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Abstract 
In the past few years there has been increased interest in 
using data-mining techniques to extract interesting patterns 
from time series data generated by sensors monitoring 
temporally varying phenomenon. Most work has assumed 
that raw data is somehow processed to generate a sequence 
of events, which is then mined for interesting episodes. In 
some cases the rule for determining when a sensor reading 
should generate an event is well known. However, if the 
phenomenon is ill-understood, stating such a rule is difficult. 
Detection of events in such an environment is the focus 
of this paper. Consider a dynamic phenomenon whose 
behavior changes enough over time to be considered a 
qualitatively significant change. The problem we investigate 
is of identifying the time points at which the behavior 
change occurs. In the statistics literature this has been 
called the change-point detection problem. The standard 
approach has been to (a) upriori determine the number 
of change-points that are to be discovered, and (b) decide 
the function that will be used for curve fitting in the 
interval between successive change-points. In this paper 
we generalize along both these dimensions. We propose an 
iterative algorithm that fits a model to a time segment, and 
uses a likelihood criterion to determine if the segment should 
be partitioned further, i.e. if it contains a new change- 
point. In this paper we present algorithms for both the batch 
and incremental versions of the problem, and evaluate their 
behavior with synthetic and real data. Finally, we present 
initial results comparing the change-points detected by the 
batch algorithm with those detected by people using visual 
inspection. 

1 Introduction 

Sensor-based monitoring of any phenomenon creates 
time series data. The spacing between successive 
readings may be constant or varying, depending on 
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whether the sampling is fixed or adaptive. The 
overall goal is to obtain an accurate picture of the 
phenomenon with minimum sampling effort. Examples 
of such observations include highway traffic monitoring, 
electro-cardiograms, and monitoring of oil refineries. 

In the past few years there has been increased interest 
in using data mining techniques to extract interesting 
patterns from temporal sequences [SA95, MTV97, 
PT96]. A standard assumption has been that the raw 
data collected from sensors is somehow processed to 
generate a sequence of events, which is then mined for 
interesting episodes [MTV95, HKM+96]. While there 
is no strict definition of an episode, intuitively it is a 
pattern of events occurring in some order, and close 
enough to each other in time. Recent research has 
developed languages for specifying temporal patterns 
[MT96, PT96, GWS98], and algorithms have been 
proposed that takes advantage of the specified pattern 
to increase the computational efficiency of the mining 
process. 

However, an issue that has received scant attention 
is of deriving an event sequence from raw sensor data. 
In some cases the rule for determining when a sensor 
reading should generate an event is well known, e.g. 
if the temperature of a boiler goes above a certain 
threshold, then sound an alarm. However, if the 
phenomenon is ill-understood or changes its behavior 
unpredictably, adapting the threshold such that event 
reporting is accurate becomes very difficult. Thus, a 
more systematic approach is required for processing the 
raw sensor data to generate an event sequence. This is 
the focus of our paper. 

Consider a dynamic phenomenon whose behavior 
changes enough over time so as to be considered a 
qualitatively significant change. Each such change is 
an event. An example is the change of highway traffic 
from light to heavy to congested. Another example is 
the change of a boiler from normal to super-heated. 
The specific problem we address is of applying data 
mining techniques to identify the time points at which 
the changes, i.e. events, occur. In the statistics 
literature this has been called the change point detection 
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problem. The standard approach has been to (a) 
apriori determine the number of change points to 
be discovered, and (b) decide the model to be used 
for fitting the subsequence between successive change 
points. Thus, the problem becomes one of finding the 
best set of the predetermined number of points that 
minimizes the error in fitting the pre-decided function 
[SO94, Hus93, Haw76, HM73, Gut74]. [KS971 addresses 
the problem of approximating a sequence of sensor 
readings by a set of Ic linear segments as a pre-processing 
step. This too can be considered a version of the change- 
point detection problem. In the proposed approach, we 
address both limitations of standard approaches. First, 
we place no constraint on the class of functions that 
will be fitted to the subsequences between successive 
change points. Second, the number of change points is 
not, fixed apriori. Rather, the appropriate set is found 
by using maximum likelihood methods [Hud66]. 

