
A Taxonomy of Computer Worms ∗

Nicholas
†

Weaver
UC Berkeley

Vern
‡

Paxson
ICSI

Stuart
§

Staniford
Silicon Defense

Robert
¶

Cunningham
MIT Lincoln
Laboratory

ABSTRACT
To understand the threat posed by computer worms, it is
necessary to understand the classes of worms, the attackers
who may employ them, and the potential payloads. This pa-
per describes a preliminary taxonomy based on worm target
discovery and selection strategies, worm carrier mechanisms,
worm activation, possible payloads, and plausible attackers
who would employ a worm.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—In-
vasive Software

General Terms
Security

Keywords
computer worms, mobile malicious code, taxonomy, attack-
ers, motivation

∗Portions of this work were performed under DARPA con-
tract N66001-00-C-8045.
The views, opinions, and/or findings contained in this arti-
cle are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied,
of the Defense Advanced Research Projects Agency or the
Department of Defense.
Other Portions of this work were sponsored by DARPA un-
der contract F19628-00-C-0002. Opinions, interpretations,
conclusions, and recommendations are those of the authors
and are not necessarily endorsed by the United States Gov-
ernment.
†nweaver@cs.berkeley.edu
Portions of this work were completed as an employee of Sil-
icon Defense.
‡vern@icir.org
Additional Support from NSF grant ITR-0205519
§stuart@silicondefense.com
¶rkc@ll.mit.edu

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WORM’03,October 27, 2003, Washington, DC, USA.
Copyright 2003 ACM 1-58113-785-0/03/0010 ...$5.00.

1. INTRODUCTION
A computer worm is a program that self-propagates across

a network exploiting security or policy flaws in widely-used
services. They are not a new phenomenon, having first
gained widespread notice in 1988 [16].

We distinguish between worms and viruses in that the
latter infect otherwise non-mobile files and therefore require
some sort of user action to abet their propagation. As such,
viruses tend to propagate more slowly. They also have more
mature defenses due to the presence of a large anti-virus
industry that actively seeks to identify and control their
spread.

We note, however, that the line between worms and viruses
is not all that sharp. In particular, the contagion worms
discussed in Staniford et al [47] might be considered viruses
by the definition we use here, though not of the traditional
form, in that they do not need the user to activate them, but
instead they hide their spread in otherwise unconnected user
activity. Thus, for ease of exposition, and for scoping our
analysis, we will loosen our definition somewhat and term
malicious code such as contagion, for which user action is
not central to activation, as a type of worm.

In order to understand the worm threat, it is necessary
to understand the various types of worms, payloads, and at-
tackers. We attempt to construct a preliminary taxonomy
of the various possible worms, payloads, and attackers as an
initial guide to plausible defenses. This taxonomy is neces-
sarily incomplete, simply because new tactics, payloads, and
attackers may arise. Nevertheless, we believe this taxonomy
is generally complete with regard to the current situation,
including several strategies not yet seen in the wild.

This taxonomy is based on several factors: target discov-
ery, carrier, activation, payloads, and attackers. Target dis-
covery represents the mechanism by which a worm discovers
new targets to infect (§2). The carrier is the mechanism the
worm uses to transmit itself onto the target (§3). Activation
is the mechanism by which the worm’s code begins operating
on the target (§4). Payloads are the various non-propagating
routines a worm may use to accomplish the author’s goal
(§5). Finally, the various possible attackers have different
motives and would therefore utilize different payloads (§6).

In addition, it is important to note that worms needn’t
be confined to a single type within each category. Some
of the most successful worms are multi-modal, employing
multiple means of target discovery, carrier, payload, etc.,
where the combination enables the worm to surpass defenses
(no matter how effective) that address only a single type of
worm.

In Appendix A, we also discuss the notion of the ecology
within which worms exist, and which enables their successful
spread.

2. TARGET DISCOVERY
For a worm to infect a machine, it must first discover that

the machine exists. There are a number of techniques by
which a worm can discover new machines to exploit: scan-
ning, external target lists, pre-generated target lists, inter-
nal target lists, and passive monitoring. Worms can also
use a combination of these strategies. If a defense blocks
a given strategy, this can prevent an entire class of worms
from propagating.

Scanning: Scanning entails probing a set of addresses
to identify vulnerable hosts. Two simple forms of scanning
are sequential (working through an address block using an
ordered set of addresses) and random (trying addresses out
of a block in a pseudo-random fashion). Due to its simplic-
ity, it is a very common propagation strategy, and has been
used both in fully autonomous worms [15, 6, 33] and worms
which require timer or user based activation [29]. Scanning
worms spread comparatively slowly compared with a num-
ber of other spreading techniques, but when coupled with
automatic activation, they can still spread very quickly in
absolute terms.

