
Data Mining Methods for Detection of New Malicious Executables

Matthew G. Schultz and Eleazar Eskin
Department of Computer Science

Columbia University
fmgs,eeskin g@cs.columbia.edu

Erez Zadok
Department of Computer Science

State University of New York at Stony Brook
ezk@cs.sunysb.edu

Salvatore J. Stolfo
Department of Computer Science

Columbia University
sal@cs.columbia.edu

Abstract

A serious security threat today is malicious executables,
especially new, unseen malicious executables often arriv-
ing as email attachments. These new malicious executables
are created at the rate of thousands every year and pose a
serious security threat. Current anti-virus systems attempt
to detect these new malicious programs with heuristics gen-
erated by hand. This approach is costly and oftentimes inef-
fective. In this paper, we present a data-mining framework
that detects new, previously unseen malicious executables
accurately and automatically. The data-mining framework
automatically found patterns in our data set and used these
patterns to detect a set of new malicious binaries. Com-
paring our detection methods with a traditional signature-
based method, our method more than doubles the current
detection rates for new malicious executables.

1 Introduction

A malicious executable is defined to be a program that per-
forms a malicious function, such as compromising a sys-
tem’s security, damaging a system or obtaining sensitive
information without the user’s permission. Using data min-
ing methods, our goal is to automatically design and build
a scanner that accurately detects malicious executables be-
fore they have been given a chance to run.

Data mining methods detect patterns in large amounts of
data, such as byte code, and use these patterns to detect
future instances in similar data. Our framework usesclas-
sifiersto detect new malicious executables. A classifier is a
rule set, or detection model, generated by the data mining
algorithm that was trained over a given set of training data.

One of the primary problems faced by the virus com-
munity is to devise methods for detecting new malicious
programs that have not yet been analyzed [26]. Eight to ten
malicious programs are created every day and most cannot
be accurately detected until signatures have been generated
for them [27]. During this time period, systems protected
by signature-based algorithms are vulnerable to attacks.

Malicious executables are also used as attacks for many
types of intrusions. In the DARPA 1999 intrusion detection
evaluation, many of the attacks on the Windows platform
were caused by malicious programs [19]. Recently, a mali-
cious piece of code created a hole in a Microsoft’s internal
network [23]. That attack was initiated by a malicious ex-
ecutable that opened a back-door into Microsoft’s internal
network resulting in the theft of Microsoft’s source code.

Current virus scanner technology has two parts: a
signature-based detector and a heuristic classifier that de-
tects new viruses [8]. The classic signature-based detec-
tion algorithm relies onsignatures(unique telltale strings)
of known malicious executables to generate detection mod-
els. Signature-based methods create a unique tag for each
malicious program so that future examples of it can be cor-
rectly classified with a small error rate. These methods do
not generalize well to detect new malicious binaries be-
cause they are created to give a false positive rate as close to
zero as possible. Whenever a detection method generalizes
to new instances, the tradeoff is for a higher false positive
rate.Heuristicclassifiers are generated by a group of virus
experts to detect new malicious programs. This kind of
analysis can be time-consuming and oftentimes still fail to
detect new malicious executables.

We designed a framework that used data mining algo-
rithms to train multiple classifiers on a set of malicious and
benign executables to detect new examples. The binaries
were first statically analyzed to extract properties of the bi-
nary, and then the classifiers trained over a subset of the
data.

Our goal in the evaluation of this method was to simu-
late the task of detecting new malicious executables. To
do this we separated our data into two sets: atraining set
and atest setwith standard cross-validation methodology.
The training set was used by the data mining algorithms to
generate classifiers to classify previously unseen binaries
as malicious or benign. A test set is a subset of dataset that
had no examples in it that were seen during the training of
an algorithm. This subset was used to test an algorithms’
performance over similar, unseen data and its performance

1



over new malicious executables. Both the test and train-
ing data were malicious executables gathered from public
sources.

We implemented a traditional signature-based algorithm
to compare with the the data mining algorithms over new
examples. Using standard statistical cross-validation tech-
niques, our data mining-based method had a detection
rate of 97.76%—more than double the detection rate of a
signature-based scanner over a set of new malicious exe-
cutables. Comparing our method to industry heuristics can-
not be done at this time because the methods for generating
these heuristics are not published and there is no equiva-
lent or statistically comparable dataset to which both tech-
niques are applied. However, the framework we provide is
fully automatic and could assist experts in generating the
heuristics.

2 Background

Detecting malicious executables is not a new problem in
security. Early methods used signatures to detect malicious
programs. These signatures were composed of many dif-
ferent properties: filename, text strings, or byte code. Re-
search also centered on protecting the system from the se-
curity holes that these malicious programs created.

Experts were typically employed to analyze suspicious
programs by hand. Using their expertise, signatures were
found that made a malicious executable example different
from other malicious executables or benign programs. One
example of this type of analysis was performed by Spafford
[24] who analyzed the Internet Worm and provided detailed
notes on its spread over the Internet, the unique signatures
in the worm’s code, the method of the worm’s attack, and a
comprehensive description of system failure points.

Although accurate, this method of analysis is expensive,
and slow. If only a small set of malicious executables will
ever circulate then this method will work very well, but
the Wildlist [22] is always changing and expanding. The
Wildlist is a list of malicious programs that are currently
estimated to be circulating at any given time.

Current approaches to detecting malicious programs
match them to a set of known malicious programs. The
anti-virus community relies heavily on known byte-code
signatures to detect malicious programs. More recently,
these byte sequences were determined by automatically ex-
amining known malicious binaries with probabilistic meth-
ods.

At IBM, Kephart and Arnold [9] developed a statistical
method for automatically extracting malicious executable
signatures. Their research was based on speech recognition
algorithms and was shown to perform almost as good as
a human expert at detecting known malicious executables.
Their algorithm was eventually packaged with IBM’s anti-
virus software.

Lo et al. [15] presented a method for filtering mali-

cious code based on “tell-tale signs” for detecting mali-
cious code. These were manually engineered based on ob-
serving the characteristics of malicious code. Similarly, fil-
ters for detecting properties of malicious executables have
been proposed for UNIX systems [10] as well as semi-
automatic methods for detecting malicious code [4].