In this paper we study two versions of the change 
point detection problem, namely the batch and the 
incremental versions. In the batch version the entire 
data set is available, as in the case of 24-hour data from 
traffic sensors, from which the best, set of change points 
can be determined. In the incremental version, the 
algorithm receives new data points one at a time, and 
determines if the new observation causes a new change- 
point to be discovered. Our contributions include 

l developing a general approach to change-point, 
i.e. event, detection that generalizes previous 
approaches, 

l developing algorithms for both the batch and incre- 
mental versions of the change point detection prob- 
lem, 

l evaluating their behavior with synthetic and real 
data, 

l and comparing the algorithms with visual change- 
point detection by humans. 

This paper is organized as follows: In section 2 
we formally describe the event detection problem. 
Section 3 presents the batch algorithm and Section 4 
its performance. Section 5 describes the incremental 
algorithm, which is evaluated in the Section 6. Section 
7 concludes the paper. 

2 Event Detection as Change-Point 
Detection 

In this paper we are interested in real-valued time 
series denoted by y(t), t = 1,2, . . . . n, where t is a 
time variable. It is assumed that the time series 
can be modeled mathematically, where each model is 
characterized by a set of parameters. The problem of 
event detection becomes one of recognizing the change 
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of parameters in the model, or perhaps even the change 
of the model itself, at unknown time(s). 

This problem is widely known as the change-point 
detection problem in the field of statistics. A number 
of approaches have been proposed to solve the change- 
point. detection problem [SO94, Hus93, Haw76, HM73, 
Gut74]. The standard assumption is that the phe- 
nomenon can be approximated by a known, stationary 
(usually linear) model. However, this assumption may 
not be true in some domains, creating the need for an 
approach that works without this assumption. In this 
paper we propose an approach that simultaneously ad- 
dresses the issue of model selection and change-point 
detection. 

2.1 Formal Statement of the Problem 

Consider a time series denoted by y(t), t = 1,2, . . ..n. 
where t is a time variable. 

We would like to find a piecewise segmented model 
M, given by 

Y = fl(t,wl) + cl(t), (1 < t I h), 
= f2(t,w2) + e2(t), (6 < t 5 f32), 

-.fk(t,.Wlc) +ek(tj, .ie,l;.(t’l.ti~j;~ 

An fi(t, wi) is the function (with its vector of 
parameters wi) that is fit in segment i. The Bi’s are the 
change points between successive segments, and ei(t)‘s 
are error terms. At this point we put no constraints on 
the nature of fi(t, ~0’s. 

2.2 Maximum Likelihood Estimation 

If all change points are specified a priori, and mod- 
els with parameters wi’s and estimated standard devi- 
ations gi’s found for each segment, then the statistical 
likelihood L, of the change points is proportional to 

L= 

i 

fi (q-m; - heteroscedastic error 
i=l 

[ I 
i$ -2 

--n/2 

- homoscedastic error 

Here Ic is the number of change-points, mi is the number 
of time points in segment i, and n is the total number 
of time pointsl. 

If the change points are not known, the maximum 
likelihood estimate (MLE) of the ei’s can be found by 
maximizing the likelihood L over all possible sets of Bi's, 

or equivalently, by minimizing -2 log L. This function 
is equivalent to, 

1 

5 rni log 0: - heteroscedastic error 
-210gL = i=l 

7l lOg( 5 ?&CT;) - homoscedastic error 
i=i 

‘The homoscedastic error model specifies that 01 = (~2 = . . = 
ok. Heteroscedastic error model doesn’t impose this constraint. 



In this paper, the term likelihood criteria will refer to 
function -2 logL, and will be denoted as C. Because 
log is a monotonically increasing function, for the ho- 
moscedastic error case we use the equivalent likelihood 
criteria of minimizing the function C,“=, rrzi~p. 

2.3 Model Selection 

For each segment i, model estimation is the problem 
of finding the function fi(t, wi) that best approximates 
the data. The quality of an approximation produced 
by the learning system is measured by the loss function 
Loss(y(t),fi(t,wi)), where Bi-i < t 5 0i. The 
expected value of loss is called risk functional &(wi) = 
E[Loss(y(t), ji(t, wi)]. Therefore, for each segment the 
learning system has to find a fi(t, wi) that minimizes 
R(wi). 

