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Abstract

Very large databases with skewed class distribu-
tions and non-uniform cost per error are not un-
common in real-world data mining tasks. We de-
vised a multi-classifier meta-learning approach to
address these three issues. Our empirical results
from a credit card fraud detection task indicate
that the approach can significantly reduce loss due
to illegitimate transactions.

Introduction

Very large databases with skewed class distributions
and non-uniform cost per error are not uncommon in
real-world data mining tasks. One such task is credit
card fraud detection: the number of fraudulent transac-
tions is small compared to legitimate ones, the amount
of financial loss for each fraudulent transaction depends
on the amount of transaction and other factors, and
millions of transactions occur each day. A similar task
is cellular phone fraud detection (Fawcett & Provost
1997). Each of these three issues has not been widely
studied in the machine learning research community.

Fawcett (1996) summarized the responses to his in-
quiry on learning with skewed class distributions. The
number of responses was few given skewed distributions
are not rare in practice. Kubat and Matwin (1997)
acknowledged the performance degradation effects of
skewed class distributions and studied techniques for re-
moving unnecessary instances from the majority class.
Instances that are in the borderline region, noisy, or re-
dundant are candidates for removal. Cardie and Howie
(1997) stated that skewed class distributions are “the
norm for learning problems in natural language process-
ing (NLP).” In a case-based learning framework, they
studied techniques to extract relevant features from pre-
viously built decision trees and customize local feature
weights for each case retrieval.

Error rate is commonly used in evaluating learning
algorithms; cost-sensitive learning has not been widely
investigated. Assuming the errors can be grouped into
a few types and each type incurs the same cost, some
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studies (e.g., (Pazzani et al. 1994)) proposed algorithms
that aim to reduce the total cost. Another line of cost-
sensitive work tries to reduce the cost in using a classi-
fier. For instance, some sensing devices are costlier in
the robotics domain (Tan 1993). Fawcett and Provost
(1997) considered non-uniform cost per error in their
cellular phone fraud detection task and exhaustively
searched (with a fixed increment) for the Linear Thresh-
old Unit’s threshold that minimizes the total cost.

Until recently, researchers in machine learning have
been focusing on small data sets. Efficiently learning
from large amounts of data has been gaining atten-
tion due to the fast growing field of data mining, where
data are abundant. Sampling (e.g., (Catlett 1991)) and
parallelism (e.g., (Provost & Aronis 1996)) are the two
main directions in scalable learning. Much of the par-
allelism work focuses on parallelizing a particular algo-
rithm on a specific parallel architecture. That is, a new
algorithm or architecture requires substantial amount
of parallel programming work.

We devised a multi-classifier meta-learning approach
to address these three issues. Our approach is based
on creating data subsets with the appropriate class dis-
tribution, applying learning algorithms to the subsets
independently and in parallel, and integrating to op-
timize cost performance of the classifiers by learning
(meta-learning (Chan & Stolfo 1993)) from their classi-
fication behavior. That is, our method utilizes all avail-
able training examples and does not change the under-
lying learning algorithms. It also handles non-uniform
cost per error and is cost-sensitive during the learn-
ing process. Although our architecture and algorithm-
independent approach is not as efficient as the fine-
grained parallelization approaches, it allows different
“off-the-shelf” learning programs to be “plugged” into a
parallel and distributed environment with relative ease.
Our empirical results for the credit card fraud problem
indicate that our approach can significantly reduce loss
due to illegitimate transactions.

This paper is organized as follows. We first describe
the credit card fraud detection task. Next we examine
the effects of training class distributions on the per-
formance. We then discuss our multi-classifier meta-
learning approach and empirical results. In closing, we



summarize our results and directions.

Credit Card Fraud Detection

When banks lose money because of credit card fraud,
card holders partially (possibly entirely) pay for the
loss through higher interest rates, higher membership
fees, and reduced benefits. Hence, it is both the banks’
and card holders’ interest to reduce illegitimate use of
credit cards, particularly when plastic is prevalent in
today’s increasingly electronic society. Chase Manhat-
tan Bank provided us with a data set that contains half
a million transactions from 10/95 to 9/96, about 20% of
which are fraudulent (the real distribution is much more
skewed (fortunately)—the 20:80 distribution is what we
were given after the bank’s filtering).