Unfortunately, a new malicious program may not con-
tain any known signatures so traditional signature-based
methods may not detect a new malicious executable. In an
attempt to solve this problem, the anti-virus industry gen-
erates heuristic classifiers by hand [8]. This process can
be even more costly than generating signatures, so find-
ing an automatic method to generate classifiers has been
the subject of research in the anti-virus community. To
solve this problem, different IBM researchers appliedArti-
ficial Neural Networks(ANNs) to the problem of detecting
boot sector malicious binaries [25]. An ANN is a classifier
that models neural networks explored in human cognition.
Because of the limitations of the implementation of their
classifier, they were unable to analyze anything other than
small boot sector viruses which comprise about 5% of all
malicious binaries.

Using an ANN classifier with all bytes from the boot sec-
tor malicious executables as input, IBM researchers were
able to identify 80–85% of unknown boot sector mali-
cious executables successfully with a low false positive rate
(< 1%). They were unable to find a way to apply ANNs to
the other 95% of computer malicious binaries.

In similar work, Arnold and Tesauro [1] applied the same
techniques to Win32 binaries, but because of limitations of
the ANN classifier they were unable to have the comparable
accuracy over new Win32 binaries.

Our method is different because we analyzed the en-
tire set of malicious executables instead of only boot-sector
viruses, or only Win32 binaries.

Our technique is similar to data mining techniques that
have already been applied to Intrusion Detection Systems
by Lee et al. [13, 14]. Their methods were applied to sys-
tem calls and network data to learn how to detect new in-
trusions. They reported good detection rates as a result of
applying data mining to the problem of IDS. We applied a
similar framework to the problem of detecting new mali-
cious executables.

3 Methodology

The goal of this work was to explore a number of stan-
dard data mining techniques to compute accurate detectors
for new (unseen) binaries. We gathered a large set of pro-
grams from public sources and separated the problem into
two classes:maliciousandbenignexecutables. Every ex-
ample in our data set is a Windows or MS-DOS format ex-
ecutable, although the framework we present is applicable
to other formats. To standardize our data-set, we used an
updated MacAfee’s [16] virus scanner and labeled our pro-

2



grams as either malicious or benign executables. Since the
virus scanner was updated and the viruses were obtained
from public sources, we assume that the virus scanner has
a signature for each malicious virus.

We split the dataset into two subsets: thetraining setand
the test set. The data mining algorithms used the training
set while generating the rule sets. We used a test set to
check the accuracy of the classifiers over unseen examples.

Next, we automatically extracted a binary profile from
each example in our dataset, and from the binary profiles
we extractedfeaturesto use with classifiers. In a data min-
ing framework, features are properties extracted from each
example in the data set—such as byte sequences—that a
classifier can use to generate detection models. Using dif-
ferent features, we trained a set of data mining classifiers
to distinguish between benign and malicious programs. It
should be noted that the features extracted were static prop-
erties of the binary and did not require executing the binary.

The framework supports different methods for feature
extraction and different data mining classifiers. We used
system resource information, strings and byte sequences
that were extracted from the malicious executables in the
data set as different types of features. We also used three
learning algorithms:

� an inductive rule-based learner that generates boolean
rules based on feature attributes.

� a probabilistic method that generates probabilities that
an example was in a class given a set of features.

� a multi-classifier system that combines the outputs
from several classifiers to generate a prediction.

To compare the data mining methods with a traditional
signature-based method, we designed an automatic signa-
ture generator. Since the virus scanner that we used to la-
bel the data set had signatures for every malicious exam-
ple in our data set, it was necessary to implement a simi-
lar signature-based method to compare with the data min-
ing algorithms. There was no way to use an off-the-shelf
virus scanner and simulate the detection of new malicious
executables because these commercial scanners contained
signatures for all the malicious executables in our data set.
Like the data mining algorithms, the signature-based algo-
rithm was only allowed to generate signatures over the set
of training data. This allowed our data mining framework
to be fairly compared to traditional scanners over new data.

To quantitatively express the performance of our method
we show tables with the counts fortrue positives(TP),true
negatives(TN), false positives(FP), andfalse negatives
(FN). A true positive is a malicious example that is cor-
rectly tagged as malicious, and a true negative is a benign
example that is correctly classified. A false positive is a be-
nign program that has been mislabeled by an algorithm as
a malicious program, while a false negative is a malicious
executable that has been misclassified as a benign program.

To evaluate the performance, we compute the false pos-
itive rate and the detection rate. The false positive rate is
the number of benign examples that are mislabeled as mali-
cious divided by the total number of benign examples. The
detection rate is the number of malicious examples that are
caught divided by the total number of malicious examples.

3.1 Dataset Description

Our data set consisted of a total of 4,266 programs split
into 3,265 malicious binaries and 1,001 clean programs.
There were no duplicate programs in the data set and every
example in the set is labeled either malicious or benign by
the commercial virus scanner.

The malicious executables were downloaded from var-
ious FTP sites and were labeled by a commercial virus
scanner with the correct class label (malicious or benign)
for our method. 5% of the data set was composed of
Trojans and the other 95% consisted of viruses. Most
of the clean programs were gathered from a freshly in-
stalled Windows 98 machine running MSOffice 97 while
others are small executables downloaded from the Inter-
net. The entire data set is available from our Web site
http://www.cs.columbia.edu/ids/mef/software/.

We also examined a subset of the data that was in
Portable Executable(PE) [17] format. The data set consist-
ing of PE format executables was composed of 206 benign
programs and 38 malicious executables.

After verification of the data set the next step of our
method was to extract features from the programs.

4 Feature Extraction

In this section we detail all of our choices of features. We
statically extracted different features that represented dif-
ferent information contained within each binary. These fea-
tures were then used by the algorithms to generate detection
models.

We first examine only the subset of PE executables using
LibBFD. Then we used more general methods to extract
features from all types of binaries.

