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Abstract

In this paper we describe the results achieved using the
JAM distributed data mining system for the real world prob-
lem of fraud detection in financial information systems. For
this domain we provide clear evidence that state-of-the-art
commercial fraud detection systems can be substantially
improved in stopping losses due to fraud by combining mul-
tiple models of fraudulent transaction shared among banks.
We demonstrate that the traditional statistical metrics used
to train and evaluate the performance of learning systems,
(i.e. statistical accuracy or ROC analysis) are misleading
and perhaps inappropriate for this application. Cost-based
metrics are more relevant in certain domains, and defin-
ing such metrics poses significant and interesting research
questions both in evaluating systems and alternative mod-
els, and in formalizing the problems to which one may wish
to apply data mining technologies.

This paper also demonstrates how the techniques devel-
oped for fraud detection can be generalized and applied to
the important area of Intrusion Detection in networked in-
formation systems. We report the outcome of recent evalu-
ations of our system applied to tcpdump network intrusion
data specifically with respect to statistical accuracy. This
work involved building additional components of JAM that
we have come to call, MADAM ID (Mining Audit Data for

Automated Models for Intrusion Detection). However, tak-
ing the next step to define cost-based models for intrusion
detection poses interesting new research questions. We de-
scribe our initial ideas about how to evaluate intrusion de-
tection systems using cost models learned during our work
on fraud detection.

1 Introduction

In this paper we discuss the results achieved over the past
several years on the JAM Project1. JAM stands for Java
Agents for Meta-Learning. JAM was initiated as a DARPA
and NSF sponsored research project studying algorithms,
techniques and systems for distributed data mining. The ini-
tial conceptions that we proposed involves the use of agent-
based technologies to dispatch machine learning and data
analysis programs to remote database sites, resulting in a
distributed collection of derived models [4, 5, 6, 25]. Sub-
sequently, the same agent-based technology provides the
means for derived “base” models to migrate in a network in-
formation system and be collected at any of the participating
sites where they may be combined. A single “aggregate”

1Browse http://www.cs.columbia.edu/˜sal/JAM/
PROJECT for the complete set of progress reports, publications and JAM
software available for download.
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model would then be computed by combining the remotely
computed base models, by a technique we have called
“meta-learning”, that outputs a “meta-classifier”. Each par-
allel site may compute its own meta-classifier, trained on
locally stored data. These meta-classifiers likewise can mi-
grate around the network to be combined with each other
in a hierarchical fashion. The architecture of JAM has been
reported extensively in prior papers [24, 26].

JAM’s utility has been demonstrated in the context of
real-world problems that in and of themselves are very im-
portant. Fraud and intrusion detection are key elements of
a new national challenge to protect our nation’s critical in-
frastructures.

2 The Fraud Detection Problem

We consider the problem of detecting fraudulent transac-
tions after they have been subject to fraud prevention meth-
ods and processes. There is a vast literature on various secu-
rity methods to protect transactors from unauthorized use or
disclosure of their private information and valuable assets.

Financial institutions today typically develop custom
fraud detection systems targeted to their own asset bases.
The key concept in fraud detection is that fraud may be de-
tected by noticing significant deviation from the “normal
behavior” of a customer’s account. The behavior of an ac-
count can thus be used to protect that account. Notice, it is
considerably easier to steal someone’s identity information
than it is to steal their behavior2.

Recently though, banks have come to realize that a uni-
fied, global approach is required to detect fraud, involving
the periodic sharing with each other of information about
attacks. We have proposed a new wall of protection consist-
ing of pattern-directed inference systems using models of
fraudulent transaction behaviors to detect attacks. This ap-
proach requires analysis of large and inherently distributed
databases of information about transaction behaviors to pro-
duce models of “probably fraudulent” transactions. We
have used JAM to compute these models.

JAM is used to compute local fraud detection agents that
learn how to detect fraud and provide intrusion detection
services within a single information system; JAM provides
an integrated meta-learning system that combines the col-
lective knowledge acquired by individual local agents from
among participating bank sites. Once derived local classi-
fier agents or models are produced at some datasite(s), two
or more such agents may be composed into a new classifier
agent by JAM’s meta-learning agents. JAM allows financial
institutions to share their models of fraudulent transactions

2This may change as vast databases of “click data” revealing personal
behavior information continues to be acquired over the Internet typically
without the user’s knowledge.

by exchanging classifier agents in a secured agent infras-
tructure. But they will not need to disclose their proprietary
data. In this way their competitive and legal restrictions
can be met, but they can still share information. The meta-
classifiers then act as sentries forewarning of possibly fraud-
ulent transactions and threats by inspecting, classifying and
labeling each incoming transaction.

2.1 The Fraud Learning Task

The learning task here is quite straightforward. Given a
set of “labeled transactions”,
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compute a model or classifier, � , by some learning algo-
rithm � , that predicts from the features


������������������� !���
the target class label

�"�
, “fraud” or “legitimate”. Hence,

� � �$# �$% , where � is a learning algorithm. Each element��&'�
is a vector of features, where we denote

���
as the

“transaction amount” (tranamt), and
�(�

as the target class
label, denoted

�*)�+�,.- # �/%0� 0 (legitimate transaction) or 1 (a
fraudulent transaction). Given a “new unseen” transaction,1 , with unknown class label, we compute

� � # 1 %2� �3# 1 % .
� serves as our fraud detector.

Much of our work on the JAM project has focussed on
developing, implementing and evaluating a range of learn-
ing strategies and combining techniques. Our work on
“meta-learning” strategies has focussed on computing sets
of “base classifiers” over various partitions or samplings of
the training data,

�
, and various performance metrics to

evaluate base classifiers over test data. (Nearly all of our
reported results are based upon k-fold cross validation.)