Due to the different dollar amount of each credit card
transaction and other factors, the cost of failing to de-
tect different fraudulent transactions is not the same.
Hence we define:

1 n
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where Cost(i) is the cost associated with transaction i
and n is the total number of transactions. After con-
sulting with a bank representative, we settled on a sim-
plified cost model (the cost model used by the bank
is more complex and is still evolving). Since it takes
time and personnel to investigate a potential fraudulent
transaction, an overhead is incurred for each investiga-
tion. That is, if the amount of a transaction is smaller
than the overhead, it is not worthwhile to investigate
the transaction even if it is suspicious. For example, if
it takes ten dollars to investigate a potential loss of one
dollar, it is more economical not to investigate. There-
fore, assuming a fixed overhead and considering:

[Number of Actual Positive | Actual Negative
instances] (fraudulent) (legitimate)
Predicted Positive True Positive False Positive
(fraudulent) (Hit) [a] (False Alarm) [b]
Predicted Negative || False Negative True Negative
(legitimate) (Miss) [c] (Normal) [d]

we devised the following cost model for each transac-
tion:

Cost(FN) | tranamt

Cost(FP) | overhead if tranamt > overhead or
0 if tranamt < overhead
Cost(TP) | overhead if tranamt > overhead or

tranamt if tranamt < overhead
Cost(TN) | 0

where tranamt is the amount of a credit card transac-
tion. Furthermore, we define the false-negative rate as
a—T—c and the false-positive rate as Hld. Based on this
cost model, we next study the effects of training class

distributions on performance.

Effects of Training Distributions

Experiments were performed to study the effects of
training class distributions on the credit card cost

Credit Card Fraud (C4.5)
70 T T T

Overhead = 25 ——
Overhead = 50 -—+--
60 Overhead = 75 -=
Overhead = 100 <
Overhead = 125 -=--- .
50 Overhead = 150 -x-- =

40

Average Aggregate Cost (§)

30

20

10 20 80 90

30 40 50 60 70
Distribution of minority class (%6)
Figure 1: Training distribution vs. the credit card fraud

cost model

model. We use data from the first 10 months (10/95
- 7/96) for training and the 12th month (9/96) for test-
ing. In order to vary the fraud distribution from 10%
to 90% for each month, we limit the size of the train-
ing sets to 6,400 transactions, which are sampled ran-
domly without replacement. Four learning algorithms
(C4.5 (Quinlan 1993), CART (Breiman et al. 1984),
RIPPER (Cohen 1995), and BAYES (Clark & Niblett
1989)) were used in our experiments.

The results are plotted in Figure 1 (due to space lim-
itations, only results from C4.5 are shown—the other
algorithms behave similarly). Each data point is an
average of 10 classifiers, each of which is generated
from a separate month. Each curve represents a dif-
ferent amount of overhead. Fraud is the minority class.
As expected, the larger overhead leads to higher cost.
More importantly, we observe that when the overhead
is smaller, the cost minimizes at a larger percentage of
fraudulent transactions (minority class) in the training
set. When the overhead is smaller, the bank can afford
to send a larger number of transactions for investiga-
tion. That is, the bank can tolerate more false-alarms
(a higher false-positive rate) and aim for fewer misses
(a lower false-negative rate), which can be achieved
by a larger percentage of fraudulent transactions (pos-
itive’s). Conversely, if the overhead is larger, the bank
should aim for fewer false-alarms (a lower FP rate) and
tolerate more misses (a higher FN rate), which can be
obtained by a smaller percentage of positive’s. (Note
that, at some point, the overhead can be large enough
making fraud detection economically undesirable.)

The test set (from 9/96) has 40,038 transactions and
17.5% of them are fraudulent. If fraud detection is not
available, on the average, $36.96 is lost per transaction.
Table 1 shows the maximum savings of each algorithm
with the most effective fraud percentage during train-
ing. Cost is the dollars lost per transaction; fraud%
denotes the most effective fraud percentage for train-
ing; %saved represents the percentage of savings from
the average loss of $36.96; $saved shows the total dol-
lars saved for the month (9/96). BAYES performed
relatively poor (we suspect the way we are treating at-
tributes with real values in BAYES is not appropriate
for the fraud domain) and is excluded from the following
discussion. Considering the amount of overhead ranged



Table 1: Cost and saving in the credit card fraud domain

Learning Overhead = $50 Overhead = $75 Overhead = $100
Alg. Cost | fraud% | Ysaved | $saved | Cost | fraud% | Yosaved | $saved | Cost | fraud% | Ysaved | $saved
C4.5 23.85 50% 35% 525K 26.88 30% 27% 404K 28.46 30% 23% 341K
CART 20.80 50% 44% 647K 23.64 50% 36% 534K 26.05 50% 30% 437K
RIPPER 21.16 50% 43% 632K 24.23 50% 34% 510K 26.73 50% 28% 409K
BAYES 35.23 30% 5% 69K 35.99 20% 3% 39K 36.58 20% 1% 15K
) I I A 20:80 set

‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ Four 50:50 subsets
Figure 2: Generating four 50:50 data subsets from a
20:80 data set

from $50 to $100, the learning algorithms we used gen-
erally achieved at least 20% in savings or at least $300K.
With an overhead of $75 or less, at least half a million
dollars in savings can be attained. More importantly,
maximum savings were achieved 7 out of 9 times when
the fraud percentage used in training is 50%, which is
not the “natural” 20% in the original data set.