There are currently few defenses in place to respond to
scanning worms. The previous worms in this class have only
exploited known and largely patched security holes or very
small populations of machines [32], and therefore infected
relatively few machines. Code Red I compromised about
360,000 machines [34], a small fraction of the estimated
10,000,000 machines running IIS [36], though the evidence
indicates this may have been essentially the entire publicly-
accessible population of vulnerable IIS machines [47].

There are several optimizations which apply to scanning
worms. A highly effective optimization is a preference for
local addresses [8, 6]. Although this may be slightly infe-
rior for Internet-scale propagation [9], it enables the worm
to exploit a single firewall breach to scan the entire local
network. Permutation scanning [47] enables a worm to uti-
lize distributed coordination to more effectively scan the net
and to determine when the bulk of the network is infected.

The most effective optimization is a bandwidth-limited scan-
ner. Many worms, such as Code Red, used scanning rou-
tines which are limited by the latency of connection re-
quests rather than the throughput by which requests can
be sent. The alternate, a bandwidth-limited scanner, is sub-
stantially faster. Slammer/Sapphire [33] was inadvertently a
bandwidth-limited scanner as a side effect of its single packet
UDP design, though a TCP-based bandwidth-limited scan-
ner can also be constructed if the worm can craft raw TCP
packets.

In general, the speed of scanning worms is limited by a
combination of factors, including the density of vulnerable
machines, the design of the scanner, and the ability of edge
routers to handle a potentially significant increase in new,
diverse communication.

For these worms, the worm’s spread rate is proportional
to the size of the vulnerable population. Code Red I re-
quired roughly 12 hours to reach endemic levels, but could
have required 2 hours if it contained sophisticated scanning
routines or targeted a more widespread vulnerability [47],

or less than 15 minutes if it utilized a bandwidth-limited
scanner [33].

Scanning is highly anomalous behavior, so devices can ef-
fectively detect scanning worms as being very different from
normal traffic. Both the Williamson “virus throttle” [54, 51]
and the Silicon Defense CounterMalice product [12] detect
scanning related anomalies and respond by restricting traf-
fic, representing defenses designed to stop an entire family
of worms.

Pre-generated Target Lists: An attacker could obtain
a target list in advance, creating a “hit-list” of probable
victims [47]. A small hit-list could be used to accelerate a
scanning worm, while a complete hit-list creates a “flash”
worm, capable of infecting all targets extremely rapidly.

The biggest obstacle is the effort to create the hit-list it-
self. For a small target list, public sources are readily avail-
able or open access points can be used to perform small-scale
scans. Comprehensive lists require more effort: either a dis-
tributed scan or the compromise of a complete database.
Like scanning worms, most of the code is application inde-
pendent, suggesting that flash worms can also use toolkits
in their implementation. We have not yet detected a hitlist-
based worm in the wild.

Externally Generated Target Lists: An external tar-
get list is one which is maintained by a separate server, such
as a matchmaking service’s metaserver. (A metaserver keeps
a list of all the servers which are currently active. For exam-
ple, the Gamespy [23] service maintains a list of servers for
several different games.) A metaserver worm first queries
the metaserver in order to determine new targets. Such
a worm could quickly spread through a game like HalfLife
[46] or others, even when the target population is relatively
small, as there are metaservers which can be queried to dis-
cover the vulnerable machines. This technique could also
be used to speed a worm attacking web servers, for example
by using Google as a metaserver in order to find other web
servers to attacks.

We have not seen a metaserver worm in the wild, but the
risk is significant due to the great speed such a worm could
achieve. One mitigating factor is that querying a metaserver
is application-specific, so toolkits are less likely to reduce a
worm author’s required effort.

Internal Target Lists: Many applications contain in-
formation about other hosts providing vulnerable services.
Such target lists can be used to create topological worms,
where the worm searches for local information to find new
victims by trying to discover the local communication topol-
ogy.

The original Morris worm [16] used topological techniques
including the Network Yellow Pages, /etc/hosts, and other
sources to find new victims. (Since the Internet at the time
was very sparse, scanning techniques would have been inef-
fective.)

Topological worms can potentially be very fast. If the
vulnerable machines are represented as vertices in a directed
graph G = {V, E}, with edges representing information about
other machines, the time it takes for a worm to infect the
entire graph is a function of the shortest paths from the ini-
tial point of infection. For applications that are fairly highly
connected, such worms can be incredibly fast.

In the presence of defenses, a worm could further expand
the graph by communicating information known by one in-
stance to other instances. Although this won’t increase the

speed of a topological worm, it may be important for worms
which are attempting to bypass defenses.

Although topological worms may present a global anomaly,
the local traffic may appear normal. Each infected machine
only needs to contact a few other machines. Since these
are already known machines, the new victims are likely nor-
mal destinations for communication. This observation sug-
gests that highly distributed sensors may be needed to detect
topological worms.

Passive: A passive worm does not seek out victim ma-
chines. Instead, they either wait for potential victims to
contact the worm or rely on user behavior to discover new
targets. Although potentially slow, passive worms produce
no anomalous traffic patterns during target discovery, which
potentially makes them highly stealthy. Contagion [47] worms
are passive worms which rely on normal communication to
discover new victims.

