional identification information.

This table shows that the additional identification information provided was gen-

erally accurate for attacks that were correctly detected. For example, for the first
expert system, the attack category and name is correct roughly 90% of the time, and
the victim ports and source IP addresses are correctly identified for more than 70%
of the detected attacks. The upper three systems in Table 6 all used network sniffing
data and provided good identification performance. The last Forensic analysis sys-
tem, was a host-based system. Its good performance suggests that much of the identi-
fication information required can be obtained from a host-based analysis that doesn’t
rely on audit data.

All systems in Table 6 also provided attack start times as optional identification
information. These times were computed by participating systems using off-line data
with no constraints on look-ahead and thus they do not necessarily represent times
that could be provided by real-time system implementations. Start time accuracy was
generally good for R2L and DoS attacks. The attack start time latencies were less
than 15 seconds for more than 80% of these attacks. Start time accuracy was not as
good, and differed across systems for probe and U2R attacks. Start times were pro-
vided for probe attacks by the first three systems in Table 6. The third system
(DMine) correctly identified the start of all probes to within 15 seconds while the
first two expert systems had start time latencies that were often many minutes de-
layed for slower probes that spanned long time intervals.

 Attacks
Detected/
In-Spec

Attack
Categories
Correct

Attack Names
Correct
(Old Attacks)

Victim
Ports
Correct

Source IP
Addresses
Correct

Expert-1 85/169 91% 88% 73% 80%
Expert-2 81/173 74% 53% 51% 69%
DMine 41/102 100% 88% 61% 90%
Forensics 15/27 87% 69% 87% 73%

 18

The first two expert systems and the last system in Table 6 provided start times for
U2R attacks. These attacks were unique because many of them included multiple
separate telnet interactions separated by long time intervals and others were per-
formed as part of long single telnet sessions containing many normal user com-
mands. In attacks that included multiple telnet sessions, initial sessions were run at
user privilege level to prepare for the attack. The actual attack, which provided root-
level privilege on UNIX machines, was run only in following sessions. Results for
the first two expert systems in Table 6 and for last Forensic analysis system differ
dramatically for these U2R attacks. The first two systems detected the time instant
where the attacker became root, while the Forensic analysis system traced the begin-
ning of the attack either to the beginning of the first session where attack setup ac-
tions occurred or to the beginning of the telnet session where the attack occurred.
Start times for 6 of the 8 U2R attacks detected by the Forensic analysis system were
within 15 seconds of true start times, while start times for more than 90% of the U2R
attacks detected by the first two Expert systems were delayed by more than a minute
from the true attack times. These results suggest that the Forensic analysis system is
accurately correlating information across multiple network sessions to arrive at accu-
rate start times while the two expert systems are using the time of the root-privilege
elevation as a start time.

9 Discussion

The DARPA 1999 intrusion detection evaluation successfully evaluated 18 intrusion
detection systems from 8 sites using more than 200 instances of 58 attack types em-
bedded in three weeks of training data and two weeks of test data. Attacks were pri-
marily launched against UNIX and Windows NT hosts. Best detection was provided
by network-based systems for old probe and old denial of service attacks and by host-
based systems for Solaris user-to-root attacks launched either remotely or from the
local console. A number of sites developed systems that detect known old attacks by
searching for signatures in network sniffer data or Solaris BSM audit data using
expert systems or rules. These systems detect old attacks well when they match
known signatures, but miss many new UNIX attacks, Windows NT attacks, and
stealthy attacks. Promising capabilities were provided by Solaris host-based systems
which detected console-based and remote-stealthy U2R attacks, by anomaly detection
systems which could detect some U2R and DoS attacks without requiring signatures,
and by a host-based system that could detect Solaris U2R and R2L attacks without
using audit information but by performing a forensic analysis of the Solaris file sys-
tem.

Results of the 1999 evaluation should be interpreted within the context of the test
bed, background traffic, attacks, and scoring procedures used. The evaluation used a
reasonable, but not exhaustive, set of attacks with a limited set of actions performed
as part of each attack. It also used a simple network topology, a non-restrictive secu-
rity policy, a limited number of victim machines and intrusion detection systems,

 19

stationary and low-volume background traffic, lenient scoring, and extensive instru-
mentation to provide inputs to intrusion detection systems. One finding that should
not be misinterpreted is that most systems had false alarm rates which were low and
well below 10 false alarms per day. As noted above, these low rates may be caused by
the use of relatively low volume background traffic with a time varying, but rela-
tively fixed proportion of different traffic types. We currently plan to verify false
alarm rates using live network traffic and a small number of high-performing sys-
tems. Live-traffic measurements will also be made to update traffic statistics and
traffic generators used in the test bed. Results obtained with the DARPA research
systems used in the evaluation also may not generalize to more recent research sys-
tems or to commercial systems. Performance with the 56 attack types used in the
evaluation also may not be representative of performance with more recent attacks or
with other attacks against different host machines, firewalls, routers, or parts of the
network infrastructure. Further evaluations are required to explore performance with
commercial and other research intrusion detection systems, with more complex net-
work topologies, with a wider range of attacks, and with varying mixtures and
amounts of background traffic.