In meta-learning, we first seek to compute a set of base
classifiers,

� �54 �768� 9:���������7;<�
, where �=4 � �?>(# �!@"% ,A @ � @ �B�

, varying the distributions of training data (
� @

)
and using a variety of different machine learning algorithms
( � > ) in order to determine the “best” strategies for building
good fraud detectors. The “best” base classifiers are then
combined by a variety of techniques in order to boost per-
formance. One of the simplest combining algorithms pro-
posed in[3], and independently by Wolpert[29], is called
“class-combiner” or “stacking”. A separate hold out train-
ing dataset, C , is used to generate a meta-level training
data to learn a new “meta-classifier” D . D is computed
by learning a classifier from training data composed of the
predictions of a set of base classifiers generated over a
set of validation data ( C ) along with the true class label.
Hence, D � �E# 
 � � #GF %H�������!� �=I2#JF %K����� #JF %L�E%K� F & C .
The resultant meta-classifier works by inputing the pre-
dictions for some unknown into its constituent base clas-
sifiers, and then generating its own final class prediction
from these base classifier predictions. Thus, for unknown1 ,
� � # 1 %	� DM#N� � # 1 %H�������O� � I # 1 %7% .
Notice, D is as well a classifier, or fraud detector. In

the following sections when we make reference to a classi-
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fier � , it may either be a “base classifier”, or an ensemble
“meta-classifier”, learned over some training distribution,
unless explicitly stated otherwise.

For notational convenience, we define
� ���� � � D �/�E�����	�

as the set of all classifiers that may
be computed where � � � � � ��������� ��
 � is a set of learning
algorithms, D � D � ��������� D
� � is a set of meta-learning
algorithms,

�
is a set of labeled ground truth data used

to train classifiers, and
� �

is some training distribution
of interest. JAM is a computational environment that
is designed to assist data miners in generating desired
classifiers.

2.2 Credit Card Datasets

Chase and First Union Banks, members of the FSTC (Fi-
nancial Services Technology Consortium) provided us with
real credit card data for our studies. The two data sets con-
tain credit card transactions labeled as fraudulent or legiti-
mate. Each bank supplied .5 million records spanning one
year with 20% fraud and 80% non-fraud distribution for
Chase bank and 15% versus 85% for First Union bank. The
schemata (or feature sets) of the databases were developed
over years of experience and continuous analysis by bank
personnel to capture important information for fraud detec-
tion. We cannot reveal the details of the schema beyond
what is described in [19]. The records have a fixed length
of 137 bytes each and about 30 attributes including the bi-
nary class label (

�"�
). Some of the fields are numeric and the

rest categorical, i.e. numbers were used to represent a few
discrete categories.

The features in this data defined by the banks essen-
tially describe the “usage behavior” of an individual credit
card account. The data is rich enough to allow alternative
modeling strategies. For example, it is possible to segment
the data into classes of accounts based upon “payment his-
tory”3. It is well known that there are at least two classes of
card holders, “transactors” who pay their bills in full each
month, and “revolvers” who pay their minimum charge and
roll over balances and interest charges to the next month.
Models can thus be built for each of these market segments
to determine finer distinctions between account transaction
behaviors. In this work, we do no such segmentation and
partitioning, but rather we compute models of “fraudulent
transaction” for the entire asset base. We believe the results
achieved in this study can be improved had we segmented

3The reader is encouraged to do a personal study of their own checking
account behavior. You will likely find the same type of payments from
month to month in your own checking account. Variations or distinct pay-
ments in any particular month are likely to reoccur in the same month in the
prior year. Such repetitive behaviors can be regarded as a normal profile
for the checking account. Significant variations from this normal profile
possibly indicate fraud.

the data4.
Many experiments were conducted using JAM to eval-

uate the performance of different learning algorithms, and
different meta-level training sets using this data. Prior pub-
lications report on these experiments and indicate that the
meta-classifiers consistently outperform the best base clas-
sifiers. Unfortunately, the studies that considered different
training distributions, different learning algorithms and a
variety of combining techniques demonstrated that the best
strategies for this target domain are not immediately dis-
cernible, but rather requires extensive experimentation to
find the best models, and the best meta-classifiers [20].

2.3 Cost-based Models for Fraud Detection

Most of the machine learning literature concentrates on
model accuracy (either training error or generalization er-
ror on hold out test data computed as overall accuracy, True
Positive/False Positive rates, or ROC analysis). This do-
main provides a considerably different metric to evaluate
performance of learned models; models are evaluated and
rated by a “cost model.” Within the context of financial
transactions, cost is naturally measured in dollars. How-
ever, any unit of measure of utility applies here. The credit
card domain provides an excellent motivating example do-
main familiar to most people.

Due to the different dollar amounts of each credit card
transaction and other factors, the cost of failing to detect a
fraud varies with each transaction. Hence, the cost model
for this domain is based on the sum and average of loss
caused by fraud. We define for a set of transactions � , a
fixed overhead amount, and a fraud detector (or classifier)
� :

CumulativeCost #�� � � � overhead
%	��������

Cost # �3# �H� overhead
%/%

and

AverageCost #�� � � � overhead
%0�

CumulativeCost #�� � � � overhead
%

�
where Cost # �H� overhead

%
is the cost associated with transac-

tion
�

and � is the total number of transactions in a test set� . The cost of a transaction is not simply its “transaction
amount”, but is also a function of an overhead amount.

After consulting with a bank representative, we jointly
settled on a simplified cost model that closely reflects real-
ity. Since it takes time and personnel to investigate a po-
tential fraudulent transaction, a fixed overhead value is in-
curred for each investigation. That is, if the amount of a

4However, such a strategy would delve dangerously close to industry
trade secrets.

3



Outcome Cost(t,overhead)
Miss (False Negative, FN) tranamt(t)
False Alarm (False Positive, FP) overhead if tranamt(t)

�
overhead

0 if tranamt(t)
�

overhead
Hit (True Positive, TP) overhead if tranamt(t)

�
overhead

tranamt(t) if tranamt(t)
�

overhead
Normal (True Negative, TN) 0

Table 1. Cost Model for Transaction

transaction is smaller than the overhead, it is not worthwhile
to investigate the transaction even if it is suspicious. For ex-
ample, if it takes ten dollars to investigate a potential loss of
one dollar, it is more economical not to investigate. Assum-
ing a fixed overhead, we devised the cost model for each
transaction t and classifier C, showed in Table 1. (Recall,�:� # �/% � tranamt # �/% .) The overhead threshold, for good rea-
son, is a closely guarded secret for important reasons dis-
cussed later in section 5.5, and may vary over time. The
range of values used in our studies is probably reasonable
as appropriate bounds for the data set provided by the banks.
All the empirical studies we conducted are evaluated using
this cost model.