There have been many passive worms, such as the Gnu-
man [24] bait worm and the CRClean [27] “anti-worm”.
Gnuman operates by acting as a Gnutella node which replies
to all queries with copies of itself. If this copy is run, the
Gnuman worm starts on the victim and repeats this process.
Since it requires user activation, it spreads slowly.

Although never released, CRClean did not require human
activation. This worm waits for a Code Red II related probe.
When it detects an infection attempt, it responds by launch-
ing a counterattack. If this counterattack is successful, it re-
moves Code Red II and installs itself on the machine. Thus
CRClean spreads without any scanning.

2.1 Toolkit Potential
Some target discovery strategies lend themselves well to

the creation of toolkits: large reusable structures where a
small amount of additional code can be added to create a
worm. Early versions of both application-independent [43]
and application-dependent [43, 52] toolkits have been seen
in the wild, and it is likely that such toolkits will become
more widespread and sophisticated.

The application independent portions of a toolkit could
contain code for scanning (both naive and sophisticated ap-
proaches) and transporting payloads. Other code will help
with obfuscation or encryption to resist signature analysis.
Finally, code that damages a system can also be indepen-
dently developed and tested on a single, locally controlled
host. Since these subsystems can be designed, developed
and tested independent of exploits, attackers can complete
these components in advance of assembling a worm. Indeed,
it is possible that one of the already released but impotent
worms was a test of the distribution portions of such a sys-
tem.

Except for the exploit, scanning worms are not application-
specific. Thus an attacker can add a new exploit to an ex-
isting worm framework or toolkit. The Slapper [45] worm
was one such case, where the attacker inserted a new ex-
ploit into the Scalper [32] source code. This suggests that
the window between when a vulnerability is published and
when a scanning worm can be released is nearly zero if an
attacker desires it, as the general scanning worm framework
can be expressed as a toolkit. Similarly, a hitlist is also a
generic structure which is constructed in advance, and would
also work well in a worm toolkit.

Fortunately, topology is often application-specific, so each
application requires its own toolkit for extracting it. Tar-

geting that requires metaservers or passive analysis of com-
munication is similarly application-specific. Thus, although
toolkits can be developed, they are necessarily less generally
applicable.

Toolkits already exist for email worms [43], providing com-
mon mechanisms for extracting email addresses, the topo-
logical information needed by these worms. These toolkits
are effective because they aren’t general topological-worm
toolkits, but toolkits which attack a single, widely-deployed
class of applications: email programs.

3. PROPAGATION CARRIERS AND DISTRI-
BUTION MECHANISMS

The means by which propagation occurs can also affect the
speed and stealth of a worm. A worm can either actively
spread itself from machine to machine, or it can be carried
along as part of normal communication.

Self-Carried: A self-carried worm actively transmits it-
self as part of the infection process. This mechanism is com-
monly employed in self-activating scanning or topological
worms, as the act of transmitting the worm is part of the
infection process. Some passive worms, such as CRClean
[27], also use self-carried propagation.

Second Channel: Some worms, such as Blaster [31], re-
quire a secondary communication channel to complete the
infection. Although the exploit uses RPC, the victim ma-
chine connects back to the infecting machine using TFTP to
download the worm body, completing the infection process.

Embedded: An embedded worm sends itself along as
part of a normal communication channel, either appending
to or replacing normal messages. As a result, the propaga-
tion does not appear as anomalous when viewed as a pattern
of communication. The contagion strategy [47] is an exam-
ple of a passive worm that uses embedded propagation.

An embedded strategy, although relatively stealthy, only
makes sense when the target selection strategy is also stealthy.
Otherwise, the worm will give itself away by its target se-
lection traffic, and reaps little benefit from the stealth that
embedded propagation provides. Thus a scanning worm is
unlikely to use an embedded distribution strategy, while pas-
sive worms can benefit considerably by ensuring that distri-
bution is as stealthy as target selection.

The speed at which embedded worms spread is highly
dependent on how the application is used, as is how far
from the natural patterns of communication such a worm
could deviate in order to hasten its propagation without
compromising its stealthiness.

Likewise, the distribution of the worm body or related
payloads can either be one-to-many, as when a single site
provides a worm or module to other sites once they’ve been
initially infected; many-to-many, as when multiple copies
propagate the malicious code; or a hybrid approach where
the basic worm propagates in a many-to-many manner with
updates received through a central site. In general, many-
to-many distribution can be considerably faster, if a limit-
ing factor is the time it takes to perform the distribution.
Many-to-many distribution also removes the ability for oth-
ers to block further distribution by removing the source of
the malicious code from the Internet.

4. ACTIVATION
The means by which a worm is activated on a host also

drastically affects how rapidly a worm can spread, because
some worms can arrange to be activated nearly immediately
whereas others may wait days or weeks to be activated.