Comprehensive evaluations of DARPA research systems have now been per-
formed in 1998 and 1999. These evaluations take time and effort on the part of the
evaluators and the participants. The have provided benchmark measurements that do
not now need to be repeated again until system developers are able to implement
many desired improvements. The current planned short-term focus in 2000 is to
provide assistance to intrusion detection system developers to advance their systems
and not to evaluate performance. System development can be expedited by providing
descriptions and labeled examples of many new attacks, by developing threat and
attack models, and by carefully evaluating COTS systems to determine where to
focus research efforts.

A number of approaches to improve capabilities of existing systems are suggested
by 1999 results. First, techniques should be developed to process Windows NT audit
data to detect attacks by extending existing approaches from UNIX to Windows NT.
Second, host-based systems shouldn’t rely exclusively on C2-level audit data such as
Solaris BSM data or NT audit data. Instead they should also examine information in
the file system and in commonly-used system logs. Systems that use file system
information could be used on hosts such as Linux where there currently is no C2-
level auditing and on any critical host where auditing is not turned on for fear of
performance degradation. Third, systems should analyze a wider range of protocols
and TCP services. For some protocols, information contained in packet headers alone
is insufficient, but the content of network transmissions must be extracted to deter-
mine the purpose of important network interactions. Fourth, approaches that can
detect new attacks, including anomaly detection, should be extended to more hosts
and network traffic types. Fifth, systems should provide more forensic information to
analysts and extend the optional attack identification information provided by many
systems in 1999. This forensic analysis could simplify the task of verifying each
alert, determining attacker actions, and responding to an attack. It could also provide
a valuable lasting record of attack-related events. Finally, other types of input fea-

 20

tures should be explored. These could be provided by new system auditing software,
by firewall or router audit logs, by SNMP queries, by software wrappers, and by
application-specific auditing.

Acknowledgements

This work was sponsored by the Department of Defense Advanced Research
Projects Agency under Air Force Contract F19628-95-C-0002. Opinions, interpreta-
tions, conclusions, and recommendations are those of the author and are not
necessarily endorsed by the United States Air Force.

We would like to thank Sami Saydjari for supporting this effort. Many involved
participants made this evaluation possible including Dick Kemmerer, Giovanni Vigna,
Mabri Tyson, Phil Porras, Anup Ghosh, R. C. Sekar, and NingNing Wu. We would
also like to thank Terry Champion and Steve Durst from AFRL for many lively discus-
sions and for providing Linux kernel modifications that make one host simulate many
IP addresses. Finally, we would like to thank others who contributed including Marc
Zissman, Rob Cunningham, Seth Webster, Kris Kendall, Raj Basu, Jesse Rabek, and
Simson Garfinkel.

References

1. J. Allen, A. Christie, W. Fithen, J. McHugh, J. Pickel, E. Stoner, State of the Practice of
Intrusion Detection Technologies, Carnegie Mellon University/Software Engineering Insti-
tute Technical Report CMU/SEI-99-TR-028, January 2000.

2. E. G. Amoroso, Intrusion Detection: An Introduction to Internet Surveillance, Correlation,
Trace Back, Traps, and Response, Intrusion.Net Books, 1999.

3. K. Das, The Development of Stealthy Attacks to Evaluate Intrusion Detection Systems,
S.M. Thesis, MIT Department of Electrical Engineering and Computer Science, June 2000.

4. H. Debar, M. Dacier, A. Wespi, and S. Lampart, An Experimental Workbench for Intru-
sion Detection Systems, Research Report RZ 2998 (#93044), IBM Research Division, Zu-
rich Research Laboratory, 8803 Ruschlikon, Switzerland, March 9, 1999,
http://www.zurich.ibm.com/Technology/Security/extern/gsal/docs/index.html.

5. Robert Durst, Terrence Champion, Brian Witten, Eric Miller and Luigi Spagnuolo, Test-
ing and evaluating computer intrusion detection systems, Communications of the ACM, 42
(1999) 53-61.

6. C. Elkan, Results of the KDD'99 Classifier Learning Contest, Sponsored by the Interna-
tional Conference on Knowledge Discovery in Databases, September, 1999, http://www-
cse.ucsd.edu/users/elkan/clresults.html.

7. A.K. Ghosh and A. Schwartzbard, A Study in Using Neural Networks for Anomaly and
Misuse Detection, in Proceedings of the USENIX Security Symposium, August 23-26,
1999, Washington, D.C, http://www.rstcorp.com/~anup.