4.1 LibBFD

Our first intuition into the problem was to extract informa-
tion from the binary that would dictate its behavior. The
problem of predicting a program’s behavior can be reduced
to the halting problem and hence is undecidable [2]. Per-
fectly predicting a program’s behavior is unattainable but
estimating what a program can or cannot do is possible. For
instance if a Windows executable does not call the User In-
terfaces Dynamically Linked Library(USER32.DLL), then
we could assume that the program does not have the stan-
dard Windows user interface. This is of course an over-
simplification of the problem because the author of that ex-

3



ample could have written or linked to another user interface
library, but it did provide us with some insight to an appro-
priate feature set.

To extract resource information from Windows executa-
bles we used GNU’s Bin–Utils [5]. GNU’s Bin–Utils suite
of tools can analyze PE binaries within Windows. In PE,
or Common Object File Format(COFF), program headers
are composed of a COFF header, an Optional header, an
MS-DOS stub, and a file signature. From the PE header we
used libBFD, a library within Bin–Utils, to extract informa-
tion in object format. Object format for a PE binary gives
the file size, the names of DLLs, and the names of function
calls within those DLLs and Relocation Tables. From the
object format, we extracted a set of features to compose a
feature vector for each binary.

To understand how resources affected a binary’s behav-
ior we performed our experiments using three types of fea-
tures:

1. The list of DLLs used by the binary

2. The list of DLL function calls made by the binary

3. The number of different function calls within each
DLL

The first approach to binary profiling (shown in Figure
1) used the DLLs loaded by the binary as features. The
feature vector comprised of 30 boolean values represent-
ing whether or not a binary used a DLL. Typically, not
every DLL was used in all of the binaries, but a major-
ity of the binaries called the same resource. For example,
almost every binary called GDI32.DLL, which is the Win-
dows NT Graphics Device Interface and is a core compo-
nent of WinNT.

:advapi32 ^ avicap32 ^ ::: ^ winmm ^ :wsock32

Figure 1: First Feature Vector: A conjunction of DLL
names

The example vector given in Figure 1 is composed of
at least two unused resources: ADVAPI32.DLL, the Ad-
vanced Windows API, and WSOCK32.DLL, the Windows
Sockets API. It also uses at least two resources: AVI-
CAP32.DLL, the AVI capture API, and WINNM.DLL, the
Windows Multimedia API.

The second approach to binary profiling (seen in Figure
2) used DLLs and their function calls as features. This ap-
proach was similar to the first, but with added function call
information. The feature vector was composed of 2,229
boolean values. Because some of the DLL’s had the same
function names it was important to record which DLL the
function came from.

The example vector given in Figure 2 is composed of
at least four resources. Two functions were called in AD-
VAPI32.DLL: AdjustTokenPrivileges() and GetFileSecu-

advapi32:AdjustTokenPrivileges()

^ advapi32:GetF ileSecurityA()^ :::

^ wsock32:recv() ^ wsock32:send()

Figure 2: Second Feature Vector: A conjunction of DLL’s
and the functions called inside each DLL

rityA(), and two functions in WSOCK32.DLL: recv() and
send().

The third approach to binary profiling (seen in Figure 3)
counted the number of different function calls used within
each DLL. The feature vector included 30 integer values.
This profile gives a rough measure of how heavily a DLL
is used within a specific binary. Intuitively, in the resource
models we have been exploring, this is a macro-resource
usage model because the number of calls to each resource
is counted instead of detailing referenced functions. For ex-
ample, if a program only called the recv() and send() func-
tions of WSOCK32.DLL, then the count would be 2. It
should be noted that we do not count the number of times
those functions might have been called.

advapi32 = 2 ^ avicap32 = 10 ^ :::

^ winmm = 8 ^ wsock32 = 2

Figure 3: Third Feature Vector: A conjunction of DLL’s
and a count of the number of functions called inside each
DLL

The example vector given in Figure 3 describes an exam-
ple that calls two functions in ADVAPI32.DLL, ten func-
tions in AVICAP32.DLL, eight functions in WINNM.DLL
and two functions from WSOCK32.DLL.

All of the information about the binary was obtained
from the program header. In addition, the information was
obtained without executing the unknown program but by
examining the static properties of the binary, using libBFD.

Since we could not analyze the entire dataset with
libBFD we found another method for extracting features
that works over the entire dataset. We describe that method
next.

4.2 GNU Strings

During the analysis of our libBFD method we noticed
that headers in PE-format were in plain text. This meant
that we could extract the same information from the PE-
executables by just extracting the plain text headers. We
also noticed that non-PE executables also have strings en-
coded in them. We theorized that we could use this infor-
mation to classify the full 4,266 item data set instead of the

4



small libBFD data set.
To extract features from the first data set of 4,266 pro-

grams we used the GNUstrings program. The strings
program extracts consecutive printable characters from any
file. Typically there are many printable strings in binary
files. Some common strings found in our dataset are illus-
trated in Table 1.

kernel microsoft windows getmodulehandlea
getversion getstartupinfoa win getmodulefilenamea

messageboxa closehandle null dispatchmessagea
library getprocaddress advapi getlasterror

loadlibrarya exitprocess heap getcommandlinea
reloc createfilea writefile setfilepointer

application showwindow time regclosekey

Table 1: Common strings extracted from binaries using
GNU strings

Through testing we found that there were similar strings
in malicious executables that distinguished them from
clean programs, and similar strings in benign programs
that distinguished them from malicious executables. Each
string in the binary was used as a feature. In the data mining
step, we discuss how a frequency analysis was performed
over all the byte sequences found in our data set.

The strings contained in a binary may consist of reused
code fragments, author signatures, file names, system re-
source information, etc. This method of detecting mali-
cious executables is already used by the anti-malicious ex-
ecutable community to create signatures for malicious exe-
cutables.

Extracted strings from an executable are not very robust
as features because they can be changed easily, so we ana-
lyzed another feature, byte sequences.

4.3 Byte Sequences Using Hexdump

Byte sequences are the last set of features that we used over
the entire 4,266 member data set. We usedhexdump[18],
a tool that transforms binary files into hexadecimal files.
The byte sequence feature is the most informative because
it represents the machine code in an executable instead of
resource information like libBFD features. Secondly, ana-
lyzing the entire binary gives more information for non-PE
format executables than the strings method.