Let us now consider the nature of fi(t, wi)‘s. Most 
past work has assumed that the nature of these 
functions is known, or can be somehow determined 
from domain knowledge. However, in general this 
cannot be done, and thus our approach allows the 
possibility of arbitrary functions. To provide a handle 
on the problem, however, we use the key result of 
universal approximation theory, which states, that any 
continuous function can be approximated by another 
function from a given class [CM98]. The latter class 
can be considered as a basis class. An example of such 
a basis class is the set of algebraic polynomials { to, 9, 
t2, . . }’ [KC96]. 

For each of the segments, the learning machine 
should select a model that best describes the data. 
Various model selection methods have been proposed, 
e.g. analytical model selection via penalization and 
model selection via re-sampling [CM98]. The re- 
sampling approach has an advantage of making no 
assumptions on the statistics of the data or the type 
of target function being estimated. However, its main 
disadvantage is high computational effort. With linear 
regression it is possible to compute the leave-one-out 
cross-validation estimate of expected risk analytically 
[CM98]. This has computational advantages over 
the re-sampling approach, since repeated parameter 
estimation is not required. This is the approach used 
in the paper. Finally, the change-point likelihood also 
depends on the error model used. Unless there is a 
known fact that the error model is heteroscedastic, it 
is reasonable to assume the homoscedastic error model 
[Kue94], which is what we do. 

‘For practical reasons, there must be an upper bound on the 
degree of the polynomials in the basis class, say p-l. In general it 
is possible to use other basis classes, e.g. radial, wavelet, Fourier, 
etc. The choice of which basis class to use is itself an interesting 
problem, but outside our present scope. Note that the proposed 
approach can work with any of these basis classes. 

3 Batch Algorithm 

In this section we assume that the entire data set 
is collected before the analysis begins. In section 5 
we consider the incremental case where change-point 
detection proceeds concurrently with data collection. 

3.1 Algorithm Description 

Change-point detection algorithms have been studied in 
the statistics literature [Haw76, HM73, Gut74]. They 
have worked under the assumptions that 

(a) a stationary known model can be used to describe 
the phenomenon, and 

(b) the number of change points is known apriori. 

Our approach was to start from the algorithm described 
in [Haw76], and remove these assumptions. 

Assume that the best model that maintains time 
points ti, ti+l, . . . . tj as a single segment has been 
selected. Let S be the residual sum of squares for 
this model. The number of points in this segment 
is m = j - i + 1. Let C(i, j) = mlog(S/m) if a 
heteroscedastic error model is used, and l(i,j) = S 
if the error model is homoscedastic. 

The key idea behind the proposed algorithm is that 
at every iteration, each segment is examined to see 
whether it can be split into two significantly different 
segments. The splitting procedure can be illustrated by 
a consideration of the first stage, since all subsequent 
stages consist of equivalent scaled-down problems. 

Let the data set cover the time points tl, ts, . . ., t,. 
The change point in the first stage is the j minimizing 
C(l,j)+ C(j + l,n), say j*. Here j* is defined as 

The range of j depends on the fact that at least p 
points are needed for model fitting in each segment. 
Further, the model fitted in each segment is the best 
possible from the space described by the basis functions, 
according to the model selection method used. 

At the second stage, each of the two segments is 
analyzed as above and the best candidate change-points 
cl and c2 of each are located. The better of these 
candidates is then selected, yielding a division of the 
original sequence into three segments. Without loss of 
generality let’s assume that point cl is chosen: Now, 
the likelihood criteria of the model becomes 

c= (C(1, Ci) + l(Ci + l,j*)+,Q* + 1, n)) < 
(C(1, j*)+L(j* + 1, cs) + C(cz + 1, n)). 

The above procedure is repeated until a stopping 
criterion (described in section 3.2) is reached. Figures 
1, 2, 3 provide the details of the algorithm. 
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The algorithm takes the set of approximating basis functions MS’et 
and the time series T 

new-change-point = find-candidate(T, MSet) 
Change-Points = 0 
Candidates = 0 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
10. 
11. 
12. 