It is important to note that this overhead is not a “score
threshold” for classifiers that may output continuous values
(i.e., density estimators). Rather, the threshold is a simple
“decision boundary”. Transactions whose amounts are un-
der this threshold are immediately authorized (subject to ac-
count credit availability of course). Decisions are therefore
made by detectors only for transactions above this thresh-
old5.

The target application is described as detecting frauds to
minimize cumulative cost, or maximize cost savings in this
model. In describing our results, we report the maximum
savings (or stop loss in bank parlance), as the total dollar
amount saved from detection under this cost model. The to-
tal potential dollar loss for a (test) set of transactions ( � ) is
defined as the total dollar amount of all fraudulent transac-
tions:

TotalPotentialLoss(S)
� ������

� fraud �

�
��� true

tranamt �

�
�

A complete comparative evaluation between purely sta-
tistical error rates versus cost-model savings can be found in

5When training classifiers, one may think that simply ignoring all trans-
actions in the training data under the threshold will produce better detec-
tors. This may not be true. The fraudulent transaction behavior we seek to
learn may not vary with the transaction amount (thieves will do the same
things whether stealing ten dollars, or a hundred dollars), and the learn-
ing of fraudulent behavior may be more accurate when studying low cost
transactions. Even so, some experiments were performed varying the un-
derlying distributions, and we describe these later.

the cited papers. The important lesson here is that the data
mining problem is actually a straightforward cost optimiza-
tion problem, namely to capture or recover the TotalPoten-
tialLoss due to fraud. That is, given a test set of transac-
tions, � , a fraud model � overhead, and the overhead, the
TotalCostSavings is defined as:

TotalCostSavings #�� � � overhead
�
overhead

%	�
TotalPotentialLoss #�� %��

CumulativeCost #�� � � overhead
�
overhead

%

We can now state concretely what the learning task is for
fraud detection. We seek to compute the

+�)	��;�+ 1
���
������������
�
�
������� +�� � ����� � + F 6 � ��� #�� � � � � F�! )�" ! +�-�%H�

where individual classifiers, � overhead, can be models
computed (by JAM) over training data under the cost model
with a fixed overhead,

�
, by many different learning and

meta-learning strategies. (Note, the worst possible outcome
is that the detector is so bad we actually lose money; the
total cost savings may be negative.) We may of course add
additional constraints on � overhead so that it, for exam-
ple, meets real-time, or memory constraints, or is computed
over inherently distributed data (partitions of

�
) as rapidly

as possible. Explorations of these issues have been much of
the focus of the JAM project.

It is interesting to note here another reason why pure ac-
curacy measures are inappropriate in some domains. Ob-
serve in this and related domains (like cellular phone fraud)
the distribution of frauds may constitute a very tiny percent-
age of the total number of transactions. If, for example, the
percentage of frauds is 1% or less, than the null detector will
be 99% accurate or better! Naturally, we must depend upon
at least the TP/FP rates of a detector to measure alternatives.
But, more to the point, training detectors in such domains
begs an important question: what is the appropriate distribu-
tion of data used in training to produce “good detectors”? In
our prior work many experiments were conducted to evalu-
ate classifier performance over different samplings and dis-
tributions. For example, in one set of tests, 50:50 distribu-
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tions produced the best detectors6. Of particular note is that
the best training distributions varied according to the over-
head and thus the cost-model. This is why we subscript the
classifier � overhead to reveal that alternative classifiers can
be computed simply by varying this quantity. Here again,
determining the best training distribution under realistic en-
vironments, with possibly highly skewed distributions is a
matter of considerable empirical investigation.

3 Results using JAM

A large number of experiments were performed to deter-
mine whether various alternative training strategies would
produce improved or superior models. The strategies in-
cluded different temporal distributions (different months of
training data), different partitions or samples (random, or
different distributions of fraud versus non-fraud) and dif-
ferent cost distributions (training over large frauds versus
lower cost frauds). The results we report here are only one
broad view of what we achieved using the best strategies de-
termined empirically as compared to the best possible out-
come for a commercial off the shelf system.

CHASE provided us with data that had embedded within
each transaction record a field recording a score (in the
range of 0-999) generated by a commercial off-the-shelf
(COTS) fraud detection system for that transaction. From
this information we were able to easily compute the best
possible detection cost savings of this system as well as its
statistical accuracy. We do not know what the actual score
thresholds may be in practice. However, for the same data
provided by CHASE we can compute what the optimal set-
ting for the COTS should be for optimal performance. 7

Using this, we were able to compare JAM’s models to see
if we were indeed doing better.

3.1 Baseline Performance Under the Cost Model

Tables 2 and 3 summarize our results for the Chase and
First Union banks respectively. Both tables display the ac-
curacy, the TP

�
FP spread and savings for each of the fraud

predictors examined. Recall, overall accuracy is simply the
percentage of correct predictions of a classifier on a test set
of “ground truth”. TP means the rate of predicting “true
positives” (the ratio of correctly predicted frauds over all of
the true frauds), FP means the rate of predicting “false pos-
itives” (the ratio of incorrectly predicted frauds over those
test examples that were not frauds, otherwise known as the
“false alarm rate”.) We use “TP

�
FP spread” to indicate

6In this context, data is plentiful, so we could afford to construct
many alternative distributions without much fear of generating “knowledge
poor” training samples.

7We computed the performance of the COTS for a whole range of score
thresholds: 5, 10, 20, 30, 40, 50, 100, 150, 200, 250, ... , 850, 800, 950.

how well the system finds true frauds versus false alarms.
A “1.00 TP

�
FP spread” is optimal performance.8 The

maximum loss potential of these test sets is approximately
$1,470,000 for the Chase data and $1,085.000 for the First
Union data. The column denoted as “size” indicates the
number of base-classifiers used in the meta-classifier.

3.2 JAM versus COTS

The first row of Table 2 shows the best possible perfor-
mance of Chase’s own COTS authorization/detection sys-
tem on this data set. The next two rows present the perfor-
mance of the best base classifiers over the entire set and over
a single month’s data, while the last rows detail the perfor-
mance of the unpruned (size of 50) meta-classifiers. Similar
data is recorded in Table 3 for the First Union set, with the
exception of First Union’s COTS authorization/detection
performance (it was not made available to us).