After we generated the hexdumps we had features as dis-
played in Figure 4 where each line represents a short se-
quence of machine code instructions.

We again assumed that there were similar instructions in
malicious executables that differentiated them from benign
programs, and the class of benign programs had similar
byte code that differentiated them from the malicious ex-
ecutables. Also like the string features, each byte sequence
in a binary is used as a feature.

1f0e 0eba b400 cd09 b821 4c01 21cd 6854
7369 7020 6f72 7267 6d61 7220 7165 6975
6572 2073 694d 7263 736f 666f 2074 6957
646e 776f 2e73 0a0d 0024 0000 0000 0000
454e 3c05 026c 0009 0000 0000 0302 0004
0400 2800 3924 0001 0000 0004 0004 0006
000c 0040 0060 021e 0238 0244 02f5 0000
0001 0004 0000 0802 0032 1304 0000 030a

Figure 4: Example Hexdump

5 Algorithms

In this section we describe all the algorithms presented in
this paper as well as the signature-based method used for
comparison. We used three different data mining algo-
rithms to generate classifiers with different features: RIP-
PER, Naive Bayes, and a Multi-Classifier system.

We describe the signature-based method first.

5.1 Signature Methods

We examine signature-based methods to compare our re-
sults to traditional anti-virus methods. Signature-based de-
tection methods are the most commonly used algorithms in
industry [27]. These signatures are picked to differentiate
one malicious executable from another, and from benign
programs. These signatures are generated by an expert in
the field or an automatic method. Typically, a signature is
picked to illustrate the distinct properties of a specific ma-
licious executable.

We implemented a signature-based scanner with this
method that follows a simple algorithm for signature gen-
eration. First, we calculated the byte-sequences that were
only found in the malicious executable class. These byte-
sequences were then concatenated together to make a
unique signature for each malicious executable example.
Thus, each malicious executable signature contained only
byte-sequences found in the malicious executable class. To
make the signature unique, the byte-sequences found in
each example were concatenated together to form one sig-
nature. This was done because a byte-sequence that is only
found in one class during training could possibly be found
in the other class during testing [9], and lead to false posi-
tives in testing.

The method described above for the commercial scanner
was never intended to detect unknown malicious binaries,
but the data mining algorithms that follow were built to de-
tect new malicious executables.

5.2 RIPPER

The next algorithm we used, RIPPER [3], is an inductive
rule learner. This algorithm generated a detection model
composed of resource rules that was built to detect future

5



examples of malicious executables. This algorithm used
libBFD information as features.

RIPPER is a rule-based learner that builds a set of rules
that identify the classes while minimizing the amount of
error. The error is defined by the number of training exam-
ples misclassified by the rules.

An inductive algorithm learns what a malicious exe-
cutable is given a set of training examples. The four fea-
tures seen in Table 2 are:

1. “Does it have a GUI?”

2. “Does it perform a malicious function?”

3. “Does it compromise system security?”

4. “Does it delete files?”

and finally the class question “Is it malicious?”

Has a Malicious Compromise Deletes Is it
GUI? Function? Security? Files? malicious?
yes yes yes no yes
no yes yes yes yes
yes no no yes no
yes yes yes yes yes

Table 2: Example Inductive Training Set. Intuitively all
malicious executables share the second and third feature,
“yes” and “yes” respectively.

The defining property of any inductive learner is that no a
priori assumptions have been made regarding the final con-
cept. The inductive learning algorithm makes as its primary
assumption that the data trained over is similar in some way
to the unseen data.

A hypothesis generated by an inductive learning algo-
rithm for this learning problem has four attributes. Each
attribute will have one of these values:

1. >, truth, indicating any value is acceptable in this po-
sition,

2. a value, either yes, or no, is needed in this position, or

3. a?, falsity, indicating that no value is acceptable for
this position

For example, the hypothesish>;>;>;>i and the hy-
pothesishyes; yes; yes; noi would make the first example
true. h>;>;>;>i would make any feature set true and
hyes; yes; yes; noi is the set of features for example one.

The algorithm we describe isFind-S[20]. Find-S finds
the most specific hypothesis that is consistent with the
training examples. For a positive training example the al-
gorithm replaces any attribute in the hypothesis that is in-
consistent with the training example with a more general
attribute. Of all the hypotheses values 1 is more general

than 2 and 2 is more general than 3. For a negative exam-
ple the algorithm does nothing. Positive examples in this
problem are defined to be the malicious executables and
negative examples are the benign programs.

The initial hypothesis that Find-S starts with is
h?;?;?;?i. This hypothesis is the most specific
because it is true over the fewest possible examples,
none. Examining the first positive example in Table 2,
hyes; yes; yes; noi, the algorithm chooses the next most
specific hypothesishyes; yes; yes; noi. The next positive
example,hno; no; no; yesi, is inconsistent with the hypoth-
esis in its first and fourth attribute (“Does it have a GUI?”
and “Does it delete files?”) and those attributes in the hy-
pothesis get replaced with the next most general attribute,
>.

The resulting hypothesis after two positive examples is
h>; yes; yes;>i. The algorithm skips the third example, a
negative example, and finds that this hypothesis is consis-
tent with the final example in Table 2. The final rule for the
training data listed in Table 2 ish>; yes; yes;>i. The rule
states that the attributes of a malicious executable, based
on training data, are that it has a malicious function and
compromises system security. This is consistent with the
definition of a malicious executable we gave in the intro-
duction. It does not matter in this example if a malicious
executable deletes files, or if it has a GUI or not.

Find-S is a relatively simple algorithm while RIPPER is
more complex. RIPPER looks at both positive and negative
examples to generate a set of hypotheses that more closely
approximate the target concept while Find-S generates one
hypothesis that approximates the target concept.

5.3 Naive Bayes

The next classifier we describe is a Naive Bayes classifier
[6]. The naive Bayes classifier computes the likelihood that
a program is malicious given the features that are contained
in the program. This method used both strings and byte-
sequence data to compute a probability of a binary’s mali-
ciousness given its features.