13. 
14. 

Tl, Tz = get-newAimeranges(T, Change-Points, new-change-point) 
while(stopping criteria is not met) do begin 

cl = findxandidate(T1, MSet) 
c2 = findxandidate(T2, MSet) 
Candidates = Candidates U cl 
Candidates = Candidates U c2 
new-change-point = c E CandidateslQ(Change-Points,c) = min 
Candidates = Candidates \ new-change-point 
Tl, T2 = get-new-timeranges(T, ChangePoints, new-change-point) 
Change-Points = Change-Points U new-change-point 

end 

Figure 1: Hierarchical Procedure To Detect Change Points 

1. optimal-likelihood-criteria = 00 
2. for(i = p to ITI - p - 1) do begin 
3. likelihood-criteria = Find-Likelihood-Criteria(T [l,i], MSet) + 
4. Find-LikelihoodXriteria(T [i + 1, ITI], MSet) 
5. if (likelihood-criteria < optimal-likelihood-criteria) 
6. split = T(i) 
7. optimal-likelihood-criteria = likelihood-criteria 
8. endif 
9. endfor 
10. return split 

Figure 2: Find-Candidate Algorithm 

1. minimum-risk = 00 
2. for (each model M E MSet) do begin 
3. model-risk = Risk(T, M) 
4. if(model-risk < minimum-risk) 
5. minimum-risk = model-risk 
6. likelihood-criteria = Fit(T, M) 
7. endif 
8. endfor 
9. return likelihood-criteria 

Figure 3: Find-Likelihood-Criteria Algorithm 

It should be noted that there have been other algo- 
rithms [HM73, Gut741 proposed to solve the change- 
point problem. We chose to modify a hierarchical solu- 
tion because it is computationally more efficient. 

3.2 Stopping Criteria 

Since the number of change points is not known 
apriori, a stopping criterion must be used by the 
algorithm. In practice one would expect that once 
the algorithm has detected all “real” change-points, 
adding any more change points would not change the 
likelihood significantly. In fact, upon the addition 
of a sufficient number of spurious change-points, the 
overall likelihood value can increase, as illustrated in 
Figure 4. In successive iterations of the algorithm, 
at first the likelihood criteria decreases dramatically 
until it becomes stable, and then. starts to increase 

slowly as spurious change-points are found. Therefore, 
the algorithm should stop when the likelihood criteria 
becomes stable or starts to increase. Formally, if in 
iterations k and 5 + 1 the respective likelihood criteria 
values are Lk and Ck+l, the algorithm should stop if 

(Lk - Lk+l)/lk < s, 

where s is a user-defined stability threshold. When 
stability threshold s is set to O%, the algorithm stops 
only when the likelihood criteria starts increasing. 

4 Experimental Evaluation of the 
Batch Algorithm 

We evaluated the behavior of our change-point detec- 
tion algorithm on synthetic as well as real data from 
highway traffic sensors. In this section we present the 
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Table 1: Experimental Results for Synthetic Data Sets 

Figure 4: Likelihood criteria as a function of change- 
points 

results of these evaluations. In each case we measure 
the effectiveness of the algorithm, i.e. the quality of the 
change-points detected. For experimental purposes, the 
basis functions we selected were 1, t, t2 and t3. Note 
that our approach is general and can work with any 
class of basis functions. 

4.1 Experiment with Synthetic Data 

The data set consisted of 40 data points and was 
generated using the following saw-tooth function 

i 

t * h/lO+e : t E [1,9] 

j(t) = 
(20-t)*h/lO+c : tc [10,19] 
(t - 20) * h/10 + E : t E [20,29] 
(40 - t) * h/10 + E : t E [30,39] 

The noise E is Gaussian with zero mean and unit 
variance. The height of the function h controls the 
signal-to-noise ratio. The larger the value of h, the 
greater the signal-to-noise ratio. An example of such 
a function (without noise) is depicted in Figure 5. 