The outcome was clearly in favor of JAM for this dataset.
According to these results, the COTS system achieves
85.7% overall accuracy, 0.523 “TP

�
FP spread” and saves

$682K when set to its optimal “score threshold”.
A comparison of the results of Tables 2 and 3 indicates

that in almost all instances, meta-classifiers outperform all
base classifiers, and in some cases by a significant margin.
The most notable exception is found in the “savings” col-
umn of Chase bank where the meta-classifier exhibits re-
duced effectiveness compared to that of the best base clas-
sifier.

This shortcoming can be attributed to the fact that the
learning task is ill-defined. Training classifiers to distin-
guish fraudulent transactions is not a direct approach to
maximizing savings (or the TP

�
FP spread). Traditional

learning algorithms are not biased towards the cost model
and the actual value (in dollars) of the fraud/legitimate la-
bel; instead they are designed to minimize statistical mis-
classification error. Hence, the most accurate classifiers are
not necessarily the most cost effective. Similarly, the meta-
classifiers are trained to maximize the overall accuracy not
by examining the savings in dollars but by relying on the
predictions of the base-classifiers. Naturally, the meta-
classifiers are trained to trust the wrong base-classifiers for
the wrong reasons, i.e. they trust the base classifiers that are
most accurate instead of the classifiers that accrue highest
savings.

3.3 Bridging Classifiers for Knowledge Sharing

The final stage of our experiments on the credit card data
involved the exchange of base classifiers between the two

8These are standard terms from the statistical “confusion” matrix that
also includes FN and TN rates as well.
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Type of Classification Model Size Accuracy TP - FP Savings

COTS scoring system from Chase - 85.7% 0.523 $ 682K
Best base classifier over one subset 1 88.5% 0.551 $ 812K
Best base classifier over entire set 1 88.8% 0.568 $ 840K
Meta-classifier, Chase 50 89.6% 0.621 $ 818K

Table 2. Performance results for the Chase credit card data set.

Type of Classification Model Size Accuracy TP - FP Savings

Best base classifier over one subset 1 95.2% 0.749 $ 806K
Best base classifier over entire set 1 95.3% 0.787 $ 828K
Meta-classifier, First Union 50 96.5% 0.831 $ 944K

Table 3. Performance results for the First Union credit card data set.

banks. To meta-learn over a set of classifier agents, how-
ever, we had to overcome additional obstacles in order to
share their knowledge of fraud. The two databases had dif-
ferences in their schema definition of the transactions, and
hence learning over these different sites produced incom-
patible classifiers:

1. Chase and First Union defined an attribute with dif-
ferent semantics (i.e. one bank recorded the number
of times an event occurs within a specific time period
while the second bank recorded the number of times
the same event occurs within a different time period).

2. Chase includes two (continuous) attributes not present
in the First Union data.

To address these problems we followed the approaches
described in [14, 21, 18]. For the first incompatibility, we
had the values of the First Union data set mapped via a lin-
ear approximation to the semantics of the Chase data. For
the second incompatibility, we deployed special bridging
agents that were trained to compute the missing values of
First Union data set. The training involved the construc-
tion of regression models [23] of the missing attributes over
the Chase data set using only the attributes that were com-
mon to both banks. When predicting, the First Union clas-
sifier agents simply disregarded the real values provided at
the Chase data sites, while the Chase classifier agents re-
lied on both the common attributes and the predictions of
the bridging agents to deliver a prediction at the First Union
data sites.

Tables 4 and 5 display the accuracy, TP
�

FP spread and
cost savings of each Chase and First Union meta-classifier.
These results demonstrate that both Chase and First Union
fraud detectors can be exchanged and applied to their re-
spective data sets. The most apparent outcome of these ex-
periments is the superior performance of the First Union
meta-classifiers and the lack of improvement on the perfor-
mance of the Chase meta-classifiers This phenomenon can

be easily explained from the fact that the attributes missing
from the First Union data set were significant in modeling
the Chase data set. Hence, the First Union classifiers are
not as effective as the Chase classifiers on the Chase data,
and the Chase classifiers cannot perform at their best at the
First Union sites without the bridging agents. The latter was
verified by a separate experiment, similar to the above, with
the exception that no bridging agents were used, i.e. Chase
classifiers produced predictions without using any informa-
tion on the missing values.

The bottom line is that our hypothesis was correct: bet-
ter performance resulted from combining multiple fraud
models by distributed data mining over different transac-
tion record sources (including multiple banks) even when
bridging the differences among their schema.

3.4 Cost-sensitive Learning: AdaCost

Much of our experimental work has been to “bias” the
outcome of the learned classifiers towards improved cost
performance by varying training distributions, or pruning
poor cost performing classifiers. This approach is somewhat
akin to hammering a square peg into a round hole.

An alternative strategy is called cost sensitive learning.
The essence of the idea is to bias feature selection in gen-
erating hypotheses during the learning process in favor of
those that maximize a cost criterion (for example, the cost
of testing features, rather than a purely statistical criterion).
According to Turney [28] the earliest work here is due to
Nunez [17]. Later work by Tan and Schlimmer [27] also
incorporates feature costs in the heuristic for searching in a
modified decision tree learning algorithm. However, there
are costs associated not only with testing features, but also
varying costs based upon classifier misclassification cost
performance. The distinctions are important.

Two alternative features may have the same “test cost”
but their predictive outcomes may produce different “mis-
classification costs.” Hence, we ought to strategically

6



Composition of Meta-Classifier Size Accuracy TP - FP Savings

Chase + First Union 110 89.7% 0.621 $ 800K
Chase + First Union 63 89.7% 0.633 $ 877K

Table 4. Combining Chase and First Union classifiers on Chase data.

Composition of Meta-Classifier Size Accuracy TP - FP Savings

First Union + Chase - bridge 110 96.6% 0.843 $ 942K
First Union + Chase + bridge 110 97.8% 0.901 $ 963K
First Union + Chase + bridge 56 97.8% 0.899 $ 962K

Table 5. Combining Chase and First Union classifiers on First Union data.

choose “low cost features” that are both cheap to compute
and test, and that reduce the misclassification cost of the
final model that employs them.