Nigam et al. [21] performed a similar experiment when
they classified text documents according to which news-
group they originated from. In this method we treated
each executable’s features as a text document and classi-
fied based on that. The main assumption in this approach is
that the binaries contain similar features such as signatures,
machine instructions, etc.

Specifically, we wanted to compute the class of a pro-
gram given that the program contains a set of featuresF .
We defineC to be a random variable over the set of classes:
benign, and maliciousexecutables. That is, we want to
computeP (CjF ), the probability that a program is in a
certain class given the program contains the set of features
F . We apply Bayes rule and express the probability as:

6



P (CjF ) =
P (F jC) � P (C)

P (F )
(1)

To use the naive Bayes rule we assume that the features
occur independently from one another. If the features of
a programF include the featuresF1; F2; F3; :::; Fn, then
equation (1) becomes:

P (CjF ) =

Qn

i=1 P (FijC) � P (C)Qn

j=1 P (Fj)
(2)

EachP (FijC) is the frequency that stringFi occurs in a
program of classC. P (C) is the proportion of the classC
in the entire set of programs.

The output of the classifier is the highest probability
class for a given set of strings. Since the denominator of
(1) is the same for all classes we take the maximum class
over all classesC of the probability of each class computed
in (2) to get:

Most Likely Class= max
C

 
P (C)

nY
i=1

P (FijC)

!
(3)

In (3), we usemaxC to denote the function that returns
the class with the highest probability. Most Likely Class
is the class inC with the highest probability and hence the
most likely classification of the example with featuresF .

To train the classifier, we recorded how many programs
in each class contained each unique feature. We used this
information to classify a new program into an appropriate
class. We first used feature extraction to determine the fea-
tures contained in the program. Then we applied equation
(3) to compute the most likely class for the program.

We used the Naive Bayes algorithm and computed the
most likely class for byte sequences and strings.

5.4 Multi-Naive Bayes

The next data mining algorithm we describe is Multi-Naive
Bayes. This algorithm was essentially a collection of Naive
Bayes algorithms that voted on an overall classification for
an example. Each Naive Bayes algorithm classified the
examples in the test set as malicious or benign and this
counted as a vote. The votes were combined by the Multi-
Naive Bayes algorithm to output a final classification for all
the Naive Bayes.

This method was required because even using a machine
with one gigabyte of RAM, the size of the binary data was
too large to fit into memory. The Naive Bayes algorithm
required a table of all strings or bytes to compute its prob-
abilities. To correct this problem we divided the problem
into smaller pieces that would fit in memory and trained a
Naive Bayes algorithm over each of the subproblems.

We split the data evenly into several sets by putting each
ith line in the binary into the (i modn)th set wheren is

the number of sets. For each set we trained a Naive Bayes
classifier. Our prediction for a binary is the product of the
predictions of then classifiers. In our experiments we use
6 classifiers (n = 6).

More formally, the Multi-Naive Bayes promotes a vote
of confidence between all of the underlying Naive Bayes
classifiers. Each classifier gives a probability of a classC
given a set of bytesF which the Multi-Naive Bayes uses
to generate a probability for classC givenF over all the
classifiers.

We want to compute the likelihood of a classC given
bytesF and the probabilities learned by each classifier
NaiveBayesi. In equation (4) we computed the likeli-
hood,LNB(CjF ), of classC given a set of bytesF .

LNB(CjF ) =

jNBjY
i=1

PNBi
(CjF )=PNBi

(C) (4)

whereNBi is a Naive Bayes classifier andNB is the set
of all combined Naive Bayes classifiers (in our case6).
PNBi(CjF ) (generated from equation (2)) is the probabil-
ity for classC computed by the classifierNaiveBayesi
given F divided by the probability of classC computed
by NaiveBayesi. Each PNBi(CjF ) was divided by
PNBi

(C) to remove the redundant probabilities. All the
terms were multiplied together to computeLNB(CjF ), the
final likelihood ofC givenF . jNBj is the size of the set
NB such that8NBi�NB.

The output of the multi-classifier given a set of bytesF
is the class of highest probability over the classes given
LNB(CjF ) andPNB(C) the prior probability of a given
class.

Most Likely Class= max
C

(PNB(C) � LNB(CjF )) (5)

Most Likely Class is the class inC with the highest prob-
ability hence the most likely classification of the example
with featuresF , andmaxC returns the class with the high-
est likelihood.

6 Rules

Each data mining algorithm generated its own rule set to
evaluate new examples. These detection models were the
final result of our experiments. Each algorithm’s rule set
could be incorporated into a scanner to detect malicious
programs. The generation of the rules only needed to be
done periodically and the rule set distributed in order to
detect new malicious executables.

6.1 RIPPER

RIPPER’s rules were built to generalize over unseen exam-
ples so the rule set was more compact than the signature

7



based methods. For the data set that contained 3,301 ma-
licious executables the RIPPER rule set contained the five
rules in Figure 5.

malicious := :user32:EndDialog() ^

kernel32:EnumCalendarInfoA()

malicious := :user32:LoadIconA() ^

:kernel32:GetTempPathA()^ :advapi32:

malicious := shell32:ExtractAssociatedIconA()

malicious := msvbvm:

benign : � otherwise

Figure 5: Sample Classification Rules using features found
in Figure 2

Here, a malicious executable was consistent with one of
four hypotheses:

1. it did not call user32.EndDialog() but it did call ker-
nel32.EnumCalendarInfoA()

2. it did not call user32.LoadIconA(), ker-
nel32.GetTempPathA(), or any function in ad-
vapi32.dll

3. it called shell32.ExtractAssociatedIconA(),

4. it called any function in msvbbm.dll, the Microsoft
Visual Basic Library

A binary is labeled benign if it is inconsistent with all of
the malicious binary hypotheses in Figure 5.

6.2 Naive Bayes

The Naive Bayes rules were more complicated than the
RIPPER and signature based hypotheses. These rules took
the form ofP (F jC), the probability of an exampleF given
a classC. The probability for a string occurring in a class
is the total number of times it occurred in that class’s train-
ing set divided by the total number of times that the string
occurred over the entire training set. These hypotheses are
illustrated in Figure 6.