If the proposed algorithm is able to correctly identify 
all change-points, it should detect the following inter- 
vals: [l, 91, [lo, 191, [20, 291, [30, 391. However, due 
to the continuity of the saw-tooth function f(t) at the 
change-points, a different set of change-points can also 
be detected. For example, the set [l, lo], [II, 191, [20, 

Figure 5: Saw-Tooth Function 

291, [30, 391 is also a correct set of intervals. This is 
because t = 10 can be interpreted as the end of the cur- 
rent trend or the beginning of a new one. Similarly for 
t = 20 and t = 30. 

The experiment was aimed at finding whether the 
method is able to correctly identify all change-points, 
and the sensitivity of the technique to the noise level. 
The results of the experiment are summarized in Table 
1. As the signal-to-noise ratio decreases, the algorithm 
starts to give less accurate results. In this particular 
case the algorithm breaks at height h = 2. However, 
the algorithm works well for larger values of h. For 
h > 8, the algorithm identifies all change points without 
introducing false positives and false negatives. 

The stability threshold, s, of the stopping criterion 
doesn’t affect the results when the data set does not 
have a lot of noise. However, when the noise in the data 
set is increased, higher values of s prevent the algorithm 
from identifying false change-points. At height h = 5, 
when we increased the stability threshold from 0% 
to 5%, the algorithm was able to stop before falsely 
splitting the region [30, 391 into two regions [30, 351 
and [36, 391. 

4.2 Experiment with Traffic Data 

The data used in our experiments was taken from 
highway traffic sensors, called loop detectors, in the 
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Figure 6: Data Set: V274 Figure 7: Data Set: V287 

Figure 8: Data Set: V .Ol Figure 9: Data Set: V315 

Minneapolis-St. Paul metro area. A loop detector is a 
sensor, embedded in the road, with an electro-magnetic 
field around it, which is broken when a vehicle goes 
over it. Each such breaking, and the subsequent re- 
establishment, of the field is recorded as a count. Traffic 
volume is defined as the vehicle count per unit time. In 
our data set the volume data was sampled at 5 minute 
intervals, i.e. the vehicle count was recorded at the end 
of a 5 minute interval and the counter was reset to 0. 
Each data set is a time sequence collected over a 24-hour 
time period, i.e. consisting of 288 samples. 

The proposed algorithm’s behavior was evaluated on 
four different data sets, the results of which are shown in 
Figures 6, 7, 8, and 9. Each change point detected by 
the algorithm is based on the criteria defined in Section 
3, i.e. the stability threshold of 0% is met for each of 
the points. However, some interesting observations can 
be made from these graphs. Segment A of Figure 7 
is reported as one segment by the algorithm, whereas 
based on visual inspection one could argue that there 
are one or more change points in it. However, the 
likelihood calculations of the algorithm show that the 
variations being observed are not statistically significant 
and probably attributable to noise. A similar situation 
occurs in segment B of Figure 8, which contains 
a seemingly significant local minima. The converse 
appears in Figure 9, where C and D are reported as two 
separate segments, even though they visually appear to 
be a single segment. A reason is that we often tend to 
focus on straight-line segments in visual examinations 
[Att54]. Figure 6 represents a case where all the change 
points detected by the algorithm seem to agree with our 
intuitive notion of change-points. 

4.3 Comparison With Visual Change Point 
Detection 

A crucial issue in evaluating the behavior of a change 

We were interested in how our change point detec- 
tion algorithm performed compared to a person doing 
the same task through visual inspection. The original 
data was very noisy, and thus in some cases it was dif- 
ficult to visually detect the actual change points. Es- 
sentially, the data had a lot of small variations, which 
can potentially cause a human to observe microscopic 
trends that are not actually present. Based on our dis- 
cussions with traffic engineers from the Minnesota De- 
partment of Transportation, i.e. the domain experts, we 
smoothed the data using a moving averages approach 
for visual inspection based change point detection by 
the human observer. Our algorithm was fed the origi- 
nal data set, i.e. without smoothing. 
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Figure 10: Subject Sr 

Figure 12: Subject S’s 

Figure 11: Subject SZ 

point detection algorithm is to determine if the change 
points detected by it are indeed true change points. 
However, this raises the issue of first determining 
what the true change points of a function are. This 
is a difficult question to answer, because it in turn 
depends on the method employed to determine the 
true change points. Our approach was to examine the 
techniques used in the traffic domain, from which the 
data was taken. Traffic engineers use visual inspection 
for detecting change points in traffic data. Hence, 
we selected the data set of Figure 6 and asked four 
human subjects to detect change points3 in it by visual 
inspection. Subject Sr and Sz were given smoothed 
representation of the time sequence, while subjects S’s 
and SJ received the original data set. 