What the cost model for the credit card domain teaches
is that there are different costs depending upon the outcome
of the predictions of the fraud detectors. This may appear
strange but we may want to compute classifiers that are
purposely wrong in certain cases so that we do not incur
their high costs when they predict correctly. Not only are
there costs associated with “misclassifications” (False posi-
tives/negatives), but also costs are born with Correct Pre-
dictions, i.e. True Positives also incur costs (overhead)!
This simple, but perhaps counterintuitive, this observation
has not been accounted for in prior work and has been in-
cluded in our cost models when computing classifiers and
evaluating their outcome.

As mentioned, we have performed experiments to gen-
erate cost-sensitive classifiers by varying the distribution of
training examples according to their costs (tranamt). This
strategy doesn’t change the underlying algorithm, but rather
attempts to bias the outcome of the underlying (statistical-
based) algorithm.

This was achieved by two simple methods: replication
and biased sampling. In the first case, experiments were
performed where training data was “replicated” some num-
ber of times based upon the cost of the exemplars. An-
other strategy sampled high cost examples and excluded the
low cost transactions (those under the overhead amount).
These “cost-based training distributions” were used in train-
ing base models, and meta-classifiers. Unfortunately, the
results indicated that the resultant classifiers did not consis-
tently improve their cost performance [7] over varying cost
distributions.

Other experiments were performed to directly bias the
internal strategy of the learning algorithm. One algorithm
we have proposed and studied is a close variant of Singer
and Schapire’s [22] AdaBoost algorithm. AdaBoost is an
algorithm that starts with a set of “weak hypotheses” of
some training set, and iteratively modifies weights associ-

ated with these hypotheses based upon the statistical per-
formance of the hypotheses on the training set. Elements of
the training set are as well weighted, and updated on suc-
cessive rounds depending upon the statistical performance
of the hypotheses over the individual data elements. Ad-
aBoost ultimately, therefore, seeks to generate a classifier
with minimum training error.

AdaCost [9] is a variant of AdaBoost that modifies its
“weight updating rule” by a “cost based factor” (a func-
tion of tranamt and the overhead). Here, training elements
that are “misclassified” are re-weighted by a function of
the statistical performance of the hypotheses as well as the
“cost” of the element. Costlier misclassifications are “re-
weighted” more for training on the next round. All weights
are normalized on each round so correct predictions have
their weights reduced. However, the new weights of correct
predictions are adjusted by the cost model to account for the
cost of true positives as well.

It is not possible to change the underlying training distri-
bution according to the credit card cost model because the
cost of a transaction is dependent upon the final prediction
of the classifier we are attempting to compute, and is not
known a priori, i.e., during training. Since the credit card
cost model dictates cost even if the classification is correct,
adjusting weights of training examples can’t easily reflect
that fact. The best we can do here is incorporate the cost for
correct predictions on the “current round” during training
to produce a different distribution for the “next round” of
training.

Experiments here using AdaCost on the credit card data
showed consistent improvement in “stopping loss” over
what was achieved using the vanilla AdaBoost algorithm.
For example, the results plotted in Figure 1 shows the aver-
age reduction of 10 months as a percentage cumulative loss
(defined as cumulative loss

maximal loss
 

least loss
� 9������ ) for AdaBoost

and AdaCost for all 50 rounds and 4 overheads. We can
clearly see that, except for round 1 with overhead = 90, there
is a consistent reduction for all other 398 # ����� �
	��
� � 	 %
runs. The absolute amount of reduction is around 3%.
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Figure 1. Cumulative Loss Ratio of AdaCost and AdaBoost for Chase Credit Card Data Set

We also observe that the speed of reduction by AdaCost is
quicker than that of AdaBoost. Figure 2 plots the ratio of
cumulative cost by AdaCost and AdaBoost. We have plot-
ted the results of all 10 pairs of training and test months
over all rounds and overheads. Most of the points are below
the “Ratio=1” line in the left drawing and above the “y=x”
line in the plot on the right, both implying that AdaCost has
lower cumulative loss in an overwhelming number of cases.

4 Intrusion Detection: Initial results using
MADAM ID

Encouraged by our results in fraud detection9, we shifted
our attention to the growing problem of intrusion detection
in network based systems. Here the problems are signif-
icantly different, although from a certain perspective we
seek to perform the same sort of task as in the credit card
fraud domain. We seek to build models of “normal” behav-
ior to distinguish between “bad” (intrusive) connections and
“good” (normal) connections.

MADAM ID (Mining Audit Data for Automated Mod-
els for Intrusion Detection) is a set of new data mining al-
gorithms that were developed by our project specifically to
process network intrusion and audit data sets. MADAM ID
includes variants of the “association rule” [1, 2] and “fre-
quent episodes” [16, 15] algorithms used to define new fea-
ture sets that are extracted from labeled tcpdump data in or-
der to define training sets for a machine learning algorithm
to compute detectors. These features are defined over a set
of connections. We first determine what patterns of events
in the raw stream appear to occur frequently in attack con-
nections that do not appear frequently in normal connec-
tions. These patterns of events define “features” computed

9And under “encouragement” from DARPA

for all connections used in training a classifier by some in-
ductive inference or machine learning algorithm. The de-
tails of this data mining activity have been extensively re-
ported [10, 12]. (Our previous exploratory work on learn-
ing anomalous Unix process execution traces can be found
in [11].) Here we report a summary of our results.

4.1 The DARPA/MIT Lincoln Lab ID Evaluation

We participated in the 1998 DARPA Intrusion Detection
Evaluation Program, prepared and managed by MIT Lin-
coln Lab. The objective of this program was to survey and
evaluate research in intrusion detection. A standard set of
extensively gathered audit data, which includes a wide va-
riety of intrusions simulated in a military network environ-
ment, was provided by DARPA. Each participating site was
required to build intrusion detection models or tweak their
existing system parameters using the training data, and send
the results (i.e., detected intrusions) on the test data back to
DARPA for performance evaluation.

We were provided with about 4 gigabytes of compressed
raw (binary) tcpdump data of 7 weeks of network traffic,
which can be processed into about 5 million connection
records, each with about 100 bytes. The two weeks of
test data have around 2 million connection records. Four
main categories of attacks were simulated: DOS, denial-of-
service, e.g., syn flood; R2L, unauthorized access from a re-
mote machine, e.g., guessing password; U2R, unauthorized
access to local superuser (root) privileges, e.g., various of
“buffer overflow” attacks; and PROBING, surveillance and
probing, e.g., port-scan.