Human Activation: The slowest activation approach
requires a worm to convince a local user to execute the local
copy of the worm. Since most people do not want to have
a worm executing on their system, these worms rely on a
variety of social engineering techniques. Some worms such
as the Melissa email-worm [3] indicate urgency on the part
of someone you know (“Attached is an important message
for you”); others, such as the Iloveyou [4] attack, appeal
to individuals’ vanity (“Open this message to see who loves
you”); and others, such as the Benjamin [49] worm appeal
to greed (“Download this file to get copyrighted material for
free”).

Although Melissa was a word macro virus—a piece of code
written in Microsoft Word’s built-in scripting language em-
bedded in a Word document—later human-initiated worms
have usually been executable files which, when run, infect
the target machine. Furthermore, while some worms re-
quired that a user start running a program, other worms
exploited bugs in the software that brought data onto the
local system, so that simply viewing the data would start the
program running (e.g., Klez [19]). The continued spread of
these worms is disturbing, as they can be effectively used
as secondary vectors1 such as was the case for Nimda [6],
and/or to install additional malicious software such as pro-
grams which allow an attacker to control a machine [18].

Human Activity-Based Activation: Similarly, many
worms are activated when the user performs some activity
not normally related to a worm, such as resetting the ma-
chine, logging in and therefore executing login scripts, or
opening a remotely infected file. This activation mechanism
is commonly seen in open shares windows worms (such as
one of Nimda’s secondary propagation techniques [6]) which
will begin execution on the target machine either when the
machine is reset or the user logs in, as these worms write
data to the target disk without being able to directly trig-
ger execution.

Scheduled Process Activation: The next fastest worms
activate using scheduled system processes. Such programs
can propagate through mirror sites (e.g., OpenSSH Trojan
[25]), or directly to desktop machines. Many desktop op-
erating systems and applications include auto-updater pro-
grams that periodically download, install and run software
updates. Early versions of these systems did not employ
authentication, so an attacker needed only to serve a file
to the desktop system [20] to infect the target. Other sys-
tems periodically run backup and other network software
that includes vulnerabilities. The skills an attacker requires
to exploit these depends on the scheduled process’s design
and implementation: if the attacked tool does not include
authentication, a DNS redirection attack may suffice, but if
it does, then the attacker might need to acquire the private
keys for both the update server and code signing.

Self Activation The worms that are fastest activated are
able to initiate their own execution by exploiting vulnerabil-

1A secondary spreading mechanism can often benefit a worm
by enabling more targets to be attacked or as a device to
cross defenses such as firewalls.

ities in services that are always on and available (e.g., Code
Red [15] exploiting IIS Web servers) or in the libraries that
the services use (e.g., XDR [7]). Such worms either attach
themselves to running services or execute other commands
using the permissions associated with the attacked service.
Execution occurs as soon as the worm can locate a copy of
the vulnerable service and transmit the exploit code. Cur-
rently, preventing these attacks relies on running software
that is not vulnerable, although the effect of an attack can
be reduced by limiting the access of services that are always
on.

5. PAYLOADS
The payload, the code carried by the worm apart from

the propagation routines, is limited only by the goals and
imagination of the attacker. Different sorts of attackers will
desire different payloads to directly further their ends. Most
of the following types of payloads have been seen in the wild.

None/nonfunctional: By far the most common is sim-
ply a nonexistent or nonfunctional payload. A worm with
a bug in the propagation code usually fails to spread, while
bugs in the payload still leave the worm able to spread. Such
a worm can still have a significant effect, both through traffic
and machine load (as seen with both the Morris worm [16]
and Slammer [33]) and by actively advertising vulnerable
machines.

Internet Remote Control: Code Red II opened a trivial-
to-use privileged backdoor on victim machines, giving any-
one with a web browser the ability to execute arbitrary code.
This even gave rise to anti-Code-Red sites [39] which ex-
ploited the backdoor to issue the commands to disable IIS
and reset the machine.

Spam-Relays: Part of the Sobig worm’s associated tro-
gan [48], creates an open-mail relay for use by spammers. By
creating numerous relay machines across the Internet, spam-
mers can avoid blackhole-based mechanisms which block
known-spamming IP addresses.

HTML-Proxies: Another aspect of Sobig’s trojan is the
distribution of web-proxies. By redirecting web requests
(through DNS) to randomly selected proxy machines, it
becomes significantly more difficult for responders to shut
down compromised websites which are used for various ille-
gal activities, including scams which attempt to entise users
to input financial data (a technique called phishing).

Internet DOS: Another common payload is a Denial of
Service (DOS) attack. Code Red [15], Yaha [30], and others
have all contained DOS tools, either targeted at specific sites
or retargetable under the attacker’s control. Distributed
DOS (DDOS) tools such as Stacheldraht [13] have included
stealthy and encrypted communication channels.