 21

8. S. Jajodia, D. Barbara, B. Speegle, and N. Wu, Audit Data Analysis and Mining
(ADAM), project described in http://www.isse.gmu.edu/~dbarbara/adam.html, April,
2000.

9. K. Kendall, A Database of Computer Attacks for the Evaluation of Intrusion Detection
Systems, S.M. Thesis, MIT Department of Electrical Engineering and Computer Science,
June 1999.

10. J. Korba, Windows NT Attacks for the Evaluation of Intrusion Detection Systems, S.M.
Thesis, MIT Department of Electrical Engineering and Computer Science, June 2000.

11. Lawrence Berkeley National Laboratory Network Research Group provides tcpdump at
http://www-nrg.ee.lbl.gov.

12. Richard P. Lippmann, David J. Fried, Isaac Graf, Joshua W. Haines, Kristopher R. Kend-
all, David McClung, Dan Weber, Seth E. Webster, Dan Wyschogrod, Robert K. Cunning-
ham, and Marc A. Zissman, Evaluating Intrusion Detection Systems: the 1998 DARPA
Off-Line Intrusion Detection Evaluation, in Proceedings of the 2000 DARPA Information
Survivability Conference and Exposition (DISCEX), Vol. 2, IEEE Press, January 2000.

13. R. P. Lippmann and R. K. Cunningham, Guide to Creating Stealthy Attacks for the 1999
DARPA Off-Line Intrusion Detection Evaluation, MIT Lincoln Laboratory Project Report
IDDE-1, June 1999.

14. MIT Lincoln Laboratory, A public web site http://www.ll.mit.edu/IST/ideval/index.html,
contains limited information on the 1998 and 1999 evaluations. Follow instructions on this
web site or send email to the authors (rpl or jhaines@sst.ll.mit.edu) to obtain access to a
password protected site with more complete information on these evaluations and results.
Software scripts to execute attacks are not provided on these or other web sites.

15. P. Neumann and P. Porras, Experience with EMERALD to DATE, in Proceedings 1st
USENIX Workshop on Intrusion Detection and Network Monitoring, Santa Clara, Califor-
nia, April 1999, 73-80, http://www.sdl.sri.com/emerald/index.html.

16. Steven Northcutt, Network Intrusion Detection; An Analysis Handbook, New Riders
Publishing, Indianapolis, 1999.

17. T. H. Ptacek and T. N. Newsham, Insertion, Evasion, and Denial of Service: Eluding
Network Intrusion Detection, Secure Networks, Inc. Report, January 1998.

18. N. Puketza, K. Zhang, M. Chung, B. Mukherjee, and R. A. Olsson, A methodology for
testing intrusion detection systems,' IEEE Transactions on Software Engineering, 22, 1996,
719-729.

19. N. Puketza, M. Chung, R. A. Olsson, and B. Mukherjee, A Software Platform for Testing
Intrusion Detection Systems, IEEE Software, September/October, 1997, 43-51.

20. A. Schwartzbard and A.K. Ghosh, A Study in the Feasibility of Performing Host-based
Anomaly Detection on Windows NT, in Proceedings of the 2nd Recent Advances in Intru-
sion Detection (RAID 1999) Workshop, West Lafayette, IN, September 7-9, 1999.

21. R. Sekar and P. Uppuluri, Synthesizing Fast Intrusion Prevention/Detection Systems from
High-Level Specifications, in Proceedings 8th Usenix Security Symposium, Washington
DC, Aug. 1999, http://rcs-sgi.cs.iastate.edu/sekar/abs/usenixsec99.htm.

22. G. Shipley, Intrusion Detection, Take Two, Network Computing, 15 November, 1999,
http://www.nwc.com/1023/1023f1.html.

 22

23. D. Song, G. Shaffer, and M. Undy, Nidsbench – A Network Intrusion Detection System
Test Suite, Second International Workshop on Recent Advances in Intrusion Detection
(RAID), September 1999, http://www.anzen.com/research/nidsbench/nidsbench-
slides/nidsbench-slides.html.

24. M. Tyson, P. Berry, N. Williams, D. Moran, D. Blei, DERBI: Diagnosis, Explanation
and Recovery from computer Break-Ins, project described in
http://www.ai.sri.com/~derbi/, April. 2000.

25. G. Vigna, S.T. Eckmann, and R.A. Kemmerer, The STAT Tool Suite, in Proceedings of
the 2000 DARPA Information Survivability Conference and Exposition (DISCEX), IEEE
Press, January 2000.

26. G. Vigna and R. Kemmerer, NetSTAT: A Network-based Intrusion Detection System,
Journal of Computer Security, 7(1), IOS Press, 1999.