Using the procedures reported in prior papers [12] we
compared the aggregate normal pattern set with the patterns
from each dataset that contains an attack type. The fol-
lowing features were constructed according to the intrusion
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Figure 2. Cumulative Loss Ratio and Loss of AdaCost and AdaBoost on Chase Credit Card

only patterns:
� The “same host” features that examine only the con-

nections in the past 2 seconds that have the same des-
tination host as the current connection, and calculate
statistics related to protocol behavior, service, etc.

� The similar “same service” features that examine only
the connections in the past 2 seconds that have the
same service as the current connection.

We call these the (time-based) “traffic” features of the
connection records. There are several “slow” PROBING at-
tacks that scan the hosts (or ports) using a much larger time
interval than 2 seconds, for example, one in every minute.
As a result, these attacks did not produce intrusion only pat-
terns with a time window of 2 seconds. We sorted these
connection records by the destination hosts, and applied
the same pattern mining and feature construction process.
Rather than using a time window of 2 seconds, we now
used a “connection” window of 100 connections, and con-
structed a mirror set of “host-based traffic” features as the
(time-based) “traffic” features.

We discovered that unlike most of the DOS and PROB-
ING attacks, the R2L and U2R attacks don’t have any “in-
trusion only” frequent sequential patterns. This is because
the DOS and PROBING attacks involve many connections
to some host(s) in a very short period of time, the R2L
and PROBING attacks are embedded in the data portions
of the packets, and normally involves only a single connec-
tion. Algorithms for mining the unstructured data portions
of packets are still under development. Presently, we use
domain knowledge to add features that look for suspicious
behavior in the data portion, e.g., number of failed login
attempts. We call these features the “content” features.

We then built three specialized models, using RIPPER
[8]. RIPPER is a rule learning program that outputs a model

quite similar in style to a Prolog program. Each model
produced has a different set of features and detects differ-
ent categories of intrusions. For example, for the “content”
model, each connection record contains the “intrinsic” fea-
tures and the “content” features, and the resultant RIPPER
rules employing these features detects U2R and R2L at-
tacks. A meta-classifier was trained and used to combine
the predictions of the three base models when making a fi-
nal prediction to a connection record. Table 6 summarizes
these models. The numbers in bold, for example, 9, indi-
cate the number of automatically constructed temporal and
statistical features being used in the RIPPER rules. We see
that for both the “traffic” and host-based “traffic” models,
our feature construction process contributes the majority of
the features actually used in the rules.

4.2 Off-line Detection Results

We report here the performance of our detection models
as evaluated by MIT Lincoln Lab. We trained our intrusion
detection models, i.e., the base models and the meta-level
classifier, using the 7 weeks of labeled data, and used them
to make predictions on the 2 weeks of unlabeled test data.
The test data contains a total of 38 attack types, with 14
types in the test data only (i.e., our models were not trained
with instances of these attack types).

Figure 3 shows the ROC curves of the detection mod-
els by attack category as well as on all intrusions. In each
of these ROC plots, the x-axis is the false alarm rate, cal-
culated as the percentage of normal connections classified
as an intrusion; the y-axis is the detection rate, calculated
as the percentage of intrusions detected (since the mod-
els produced binary outputs, the ROC curves are not con-
tinuous). We compare here our models with other par-
ticipants (denoted as Group 1 to 3) in the DARPA eval-

9



Model Feature set Intrusion # of features # of rules # of features
categories in records used in rules

content “intrinsic” + U2R, R2L 22 55 11
“content”

traffic “intrinsic” + DOS, PROBING 20 26 4+9
“traffic”

host traffic “intrinsic” + Slow PROBING 14 8 1+5
“host traffic”

Table 6. Model Complexities

uation program (these plots are duplicated from the pre-
sentation slides of a report given by Lincoln Lab in a
DARPA PI meeting. The slides can be viewed on line
via http://www.cs.columbia.edu/˜sal/JAM/
PROJECT/MIT/mit-index.html). These groups pri-
marily used knowledge engineering approaches to build
their intrusion detection systems. We can see from the fig-
ure that our detection models have the best overall perfor-
mance, and in all but one attack category, our model is one
of the best two.

5 Formalizing Cost-based Models for Intru-
sion Detection

In the credit card fraud domain, the notion of costs is
inextricably intertwined with the learning task. We seek
to learn models of fraudulent transactions that minimizes
the overall loss. We believe an analogous cost optimization
problem can and should be defined for the intrusion detec-
tion system (IDS) domain.

In the arena of IDS, there are at least three types of costs
involved (that are derivative of the credit card fraud case):

1. “Damage” cost: the amount of damage caused by an
attack if intrusion detection is not available or an IDS
fails to detect an attack;

2. “Challenge” cost: the cost to act upon a potential in-
trusion when it is detected; and

3. “Operational” cost: the resources needed to run the
IDS.

Table 7 illustrates our perspective on the three types of
cost in credit card fraud and intrusion detection. In the
credit card case, “damage” is the amount of a fraudulent
transaction that the bank losses, tranamt(t). In the IDS case,
damage can be characterized as a function that depends on
the type of service and attack on that service, DCost(service,
attack). The challenge cost for both cases is term as over-
head, which is the cost of acting on an alarm. We did not
consider operational cost in the credit card case because
we did not have the opportunity to study this aspect of the

problem. The banks have existing fielded systems whose
total aggregated operational costs have already been con-
sidered and are folded into their overhead costs (here called
the challenge cost). We shall take a limited view of this by
considering the costs of alternative models based upon the
“feature costs” used by these models employed in an IDS
and we denote this operational cost as OpCost. We next
elaborate on each of these sources of cost.

5.1 Damage costs

The damage cost characterizes the amount of damage in-
flicted by an attack when intrusion detection is unavailable
(the case for most systems). This is important and very dif-
ficult to define since it is likely a function of the particu-
lars of the site that seeks to protect itself. The defined cost
function per attack or attack type should be used here to
measure the cost of damage. This means, that rather than
simply measuring FN as a rate of missed intrusions, rather
we should measure total loss based upon DCost(s,a), which
varies with the service (

�
) and the specific type of attack (

+
).

These costs are used throughout our discussion.