We have yet to see an attacker take advantage of Internet-
scale DOS opportunities. With 100,000 or 1,000,000 control-
lable “zombies”, the attacker could target the DNS system,
update sites, and response channels all at the same time.

Data Collection: Computers are increasingly used to
store and manipulate sensitive data. A worm could use
target these capabilities, and some already have. SirCam
[5] performed inadvertent espionage, by attaching random
files to its mailings, but a worm could just as easily prefer-
entially search for document with various keywords, credit
card numbers, or similar information.

Criminals are sometimes interested in identity theft, and
significant subsets of the blackhat community are involved

in harvesting credit cards [2] and could use worms to search
for this information. After discovery, the results could be
encrypted and transmitted through various channels.

Access for Sale: An extension on remote control and
data-collection payloads is access for sale [42]. With this
payload, the worm will allow remote access to paying cus-
tomers, but only to the specific victims to which the cus-
tomer desires access.

Data Damage: There have been many viruses and email
worms, such as Chernobyl [28] or Klez [19], which contained
time-delayed data erasers. Since worms can propagate much
faster, they could start erasing or manipulating data imme-
diately after infecting a system. Data could also be en-
crypted instead of destroyed as part of an extortion scheme
[55]. In addition, a worm could distribute sensitive informa-
tion to cause general confusion.

Physical-world Remote Control: In addition to alter-
ing the attacked computer and network, attacks can affect
non-Internet objects, services and expectations. Networked
computers are used to control physical-world objects, often
through supervisory control and data acquisition (SCADA)
systems, and a worm could target those computers.

Computers can also be used to influence the actions of
humans. A coercive payload might do no damage unless
the worm is disturbed. Such a worm attempts to remain
entrenched by giving the user a choice: allow the worm and
suffer no local damage, or attempt to eliminate the worm
and risk catastrophic results.

Physical-world DOS: In addition, computers can deny
service in the physical world. For example, a worm can use
attached modems to dial emergency services such as 911
[44] or other telephone targets, or use catalog-registration
features to saturate the physical mailboxes of a large number
of targets [1].

Physical-world Reconnaissance: As an example of
this type of attack, a computer worm could “wardial” via
an attached modem2 to conduct further reconnaissance for
later, non-Internet based attacks.

Physical-world Damage: The most direct object to
damage is the infected computer. Although the diversity
of BIOSs prevents a general reflashing, it would be possible
for a worm to include reflashing routines for several com-
mon BIOSs, using the same mechanisms employed by the
Chernobyl virus [28]. Since the FLASH ROMs are often sol-
dered to the motherboard, such an attack could effectively
destroy particular motherboards when there doesn’t exist a
protected recovery BIOS or similar mechanisms.

Worm Maintenance: The final class of payload is one
that is used to maintain the worm. Past worms such as
W32/sonic [50] have included a crude update mechanism:
querying web sites for new code. W32/hybris [18] also checked
Usenet newsgroups and cryptographically verified the mod-
ules before execution. Similarly, DDoS tools have also en-
abled updates to the zombie program [14]. A controllable
and updateable worm could take advantage of new exploit
modules to increase its spread, enable sophisticated addi-
tions to the worm’s functionality after release, and fix bugs
after release.

2Wardialing is the process of scanning telephone numbers
for answering modems.

6. MOTIVATIONS AND ATTACKERS
Although it is important to understand the technology of

worms, in order to understand the nature of the threat, it is
also important to understand the motivations of those that
launch the attacks, and to identify (where possible) who
the attackers are. This is a representative list organized by
motivation; it is not an exhaustive enumeration.

Experimental Curiosity: Although the technology is
well understood, there is a continual tendency for various
individuals to experiment with viruses and worms. The
Morris worm was not only a pioneering event, but an ex-
periment which escaped. Likewise, the ILoveYou [4] worm
was designed by a student and proposed as a thesis project
before it was released.

Pride and Power: Some attackers are motivated by
a desire to acquire (limited) power, and to show off their
knowledge and ability to inflict harm on others [40]. The
people who do this are typically unorganized individuals or
small groups who target randomly; if they discover a system
that is vulnerable to an attack they possess, then they are
likely to execute the attack.

Commercial Advantage: Since the U.S. economy has
grown heavily dependent on computers for day-to-day op-
eration, a major electronic attack targeted against a single
domain could seriously disrupt many companies that rely on
Internet-based transactions. Such disruption could be used
by an attacker wishing to profit by manipulating financial
markets via a synthetic economic disaster, or by competi-
tors that wish to limit buyers’ access to a seller’s wares.
International companies or organized crime members could
participate in this type of attack, and the targets range from
specific companies to economic infrastructure.

Extortion and Criminal Gain: Another potential profit
motive is extortion or other criminal gain. Since a well-
constructed worm could launch an effective DOS attack,
major e-commerce or portal companies could be threatened
unless payment is arranged. Such a worm could be launched
by individuals or organized groups. Likewise, a worm which
searches for credit-card information would represent another
criminally-motivated payload.