Figures 10 through 13 show the change points 
reported by subjects Sr , Sz, Ss, and S,, respectively. 

3Specific instruction given was to identify points at which the 
phenomenon changed significantly. Subjects were not given any 
instructions on how to do this, to eliminate bias. 

Figure 13: Subject Sd 

Benchmark 1 Algorithm 1 Subject 5’1 1 Subject SZ 1 Subject S3 1 Subject S4 

v274 1.0 1.79 2.04 2.58 1.77 

Table 2: Comparison of likelihood estimates for Algorithmic and Visual Approaches 

The change points detected by subject Sr, Figure 10, 
seem to be the most similar to those detected by our 
algorithm. Subject SZ, Figure 11, seems to be using 
a quadratic model for segmentation, while subject Ss, 
Figure 12, seems to be using a cubic model. Subject 
Sq, Figure 13, seems to be using a linear segmentation 
model. 

One thing that became clear from this experiment 
was that determining the true change points of a 
function is not at all straightforward, and human 
observers can have significant disagreements. Thus, a 
technique based on detecting change points based on 
some quantitative measure of likelihood is perhaps more 
robust than any of these. 

To quantify the quality of change-points identified 
by the subjects, we calculated the likelihood estimates 
for each of the models and compared them with 
the likelihood criteria of the model identified by our 
algorithm. The resulting ratios are shown in Table 
2. The results show that statistically speaking the 
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while(true) 
T = T U new-data-point 
split-likelihood-criteria = Find-Split-Likelihood_Criteria(T, MSet) 
no-splitJikelihood_criteria = Find-Likelihood-Criteria(T, MSet) 
if ((no-split_likelihood-criteria - split_likeZihood-criteria) > 6) then 

Report Change Of Pattern 
T=0. 

endif 
endwhile 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

J 

Figure 14: Trend-Change Monitoring Algorithm 

optimal-likelihood-criteria = co 
for(i = p to ITI -p - 1) do begin 

likelihood-criteria = Find_Likelihood-Criteria(T [l, i], MSet) + 
Find-Likelihood-Criteria(T [i + 1, ITI], MSet) 

if (likelihood-criteria < optimal-likelihood-criteria) 
optima2Aikelihoodxriteria = likelihood-criteria 

endif 
endfor 
return ovtimal-likelihood-criteria 

Figure 15: Find-Split-Likelihood-Criteria Algorithm 

algorithm performed better then any of the four 
subjects. 

5 The Incremental Algorithm 

The batch algorithm is useful only when data collec- 
tion precedes analysis. In some cases, change-point de- 
tection must proceed concurrently with data collection, 
e.g. dynamic control of highway ramp metering lights. 
Towards this we developed an incremental algorithm. 
The key idea is that if the next data point collected by 
the sensor reflects a significant change in phenomenon, 
then its likelihood criteria of being a change-point is 
going be smaller then the likelihood criteria that it is 
not. However, if the difference in likelihoods is small, 
we cannot definitively conclude that a change did oc- 
cur, since it may be the artifact of a large amount of 
noise in the data. Therefore, we use the criteria that a 
change-point has been detected if and only if 

where 6 is a user-defined likelihood increase threshold. 
Suppose that the last change-point was detected at 

time tk-1. At time tl, the algorithm starts by collecting 
enough data to fit the regression model. Suppose at 
time tj a new data point is collected. The candidate 
change point is found by determining ti, with likelihood 
criterion &in(k,j), such that 

Lnin(kj) = km&{qki) + qi + Lj)}. 
- 

If this minimum is significantly smaller than C(lc, j), i.e. 
the likelihood criteria of no change-points from tk to tj, 

then ti is a change-point. Otherwise, the process should 
continue with the next point, i.e. tj+l. The algorithm 
is shown in Figures 14 and 15. 