5.2 Challenge costs

The challenge cost is the cost to act upon an alarm that
indicates a potential intrusion. For IDS, one might con-
sider dropping or suspending a suspicious connection and
attempting to check, by analyzing the service request, if any
system data have been compromised, or system resources
have been abused or blocked from other legitimate users.
(Other personnel time costs can be folded in including gath-
ering evidence for prosecution purposes if the intruder can
be traced.) These costs can be estimated, as a first cut, by
the amount of CPU and disk resources needed to challenge
a suspicious connection. For simplicity, instead of estimat-
ing the challenge cost for each intrusive connection, we can
“average” (or amortize over a large volume of connections
during some standard “business cycle”) the challenge costs
to a single (but not static) challenge cost per potential in-
trusive connection, i.e., overhead.
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Figure 3. ROC Curves on Detection Rates and False Alarm Rates

5.3 Operational costs

The cost of fielding a detection system is interesting to
consider in some detail. In the work on fraud detection in fi-
nancial systems, we learned that there are a myriad of “busi-
ness costs” involved in design, engineering, fielding and use
(challenge) of detection systems. Each contributes to an
overall aggregated cost of detecting fraud. The main issue
in operational costs for IDS is the amount of resources to
extract and test features from raw traffic data. Some fea-
tures are costlier than others to gather, and at times, costlier
features are more informative for detecting intrusions.

Real-time constraints in IDS. Even if one designs a
good detection system that includes a set of good features
that well distinguish among different attack types, these fea-
tures may be infeasible to compute and maintain in real
time. In the credit card case, transactions have a 5 second

response constraint (a desired average waiting time). That’s
a lot of time to look up, update and compute and test fea-
tures, per transaction. In the IDS case, the desired average
response rate should be measured in terms of average con-
nection times, or even by TCP packet rates, a much smaller
time frame, so connections can be dropped as quickly as
possible before they do damage.

In the case of IDS it is not obvious when an intrusion can
be detected, and when an alarm should be issued. Ideally,
we would like to detect and generate an alarm during an on-
going attack connection in order to disable it, rather than af-
ter the fact when damage has already been done. However,
certain models of intrusive connections may require infor-
mation only known at the conclusion of a connection! Thus,
properly designing an intrusion detection system requires
that considerable thought be given to the time at which a
detection can and should take place.

Therefore, although the problems appear quite similar,
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Cost Type Credit Card Fraud Network Intrusion
Damage tranamt(t) DCost(service,attack)

Challenge overhead overhead
Operational subsumed in overhead OpCost

Table 7. Cost types in credit card fraud and network intrusion

the constraints are really much different between the two
task domains. The problem seems to be much harder in the
IDS case since we have to accommodate in our cost mod-
els the response rate of the system. It seems evident that a
slower IDS should be penalized with a higher cost. (In the
credit card case we simply ignored this cost.) This impor-
tant source of cost however is a major topic of research for
IDS, i.e. the computational costs for rapid detection. Our
work in this area is new and ongoing. Details of our initial
thoughts here can be found in [13].

5.4 Cost Model for IDS

We just described the three different types of cost in IDS:
damage cost, challenge cost, and operational cost. Our cost
model for IDS considers these three types of cost. Similar
to the credit card case, the IDS cost model depends on the
outcomes of the IDS’ predictions: false negative (FN), false
positive (FP), true positive (TP), and true negative (TN). We
now examine the cost associated with each of these out-
comes.

FN cost, or the cost of NOT detecting an attack, is the
most dangerous case (and is incurred by most systems today
that do not field IDS’s). Here, the IDS “Falsely” decides
that a connection is not an attack and there is no challenge
against the attack. This means the attack will succeed and
do its dirty work and presumably some service will be lost,
and the organization losses a service of some value. The
FN Cost is, therefore, defined as the damage cost associated
with the particular type of service and attack, DCost(s,a).

TP Cost is the cost of detecting an attack and doing
something about it, i.e. challenging it. Here, one hopes
to stop an attack from losing the value of the service. There
is a cost of challenging the attack, however, that is involved
here. When some event triggers an IDS to correctly predict
that a True attack is underway (or has happened), then what
shall we do? If the cost to challenge the attack is overhead,
but the attack affected a service whose value is less than
overhead, then clearly ignoring these attacks saves cost.
Therefore, for a true positive, if overhead

�
DCost # �(�7+ % ,

the intrusion is not challenged and the loss is DCost(s,a),
but if overhead



DCost # �:��+ % , the intrusion is challenged

and the loss is limited to overhead.
FP cost. When an IDS falsely accuses an event of be-

ing an attack, and the attack type is regarded as high cost,
a challenge will ensue. We pay the cost of the challenge

(overhead), but nothing really happened bad except we lost
overhead on the challenge. Naturally, when evaluating an
IDS we have to concern ourselves with measuring this loss.
For this discussion, we define the loss is just overhead for a
false positive.

TN cost. An IDS correctly decides that a connection is
normal and Truly not an attack. We therefore bare no cost
that is dependent on the outcome of an IDS.

Thus far we have only considered costs that depend on
the outcome of an IDS, we now incorporate the operational
cost, OpCost, that is independent of the IDS’ predictive per-
formance. Our notion of OpCost mainly measures the cost
of computing values of features in the IDS. We denote Op-
Cost(c) as the operational cost for a connection, � .

We now can describe the cost-model for IDS. When eval-
uating an IDS over some test set � of labeled connections,
� & � , we define the cumulative cost for a detector as fol-
lows:

� ,*; , � +(� 6 F�!�� ����� #�� %?� �
�

��� #N� ����� # � %������ � ����� # � %/%
(1)

where Cost # � % is defined (analogous to the credit card case)
in Table 8. Here

�
is the service requested by connection �

and
+

is the attack type detected by the IDS for the connec-
tion.

Note that a higher operational cost, OpCost(c), could be
incurred by employing “expensive” features; but this may
potentially improve the predictive performance of the IDS
and thus lower Cost(c). Hence, in order to minimize Cumu-
lativeCost(S), we need to investigate and quantify, in real-
istic contexts, the trade off between OpCost(c) and Cost(c)
in Equation 1. This issue constitutes a major part of our
ongoing research in the JAM project.