Likewise, the Sobig worm’s trojan has been linked to sev-
eral semi-legal and illegal activities, as it creates open mail
relays and web proxes which are used for spamming, serving
of pornographic material, and phishing.

Random Protest: A disturbed person (such as the “Un-
abomber,” Theodore Kaczynski) who wishes to disrupt net-
works and infrastructure and who has studied Internet sys-
tems and security could readily create a worm. The release
of a truly destructive, optimized worm requires a level of pa-
tience and meticulousness not commonly seen, but definitely
present in individuals like Kaczynski. Such individuals may
search for a “zero-day exploit” (one unknown to the public
community) in a common application, and would probably
be more likely to construct a topological worm or similar
attack which already requires application-specific program-
ming.

Political Protest: Some groups wish to use the Inter-
net to publicize a specific message and to prevent others
from publicizing theirs. Individuals or organizations with
local, national, and international presence can be involved.
Targets include organizations with competing goals, or me-
dia outlets that are perceived as critical of an organization’s
goals. As one example, the Yaha Mail worm [30] was written

as a tool of political protest by unknown parties claiming
affiliation with Indian causes, to launch a DOS attack on
Pakistani governmental web sites.

Terrorism: Terrorist groups could employ worms to meet
some of their objectives. Since Internet-connected comput-
ers are a First World development, and major multinational
concerns rely heavily on desktop machines for day-to-day op-
eration, payloads could be selective to only execute in large,
networked environments, making worms attractive economic
weapons for those who believe that large corporations are an
evil, as well as those with animosity directed against partic-
ular nations or governments. Or, if desired, the attack could
target all infectible computers, in an attempt to cause the
maximum damage.

Such an attack would be economic terrorism, where the
goal is to cause significant monetary disruption, not loss of
life. Attackers could include Al-Quaeda [10], splinter groups
derived from the antiglobalization movement, or ecoterror-
ist groups such as ELF [22] or ALF [21], which claim to
exclusively practice economic terrorism.

Cyber Warfare: As the U.S. is heavily dependent on
computing infrastructure for both economic and governmen-
tal needs, other nations with a significant interest in U.S.
economic disruption could plausibly launch an electronic at-
tack, either as a preemptive strike, or in response to U.S.
action, or in conjunction with a physical strike. Along with
large e-commerce sites, critical infrastructure, networked mil-
itary, and governmental computers would be primary tar-
gets for such worms. Such attacks would be particularly
appealing to nations without well-developed Internet infras-
tructure, as they would stand little to lose in terms of the
worm attacking their hosts, too, or from a possible cyber
counter-attack. The potential anonymity of cyber attacks
also makes its use attractive for “cold war” situations, and
for possibly framing others as the apparent perpetrators.

7. CONCLUSION
We have developed a taxonomy of worms, based on tar-

get discovery, carrier, activation, payload, and attackers.
The carrier, activation, and payload are independent of each
other, and describe the worm itself. Those who want to help
develop more robust defenses can focus on preventing worms
that use one or more of the techniques described here. We
also include a section on attackers and their motivations, be-
cause worms are ultimately written by humans, and some-
times the easiest way to defend against a worm is to remove
the motivation for writing a worm in the first place.

APPENDIX

A. THE ECOLOGY OF WORMS
For all the sophisticated strategies and potential payloads,

worms can only exist if there are security or policy flaws they
can exploit. Thus it is important to understand why such
vulnerabilities exist and how they enable worms to operate.
We refer to this surrounding context as the “ecology” of
worms.

It may be tempting to say that we could build secure sys-
tems which will not have exploitable vulnerabilities. How-
ever, even highly secure software systems with reputations
for robustness and which have received considerable security
scrutiny including multiple code reviews, such as OpenSSH,
OpenSSL and Apache, have contained major security holes.

Products from other vendors, including Microsoft, are no-
torious for the volume of patches and security issues. It is
critical to understand why vulnerabilities continue to exist.

Application Design: A significant factor in prevalence
of vulnerabilities is the structure of the application and
protocols. Some design features can make a system either
considerably more or considerably less vulnerable to worm
activity, including the pattern of communication, pattern
of reachability, the maturity and quality of the code, the
breadth of the distribution, and the selection of program-
ming language. It is desirable for a third party, such as a
Cyber CDC [47], to perform audits of widespread applica-
tions to determine vulnerabilities and resistance to worm
based attacks.

Buffer Overflows: One of the largest sources of vul-
nerabilities is the continued use of the C and C++ lan-
guages, which allows buffer overflow attacks and related
code-injection attacks. These attacks represent roughly 50%
of the major security flaws over the past 20 years. Most
other programming languages are immune to such prob-
lems, and several technologies have been developed which
can mitigate or prevent some or all of these attacks, such as
StackGuard and ProPolice [11, 17], Software Fault Isolation
[53], unexecutable stacks and heaps [38, 37], and “Safe C”
dialects like CCured [35] and Cyclone [26]. Yet none of these
have been widely adopted.