P (\windows"jbenign) = 45=47

P (\windows"jmalicious) = 2=47

P (\ � :COM"jbenign) = 1=12

P (\ � :COM"jmalicious) = 11=12

Figure 6: Sample classification rules found by Naive
Bayes.

Here, the string “windows” was predicted to more likely
to occur in a benign program and string “*.COM” was more
than likely in a malicious executable program.

However this leads to a problem when a string (e.g.
“CH2OH-CHOH-CH2OH”) only occurred in one set, for
example only in the malicious executables. The proba-
bility of “CH20H-CHOH-CH20H” occurring in any future
benign example is predicted to be 0, but this is an incor-
rect assumption. If a Chemistry TA’s program was written
to print out “CH20H-CHOH-CH20H” (glycerol) it will al-
ways be tagged a malicious executable even if it has other
strings in it that would have labeled it benign.

In Figure 6 the string “*.COM” does not occur in any be-
nign programs so the probability of “*.COM” occurring in
class benign is approximated to be 1/12 instead of 0/11.
This approximates real world probability that any string
could occur in both classes even if during training it was
only seen in one class [9].

6.3 Multi-Naive Bayes

The rule sets generated by our Multi-Naive Bayes algo-
rithm are the collection of the rules generated by each of
the component Naive Bayes classifiers. For each classifier,
there is a rule set such as the one in Figure 6. The probabili-
ties in the rules for the different classifiers may be different
because the underlying data that each classifier is trained
on is different. The prediction of the Multi-Naive Bayes al-
gorithm is the product of the predictions of the underlying
Naive Bayes classifiers.

7 Results and Analysis

We estimate our results over new data by using 5-fold cross
validation [12]. Cross validation is the standard method to
estimate likely predictions over unseen data in Data Min-
ing. For each set of binary profiles we partitioned the data
into 5 equal size groups. We used 4 of the partitions for
training and then evaluated the rule set over the remaining
partition. Then we repeated the process 5 times leaving
out a different partition for testing each time. This gave
us a very reliable measure of our method’s accuracy over
unseen data. We averaged the results of these five tests to
obtain a good measure of how the algorithm performs over
the entire set.

To evaluate our system we were interested in several
quantities:

1. True Positives (TP), the number of malicious exe-
cutable examples classified as malicious executables

2. True Negatives (TN), the number of benign programs
classified as benign.

3. False Positives (FP), the number of benign programs
classified as malicious executables

8



4. False Negatives (FN), the number of malicious exe-
cutables classified as benign binaries.

We were interested in the detection rate of the classifier.
In our case this was the percentage of the total malicious
programs labeled malicious. We were also interested in
the false positive rate. This was the percentage of benign
programs which were labeled as malicious, also called false
alarms.

The Detection Rate is defined as TP
TP+FN

, False

Positive Rate as FP
TN+FP

, and Overall Accuracy as
TP+TN

TP+TN+FP+FN
. The results of all experiments are pre-

sented in Table 3.
For all the algorithms we plotted the detection rate vs.

false positive rate usingReceiver Operating Characteristic
(ROC) curves [11]. ROC curves are a way of visualizing
the trade-offs between detection and false positive rates.

7.1 Signature Method

As is shown in Table 3, the signature method had the lowest
false positive rate, 0% This algorithm also had the lowest
detection rate, 33.75%, and accuracy rate, 49.28%.

Since we use this method to compare with the learning
algorithms we plot its ROC curves against the RIPPER al-
gorithm in Figure 7 and against the Naive Bayes and Multi-
Naive Bayes algorithms in Figure 8.

The detection rate of the signature-based method is in-
herently low over new executables because the signatures
generated were never designed to detect new malicious ex-
ecutables. Also it should be noted that although the signa-
ture based method only detected 33.75% of new malicious
programs, the method did detect 100% of the malicious bi-
naries that it had seen before with a 0% false positive rate.

7.2 RIPPER

The RIPPER results shown in Table 3 are roughly equiv-
alent to each other in detection rates and overall accuracy,
but the method using features from Figure 2, a list of DLL
function calls, has a higher detection rate.

The ROC curves for all RIPPER variations are shown in
Figure 7. The lowest line represents RIPPER using DLLs
only as features, and it was roughly linear in its growth.
This means that as we increase detection rate by 5% the
false positive would also increase by roughly 5%.

The other lines are concave down so there was an op-
timal trade-off between detection and false alarms. For
DLL’s with Counted Function Calls this optimal point was
when the false positive rate was 10% and the detection rate
was equal to 75%. For DLLs with Function Calls the opti-
mal point was when the false positive rate was 12% and the
detection rate was less than 90%.

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30

D
et

ec
tio

n 
R

at
e 

%

False Positive Rate %

RIPPER with Function Calls
RIPPER with DLLs Only

RIPPER with Counted Function Calls
Signature Method

Figure 7: RIPPER ROC. Notice that the RIPPER curves
have a higher detection rate than the comparison method
with false-positive rates greater than 7%.

7.3 Naive Bayes

The Naive Bayes algorithm using strings as features per-
formed the best out of the learning algorithms and better
than the signature method in terms of false positive rate
and overall accuracy (see Table 3). It is the most accurate
algorithm with 97.11% and within 1% of the highest de-
tection rate, Multi-Naive Bayes with 97.76%. It performed
better than the RIPPER methods in every category.

In Figure 8, the slope of the Naive Bayes curve is ini-
tially much steeper than the Multi-Naive Bayes. The Naive
Bayes with strings algorithm has better detection rates for
small false positive rates. Its results were greater than 90%
accuracy with a false positive rate less than 2%.

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14

D
et

ec
tio

n 
R

at
e 

%

False Positive Rate %

Naive Bayes with Strings
Multi-Naive Bayes with Bytes

Signature Method

Figure 8: Naive Bayes and Multi-Naive Bayes ROC. Note
that the Naive Bayes and Multi-Naive Bayes methods have
higher detection rate than the signature method with a
greater than 0.5% false positive rate.