In the incremental algorithm, execution time is a 
significant consideration. If enough information is 
stored, some of the calculations can be avoided. Thus, 
at time tj+l to find likelihood criteria 

Ln(k.i + 1) = k~ym, 9 + C(i + l,j + 1)) 
- 

it is only necessary to calculate L(i + 1,j + l), since 
.C(k, i) was calculated in the previous iteration. 

It should be noted that if a change-point is not 
detected for a long time, the successive computations 
become increasingly expensive. A possible solution is 
to consider a sliding window of only the last w points. 

6 Performance Evaluation of the 
Incremental Algorithm 

To study the performance of the incremental algorithm, 
we used data set generated by the following function 

t*h/40+c : tE[1,39] 
f(t) = { (80 - t) * h/40 + E : t E [40,80] 

where the noise E is Gaussian with zero mean and unit 
variance. 

The goal of this experiment was to observe if the 
algorithm is able to accurately recognize the change- 
points. Accuracy is measured both by how close the 
identified change-point is to the point where the actual 
change occurred, and by how long it takes the algorithm 
to recognize the change. 
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Incremental (b = 35%) Incremental (6 = 45%) Batch (s = 5%) 
change detection change detection change 

h point time point time point 
detected detected detected 

Table 3: Performance of Incremental and Batch Algorithms; the actual change-point is 40. 

The results of the experiment are shown in Table 
3. The algorithm performs well for data sets with 
high signal-to-noise ratio. In addition, the time it 
takes to realize that the change occurred is small. 
However, for data sets with h 5 20, the algorithm 
starts to break. The change-point estimates become 
increasingly inaccurate. Moreover, the latency of 
recognizing that change has occurred increases. In 
addition, for likelihood increase threshold 6 = 35%, the 
algorithm identifies spurious change-points. Increasing 
the threshold to 45% does not eliminate spurious 
change-points, but eliminates a true change-point when 
h = 10. 

The last column in Table 3 represents results 
obtained by running the batch algorithm on the same 
data sets with stability threshold s = 5%. Note that the 
batch algorithm identifies change-points with very high 
accuracy, showing it to be much more tolerant of noise 
than the incremental algorithm. This is because the 
batch algorithm tries to achieve a global optimization of 
the likelihood metric, while the incremental algorithm 
seeks only local optimization due to unavailability of 
data about the future. 

7 Conclusion and Future Work 

In this paper, we presented an approach for event 
detection from time series data. The approach allows 
US to detect a change-point by detecting the change 
of model (or parameters of the model) that describe 
the underlying data. We use a combination of change- 
point detection and model selection techniques. The 
proposed approach does not assume the availability of 
a model describing the data, or the number of deviation 
points in the time series. In addition, the technique is 
independent of regression and model selection methods. 

Our experimental results suggest that both algo- 

rithms are able to correctly identify change-points in 
cases where signal-to-noise ratio is not too low. In ad- 
dition, the proposed approach is more robust than using 
visual inspection by humans, at least by the likelihood 
measure used here. First, it is not subject to human ten- 
dency to segment smooth curves into piecewise straight 
lines. Second, while human beings find it hard to work 
with data that contains a lot of noise, the algorithms 
are able to handle such data sets (as long as the noise 
level doesn’t dominate the signal). The batch algorithm 
is more robust than the incremental one, since it works 
with the entire data set and can perform global opti- 
mization. 

As discussed in [Raf93], applicable Bayesian ap- 
proaches have been found to produce results more eas- 
ily than non-Bayesian ones, especially for change point 
detection in one dimensional stochastic processes, How- 
ever, a significant hurdle is the existence of a prior 
model that is both sophisticated enough to model the 
application, and computationally tractable for deriving 
the posterior model. In general, to make the computa- 
tion tractable often simplifying assumptions are made 
[CGS92]. Previous work [CGS92] has shown that iter- 
ative techniques such as Monte-Carlo methods can be 
used to compute the marginal posterior densities. Our 
approach is non-Bayesian, and hence doesn’t require a 
prior model. It would be an interesting future research 
to see how our approach compares with a Bayesian one 
for the problem of event detection. 
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