Privileges: Mail worms and potentially other types of
worms often rely on the observation that programs are granted
the full privileges of the user who operates them. This lack
of containment is commonly exploited by malicious code au-
thors in numerous contexts.

Application Deployment: Widespread applications are
more tempting targets for worm authors, especially those
who would search for unknown exploits. Although even rare
applications may have worms [32], widespread applications
are of particular interest because of the increased speed of
infection and the greater number of potential targets.

Economic Factors: Making programs robust and de-
bugged represents a significant fraction of their development
cost. Thus, unless the number of bugs and vulnerabilities
is beyond customer tolerance, there are significant economic
incentives to release buggy code.

Patch Deployment: It has been commonly observed
that patches are often undeployed [41]. Partially it is ne-
glect, but another concern is simply the risk involved: patches
need to be tested within a particular institution before de-
ployment. Thus many installations will queue up multi-
ple patches, test them as a group, and then install all the
patches simultaneously.

Monocultures: Finally, there is the tendency for com-
puting systems to form monocultures, which are inherently
vulnerable to fast moving pathogens. Monocultures arise
from various sources, including ease of administration, com-
monly taught and understood skills, and monopolistic be-
haviors.

B. REFERENCES
[1] Simon Byers, Aviel Rubin, and David Kormann.

Defending against internet-based attack on the
physical world, http://www.avirubin.com/
scripted.attacks.pdf.

[2] Cardcops. http://www.cardcops.com.

[3] CERT. CERT Advisory CA-1999-04 Melissa Macro
Virus, http://www.cert.org/advisories/
ca-1999-04.html.

[4] CERT. CERT Advisory CA-2000-04 Love Letter
Worm, http://www.cert.org/advisories/
ca-2000-04.html.

[5] CERT. CERT Advisory CA-2001-22 w32/Sircam
Malicious Code, http://www.cert.org/advisories/
ca-2001-22.html.

[6] CERT. CERT Advisory CA-2001-26 Nimda Worm,
http://www.cert.org/advisories/ca-2001-26.html.

[7] CERT. CERT Advisory CA-2002-25 Integer Overflow
in XDR Library, http://www.cert.org/advisories/
ca-2002-25.html.

[8] CERT. Code Red II: Another Worm Exploting Buffer
Overflow in IIS Indexing Service DLL, http://
www.cert.org/incident notes/in-2001-09.html.

[9] Zesheng Chen, Lixin Gao, and Kevin Kwiat. Modeling
the spread of active worms. In IEEE INFOCOM 2003.
IEEE, April 2003.

[10] ComputerWorld. Al-qaeda poses threat to net, http://
www.computerworld.com/securitytopics/security/
story/0,10801,76150,00.html.

[11] Crispan Cowan, Calton Pu, Dave Maier, Jonathan
Walpole, Peat Bakke, Steve Beattie, Aaron Grier,
Perry Wagle, Qian Zhang, and Heather Hinton.
StackGuard: Automatic Adaptive Detection and
Prevention of Buffer-Overflow Attacks. In Proc. 7th
USENIX Security Conference, pages 63–78, San
Antonio, Texas, jan 1998.

[12] Silicon Defense. Countermalice worm containment,
http://www.silicondefense.com/products/
countermalice/.

[13] David Dittrich. The Stacheldraht Distributed Denial
of Service Attack Tool, http://staff.washington.edu/
dittrich/misc/stacheldraht.analysis.

[14] David Dittrich. The Tribe Flood Network Distributed
Denial of Service Attack Tool, http://
staff.washington.edu/dittrich/misc/tfn.analysis.

[15] eEye Digital Security. .ida “Code Red” Worm, http://
www.eeye.com/html/research/advisories/
al20010717.html.

[16] Mark Eichin and Jon Rochlis. With Microscope and
Tweezers: An Analysis of the Internet Virus of
November 1988. In IEEE Computer Society
Symposium on Security and Privacy, 1989.

[17] Hiroaki Etoh. Gcc extentions for protecting
applications from stack-smashing attacks, http://
www.research.ibm.com/trl/projects/security/ssp/.

[18] F-Secure. F-Secure Computer Virus Information
Pages: Hybris, http://www.f-secure.com/v-descs/
hybris.shtml.

[19] Peter Ferrie. W32//Klez, http://toronto.virusbtn.
com/magazine/archives/200207/klez.xml.

[20] Security Focus. MacOS X SoftwareUpdate Arbitrary
Package Installation Vulnerability, http://
online.securityfocus.com/bid/5176.

[21] The Animal Liberation Front. http://www.
animalliberationfront.com.

[22] The Earth Liberation Front. In defense of all life,
http://www.earthliberationfront.com.

[23] Gamespy. Gamespy arcade, http://www.
gamespyarcade.com.