9



Profile True True False False Detection False Positive Overall
Type Positives (TP) Negatives (TN) Positives (FP) Negatives (FN) Rate Rate Accuracy
Signature Method
— Bytes 1102 1000 0 2163 33.75% 0% 49.28%
RIPPER
— DLLs used 22 187 19 16 57.89% 9.22% 83.62%
— DLL function calls 27 190 16 11 71.05% 7.77% 89.36%
— DLLs with
counted function calls 20 195 11 18 52.63% 5.34% 89.07%
Naive Bayes
— Strings 3176 960 41 89 97.43% 3.80% 97.11%
Multi-Naive Bayes
— Bytes 3191 940 61 74 97.76% 6.01% 96.88%

Table 3: These are the results of classifying new malicious programs organized by algorithm and feature. Multi-Naive
Bayes using Bytes had the highest Detection Rate, and Signature Method with strings had the lowest False Positive Rate.
Highest overall accuracy was the Naive Bayes algorithm with strings. Note that the detection rate for the signature-based
methods are lower than the data mining methods.

7.4 Multi-Naive Bayes

The Multi-Naive Bayes algorithm using bytes as features
had the highest detection rate out of any method we tested,
97.76%. The false positive rate at 6.01% was higher than
the Naive Bayes methods (3.80%) and the signature meth-
ods (< 1%).

The ROC curves in Figure 8 show a slower growth than
the Naive Bayes with strings method until the false positive
rate climbed above 4%. Then the two algorithms converged
for false positive rates greater than 6% with a detection rate
greater than 95%.

7.5 Same Model, Different Applications

The ROC curves in Figures 7 and 8 also let security ex-
perts understand how to tailor this framework to their spe-
cific needs. For example, in a secure computing setting,
it may be more important to have a high detection rate
of 98.79%, in which case the false positive rate would in-
crease to 8.87%. Or if the framework were to be integrated
into a mail server, it may be more important to have a low
false positive rate below 1% (0.39% FP rate in our case) and
a detection rate of 65.62% for new malicious programs.

8 Defeating Detection Models

Although these methods can detect new malicious executa-
bles, a malicious executable author could bypass detection
if the detection model were to be compromised.

First, to defeat the signature-based method requires re-
moving all malicious signatures from the binary. Since
these are typically a subset of a malicious executable’s total
data, changing the signature of a binary would be possible
although difficult.

Defeating the models generated by RIPPER would re-
quire generating functions that would change the resource

usage. These functions do not have to be called by the bi-
nary but would change the resource signature of an exe-
cutable.

To defeat our implementation of the Naive Bayes clas-
sifier it would be necessary to change a significant num-
ber of features in the example. One way this can be done
is through encryption, but encryption will add overhead to
small malicious executables.

We corrected the problem of authors evading a strings-
based rule set by initially classifying each example as ma-
licious. If no strings that were contained in the binary had
ever been used for training then the final class was mali-
cious. If there were strings contained in the program that
the algorithm had seen before then the probabilities were
computed normally according to the Naive Bayes rule from
Section 4.3. This took care of the instance where a binary
had encrypted strings, or had changed all of its strings.

The Multi-Naive Bayes method improved on these re-
sults because changing every line of byte code in the Naive
Bayes detection model would be an even more difficult
proposition than changing all the strings. Changing this
many of the lines in a program would change the binary’s
behavior significantly. Removing all lines of code that ap-
pear in our model would be difficult and time consuming,
and even then if none of the byte sequences in the exam-
ple had been used for training then the example would be
initially classified as malicious.

The Multi-Naive Bayes is a more secure model of detec-
tion than any of the other methods discussed in this pa-
per because we evaluate a binary’s entire instruction set
whereas signature methods looks for segments of byte se-
quences. It is much easier for malicious program authors
to modify the lines of code that a signature represents than
to change all the lines contained in the program to evade
a Naive Bayes or Multi-Naive Bayes model. The byte se-
quence model is the most secure model we devised in our
test.

10



A further security concern is what happens when mali-
cious software writers obtain copies of the malicious bina-
ries that we could not detect, and use these false negatives
to generate new malicious software. Presumably this would
allow them to circumvent our detection models, but in fact
having a larger set of similar false negatives would make
our model more accurate. In other words, if malicious bi-
nary authors clone the undetectable binaries, they are in
effect making it easier for this framework to detect their
programs. The more data that the method analyzes, and the
more false positives and false negatives that it learns from,
the more accurate the method becomes at distinguishing
between benign and malicious programs.

9 Conclusions

The first contribution that we presented in this paper was a
method for detecting previously undetectable malicious ex-
ecutables. We showed this by comparing our results with
traditional signature-based methods and with other learning
algorithms. The Multi-Naive Bayes method had the high-
est accuracy and detection rate of any algorithm over un-
known programs, 97.76%, over double the detection rates
of signature-based methods. Its rule set was also more dif-
ficult to defeat than other methods because all lines of ma-
chine instructions would have to be changed to avoid de-
tection.

The first problem with traditional anti-malicious exe-
cutable detection methods is that in order to detect a new
malicious executable, the program needs to be examined
and a signature extracted from it and included in the anti-
malicious executable software database. The difficulty with
this method is that during the time required for a malicious
program to be identified, analyzed and signatures to be dis-
tributed, systems are at risk from that program. Our meth-
ods may provide a defense during that time. With a low
false positive rate, the inconvenience to the end user would
be minimal while providing ample defense during the time
before an update of models is available.

Virus Scanners are updated about every month. 240–300
new malicious executables are created in that time (8–10
a day [27]). Our method would catch roughly 216–270 of
those new malicious executables without the need for an
update whereas traditional methods would catch only 87–
109. Our method more than doubles the detection rate of
signature based methods for new malicious binaries.

The methods discussed in this paper are being imple-
mented as a network mail filter. We are implementing a
network-level email filter that uses our algorithms to catch
malicious executables before users receive them through
their mail. We can either wrap the potential malicious ex-
ecutable or we can block it. This has the potential to stop
some malicious executables in the network and prevent De-
nial of Service (DoS) attacks by malicious executables. If a
malicious binary accesses a user’s address book and mails

copies of itself out over the network, eventually most users
of the LAN will clog the network by sending each other
copies of the same malicious executable. This is very simi-
lar to the old Internet Worm attack. Stopping the malicious
executables from replicating on a network level would be
very advantageous.