5.5 Flying Under Mobile Radar: Dynamic Over-
head Adjustment

As in the credit card case, we can simplify the IDS cost
model by subsuming the operational costs into overhead
(challenge cost). In this way the cumulative cost of an
IDS is highly dependent upon the overhead10 value set at

10and we may regard the overhead as the minimum height that a radar
system protecting an area can see. Cruise missile programmers have an
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Outcome Cost(c)
Miss (False Negative, FN) DCost(s,a)
False Alarm (False Positive, FP) overhead if DCost(s,a)

�
overhead or

0 if DCost(s,a)
�

overhead
Hit (True Positive, TP) overhead if DCost(s,a)

�
overhead or

DCost(s,a) if DCost(s,a)
�

overhead
Normal (True Negative, TN) 0

Table 8. Cost Model for Connection

the time models are computed, and certainly when they are
evaluated. It is quite possible, and virtually assured, that un-
der different overheads, different models will be computed
and different cost performance will be exhibited.

In some industries (not only the credit card industry),
overheads are so firmly fixed that fraud is simply mod-
eled as another “cost of doing business” and is simply tol-
erated11. The overhead amount is defined by a myriad of
business costs, but it need not be static when applied at
run-time! Thus, it is quite logical to vary the overhead
limit when operating an IDS, thus changing the challenge
cost producing different behavior and cost performance of
the detection system. This simple strategy tends to enter
“noise” making it difficult for perpetrators to “optimize”
their thefts.

But notice that under a changing overhead, either up or
down, for which detectors had originally been trained, the
outcome of cost savings attributed to the detector might vary
widely. This change in overhead has another fundamental
effect: it changes the environment from which our underly-
ing distribution is drawn. This means, that once we lower
the overhead, thieves might learn to lower their appetite for
stealing not to get caught. Concurrently, raising the over-
head afterwards might then generate large cost savings, un-
til the thieves have learned to return to their former ways of
being greedy.

An interesting question, therefore, is whether there is an
optimal strategy of dynamically varying the overhead in
order to maximize savings over a longer period of time.
Varying the overhead implies that we must concern our-
selves with potentially “non-linear effects” in cost savings.
A slight reduction may indeed catch more fraud, but may re-
sult in far heavier losses due to the real costs of challenging
a new found wealth of “cheap fraud”!

exceptionally interesting task of assuring their flying missiles stay below
this radar to deliver their ordinance!

11For example, in the auto insurance industry, broken windshields are
regarded as an immediately approved expense. Fraud perpetrators will sub-
mit insurance charges for bogus repairs of windshields and be assured of
payment, simply because the cost of investigation is prohibitively expen-
sive. Here thieves have a different problem. They need to learn the rate
at which they submit bogus claims not to draw obvious attention to them-
selves from human claims processing personnel, the low bandwidth, final
detectors.

This begs further questions and deeper study to deter-
mine alternative strategies. Perhaps classifiers ought to be
entirely retrained, or meta-classifiers might re-weight their
constituent base classifiers under a new changing fraud and
cost distribution, and when should we do this? Or, sim-
ply measuring daily cost savings performance, or the rate of
change thereof, might provide interesting clues to an opti-
mal daily setting? The rate at which we change our over-
head setting, and/or our models to avoid widely varying os-
cillations in performance of overall cost savings is not ob-
vious.

It is interesting to note here that one of the design goals
of JAM is to provide a scalable, efficient and hence adapt-
able distributed learning system that provides the means
of rapidly learning new classifiers, and distributing (via
agent architectures) new detectors to accommodate chang-
ing conditions of the environment in which it operates. An-
other avenue for exploration in JAM is therefore to perhaps
dynamically re-weight ensembles of classifiers, our meta-
classifiers, to adjust to new overhead limits.

5.6 Summary

In our work on intrusion detection, the data mining ac-
tivity was focussed on uncovering likely features to extract
from the streaming TCP packets preprocessed into connec-
tion records that are used in preparing training data, com-
puting models and testing those models.

However, much of the traditional research in modeling
only considers statistical accuracy, or TP

�
FP rates of mod-

els when comparing approaches. We should now under-
stand that accuracy is not the whole picture. In different
real world contexts, “cost” can take on different meanings,
and the target application might necessarily be defined as a
cost optimization problem.

In the context of IDS, real time performance is crucial.
Here cost measures involve throughput and memory re-
sources. It is of no value if one has an IDS that consumes
so much resource that services can no longer be delivered
on time, or the cost of fielding the IDS is so high that it
becomes uneconomical to do so.

13



6 Conclusion

In this paper, we presented the main results of the JAM
project. We focused the discussion on cost-sensitive model-
ing techniques for credit card fraud detection and network
intrusion detection. We showed that the models built using
our distributed and cost-sensitive learning techniques can
yield substantial cost savings for the financial institutions.
We reported our research in applying data mining tech-
niques to build intrusion detection models. The results from
the 1998 DARPA Intrusion Detection Evaluation showed
that our techniques are very effective. We briefly examined
the cost factors and cost models in intrusion detection, and
discussed the challenges in cost-sensitive modeling for in-
trusion detection.

6.1 Future Work

There a number of open research issues that need to be
addressed in the general setting of distributed data mining,
but also specific to the important task of detecting intru-
sions:

1. How does an organization or domain rationally set the
costs of its various services and systems it wishes to
protect with an IDS, thus defining Cost(s,a) for all ser-
vices and all attack types? And how do we rationally
determine an overhead challenge cost, overhead espe-
cially under tough real-time constraints?

2. What “cost sensitive” data mining and machine learn-
ing algorithms are needed to generate “low cost” mod-
els; i.e. models that are cheap to evaluate and operate
under (variable) “real-time” constraints, and that also
maximize cost savings or minimize loss?

3. Specifically for network-based intrusion detection,
what is the optimal set of features to best model a
“good detector” for different environments and plat-
forms?

4. The distribution of attacks, and the various costs asso-
ciated with services and attacks will naturally change
over time. What adaptive strategies might be needed
to optimally change models or mixtures of models to
improve detection and at what rate of change?

5. Likewise, what strategies may be employed in dynam-
ically adjust overhead challenge costs (overhead) to
maximize cost savings for a fixed detection system
over larger time periods.

In conclusion, we need a microeconomic theory of intru-
sion detection.
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