[24] Symantec Inc. W32.gnuman.worm, http://
securityresponse.symantec.com/avcenter/venc/data/
w32.gnuman.worm.html.

[25] itsecure. OpenSSH Trojan Horse, http://www.
itsecure.com.au/alerts/alert.htm?alertid=95.

[26] T. Jim, G. Morrisett, D. Grossman, M. Hicks,
J. Cheney, and Y. Wang. Cyclone: A safe dialect of C.
In USENIX Annual Technical Conference, Monterey,
CA, June 2002.

[27] Markus Kern. Re: Codegreen beta release, http://
online.securityfocus.com/archive/82/211462.

[28] Kaspersky Labs. W95/CIH (a.k.a Chernobyl), http://
www.viruslist.com/eng/viruslist.html?id=3204.

[29] Message Labs. W32/bugbear-ww, http://www.
messagelabs.com/viruseye/report.asp?id=110.

[30] Brian McWilliams. Yaha Worm Takes out Pakistan
Government’s Site, http://online.securityfocus.com/
news/501.

[31] Jason V Miller, Jesse Gough, Bartek Kostanecki, Josh
Talbot, and Jensenne Roculan. Microsoft dcom rpc
worm alert, https://tms.symantec.com/members/
analystreports/030811-alert-dcomworm.pdf.

[32] Domas Mituzas. FreeBSD Scalper Worm, http://
www.dammit.lt/apache-worm/.

[33] David Moore, Vern Paxson, Stefan Savage, Colleen
Shannon, Stuart Staniford, and Nicholas Weaver.
Inside the slammer worm. IEEE Magazine of Security
and Privacy, pages 33–39, July/August 2003 2003.

[34] David Moore, Colleen Shannon, and k claffy.
Code-red: a case study on the spread and victims of
an Internet worm. In The Second Internet
Measurement Workshop, pages 273–284, November
2002.

[35] George Necula, Scott McPeak, and Westley Weimer.
CCured: Type-Safe Retrofitting of Legacy Code. In
Proceedings of the Principles of Programming
Languages. ACM, 2002.

[36] Netcraft. The Netcraft Survey, http://www.netcraft.
com.

[37] Openbsd 3.3, http://www.openbsd.org/33.html.

[38] The homepage of the pax team, http://pageexec.
virtualave.net/.

[39] Sam Phillips. dasbistro.com default.ida responder.
http://sunsite.bilkent.edu.tr/pub/infosystems/%
lphpweb/default.txt.

[40] The Honeynet Project. Know Your Enemy: Motives,
http://project.honeynet.org/papers/motives/.

[41] Eric Rescorla. Security holes ... who cares? In
Proceedings of the 12th USENIX Security Symposium,
pages 75–90. USENIX, August 2003.

[42] Stuart Schechter and Michael Smith. Access for sale:
A new class of worm. In First Workshop on Rapid
Malcode WORM, October 2003.

[43] Markus Schmall. Bulding Anna Kournikova: An
Analysis of the VBSWG Worm Kit, http://
online.securityfocus.com/infocus/1287.

[44] McAffe Secuirty. W95/firkin.worm, http://
vil.mcafee.com/dispvirus.asp?virus k=98557.

[45] F secure Inc. Global slapper worm information center,

http://www.f-secure.com/slapper/.

[46] Valve Software. Half life, http://www.half-life.com.

[47] Stuart Staniford, Vern Paxson, and Nicholas Weaver.
How to 0wn the Internet in Your Spare Time. In
Proceedings of the 11th USENIX Security Symposium.
USENIX, August 2002.

[48] Joe Stewart. Sobig.e: Evolution of the worm. http://
www.lurhq.com/sobig-e.html.

[49] Symantec. W32.Benjamin.Worm, http://
securityresponse.symantec.com/avcenter/venc/data/
w32.benjamin.worm.html.

[50] Symantec. W32.Sonic.worm, http://securityresponse.
symantec.com/avcenter/venc/data/w32.sonic.worm.
html.

[51] Jamie Twycross and Matthew M Williamson.
Implementing and testing a virus throttle. In
Proceedings of the 12th USENIX Security Symposium,
pages 285–294. USENIX, August 2003.

[52] Max Vision. Whitehats: Ramen Internet Worm
Analysis, http://www.whitehats.com/library/worms/
ramen/.

[53] Robert Wahbe, Steven Lucco, Thomas E. Anderson,
and Susan L. Graham. Efficient Software-Based Fault
Isolation. ACM SIGOPS Operating Systems Review,
27(5):203–216, December 1993.

[54] Matthew M Williamson. Throttling viruses:
Restricting propigation to defeat mobil malicious
code. In Annual Computer Security Applications
Conference, 2002.

[55] Adam Young and Moti Yung. Cryptovirology:
Extortion based security threats and countermeasures.
In IEEE Symposium on Security and Privacy, pages
129–141, Oakland, CA, 1996. IEEE Computer Society
Press.