Since both the Naive Bayes and Multi-Naive Bayes
methods are probabilistic we can also tell if a binary isbor-
derline. A borderline binary is a program that has similar
probabilities for both classes (i.e., could be a malicious ex-
ecutable or a benign program). If it is a borderline case we
have an option in the network filter to send a copy of the
malicious executable to a central repository such as CERT.
There, it can be examined by human experts.

9.1 Future Work

Future work involves extending our learning algorithms to
better utilize byte-sequences. Currently, the Multi-Naive
Bayes method learns over sequences of a fixed length,
but we theorize that rules with higher accuracy and detec-
tion rates could be learned over variable length sequences.
There are some algorithms such as Sparse Markov Trans-
ducers [7] that can determine how long a sequence of bytes
should be for optimal classification.

We are planning to implement the system on a network
of computers to evaluate its performance in terms of time
and accuracy in real world environments. We also would
like to make the learning algorithms more efficient in time
and space. Currently, the Naive Bayes methods have to be
run on a computer with one gigabyte of RAM.

Finally, we are planning on testing this method over a
larger set of malicious and benign executables. Only when
testing over a significantly larger set of malicious executa-
bles can we fully evaluate the method. In that light, our
current results are preliminary. In addition with a larger
data set, we plan to evaluate this method on different types
of malicious executables such as macros and Visual Basic
scripts.

References

[1] William Arnold and Gerald Tesauro. Automatically
Generated Win32 Heuristic Virus Detection.Pro-
ceedings of the 2000 International Virus Bulletin
Conference, 2000.

[2] Fred Cohen. A Short Course on Computer Viruses.
ASP Press, 1990.

[3] William Cohen. Learning Trees and Rules with Set-
Valued Features.American Association for Artificial
Intelligence (AAAI), 1996.

[4] R. Crawford, P. Kerchen, K. Levitt, R. Olsson,
M. Archer, and M. Casillas. Automated Assistance

11



for Detecting Malicious Code.Proceedings of the
6th International Computer Virus and Security Con-
ference, 1993.

[5] Cygnus. GNU Binutils Cygwin.Online publication,
1999. http://sourceware.cygnus.com/cygwin.

[6] D.Michie, D.J.Spiegelhalter, and C.C.TaylorD.Ma-
chine learning of rules and trees. In Machine Learn-
ing, Neural and Statistical Classification. Ellis Hor-
wood, 1994.

[7] Eleazar Eskin, William Noble Grundy, and Yoram
Singer. Protein Family Classification using Sparse
Markov Transducers.Proceedings of the Eighth Inter-
national Conference on Intelligent Systems for Molec-
ular Biology, 2000.

[8] Dmitry Gryaznov. Scanners of the Year 2000: Heuris-
tics. Proceedings of the 5th International Virus Bul-
letin, 1999.

[9] Jeffrey O. Kephart and William C. Arnold. Auto-
matic Extraction of Computer Virus Signatures.4th
Virus Bulletin International Conference, pages 178-
184, 1994.

[10] P. Kerchen, R. Lo, J. Crossley, G. Elkinbard, and
R. Olsson. Static Analysis Virus Detection Tools
for UNIX Systems. Proceedings of the 13th Na-
tional Computer Security Conference, pages 350–
365, 1990.

[11] Zou KH, Hall WJ, and Shapiro D. Smooth non-
parametric ROC curves for continuous diagnostic
tests.Statistics in Medicine, 1997.

[12] R Kohavi. A study of cross-validation and bootstrap
for accuracy estimation and model selection.IJCAI,
1995.

[13] W. Lee, S. J. Stolfo, and P. K. Chan. Learning patterns
from UNIX processes execution traces for intrusion
detection.AAAI Workshop on AI Approaches to Fraud
Detection and Risk Management, pages 50–56. AAAI
Press, 1997.

[14] Wenke Lee, Sal Stolfo, and Kui Mok. A Data Mining
Framework for Building Intrusion Detection Models.
IEEE Symposium on Security and Privacy, 1999.

[15] R.W. Lo, K.N. Levitt, and R.A. Olsson. MCF: a Mali-
cious Code Filter.Computers & Security, 14(6):541–
566., 1995.

[16] MacAfee. Homepage - MacAfee.com.Online publi-
cation, 2000. http://www.mcafee.com.

[17] Microsoft. Portable Executable Format.Online pub-
lication, 1999. http://support.microsoft.com
/support/kb/articles/Q121/4/60.asp.

[18] Peter Miller. Hexdump.Online publication, 2000.
http://www.pcug.org.au/ millerp/hexdump.html.

[19] MIT Lincoln Labs. 1999 DARPA intrusion detection
evaluation.

[20] Tom Mitchell. Machine Learning. McGraw Hill,
1997.

[21] Kamal Nigam, Andrew McCallum, Sebastian Thrun,
and Tom Mitchell. Learning to Classify Text from
Labeled and Unlabled Documents.AAAI-98, 1998.

[22] Wildlist Organization. Virus descriptions of viruses
in the wild. Online publication, 2000. http://www.f-
secure.com/virus-info/wild.html.

[23] REUTERS. Microsoft Hack Shows Companies Are
Vulnerable.New York Times, October 29, 2000.

[24] Eugene H. Spafford. The Internet worm program: an
analysis.Tech. Report CSD–TR–823, 1988. Depart-
ment of Computer Science, Purdue University.

[25] Gerald Tesauro, Jeffrey O. Kephart, and Gregory B.
Sorkin. Neural Networks for Computer Virus Recog-
nition. IEEE Expert, 11(4):5–6. IEEE Computer So-
ciety, August, 1996.

[26] Steve R. White. Open Problems in Computer Virus
Research.Virus Bulletin Conference, 1998.

[27] Steve R. White, Morton Swimmer, Edward J. Pring,
William C. Arnold, David M. Chess, and John F.
Morar. Anatomy of a Commercial-Grade Im-
mune System. IBM Research White Paper, 1999.
http://www.av.ibm.com/ScientificPapers/White/
Anatomy/anatomy.html.

12