In summary, based on our empirical results in this
study, we observe that varying the training class distri-
bution affects the cost performance. Since the “natu-
ral” distribution is 20:80, one way to achieve the “de-
sired” 50:50 distribution is to ignore 75% of the legit-
imate transactions (or 60% of all the transactions), as
we did in the experiments above. The following section
discusses an approach that utilizes all the data and im-
proves cost performance and scalability.

A Multi-classifier Meta-learning
Approach to Non-uniform Distributions

As we discussed earlier, using the natural class dis-
tribution might not yield the most effective classifiers
(particularly when the distribution is highly skewed).
Given a skewed distribution, we would like to gener-
ate the desired distribution without removing any data.
Our approach is to create data subsets with the desired
distribution, generate classifiers from the subsets, and
integrate them by learning (meta-learning) from their
classification behavior. In our fraud domain, the natu-
ral skewed distribution is 20:80 and the desired distri-
bution is 50:50. We randomly divide the majority in-
stances into 4 partitions and 4 data subsets are formed
by merging the minority instances with each of the 4
partitions containing majority instances. That is, the
minority instances are replicated across 4 data subsets
to generate the desired 50:50 distribution. Figure 2 de-
picts this process.

Formally, let n be the size of the data set with a
distribution of z : y (z is the percentage of the minority
class) and u : v be the desired distribution. The number
of minority instances is n x z and the desired number of
majority instances in a subset is nz x $. The number
of subsets is the number of majority instances (n x y)

divided by the number of desired majority instances
sy OF 4 x 2. (When it is
not a whole number, we take the ceiling ([% x %) and
replicate some majority instances to ensure all of the
majority instances are in the subsets.) That is, we have
4 x 2 subsets, each of which has nz minority instances
and 2% majority instances.

The next step is to apply a learning algorithm(s) to
each of the subsets. Since the subsets are independent,
the learning process for each subset can be run in paral-
lel on different processors. For massive amounts of data,
substantial improvement in speed can be achieved for
super-linear-time learning algorithms.

The generated classifiers are combined by learning
(meta-learning) from their classification behavior. Sev-
eral meta-learning strategies are described in (Chan &
Stolfo 1993). To simplify our discussion, we only de-
scribe the class-combiner (or stacking (Wolpert 1992))
strategy. In this strategy a meta-level training set is
composed by using the (base) classifiers’ predictions on
a validation set as attribute values and the actual classi-
fication as the class label. This training set is then used
to train a meta-classifier. For integrating subsets, class-
combiner can be more effective than the voting-based
techniques (Chan & Stolfo 1995).

in each subset, which is ey

Experiments and Results

To evaluate our multi-classifier meta-learning approach
to skewed class distributions, we used transactions from
the first 8 months (10/95 — 5/96) for training, the ninth
month (6/96) for validating, and the twelfth month
(9/96) for testing (the two-month gap is chosen ac-
cording to the amount of time needed to completely
determine the legitimacy of transactions and simulates
real life). Based on the empirical results in the previ-
ous section, the desired distribution is 50:50. Since the
natural distribution is 20:80, four subsets are generated
from each month for a total of 32 subsets. We applied
four learning algorithms (C4.5, CART, RIPPER, and
BAYES) to each subset and generated 128 base classi-
fiers. BAYES (more effective for meta-learning in our
experience) was used to train the meta-classifier.
Results from different amounts of overhead are plot-
ted in Figure 3. Each data point is the average of ten
runs using different random seeds. To demonstrate that
50:50 is indeed the desired distribution, we also per-
formed experiments on other distributions and plotted
the results in the figure. As expected, the cost is mini-
mized when the fraud percentage is 50%. Surprisingly,
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Figure 3: Training distribution vs. cost using meta-
learning

50% is the desired distribution for any of the overhead
amount. This is different from the results obtained from
previous experiments when meta-learning was not used.

Furthermore, to investigate if our approach is indeed
fruitful, we ran experiments on the class-combiner strat-
egy directly applied to the original data sets from the
first 8 months (i.e., they have the natural 20:80 distribu-
tion). We also evaluate how individual classifiers gener-
ated from each month perform without class-combining.
Table 2 shows the cost and savings from class-combiner
using the 50:50 distribution (128 base classifiers), the
average of individual CART classifiers generated using
the desired distribution (from Table 1), class-combiner
using the natural distribution (32 base classifiers—8
months X 4 learning algorithms), and the average of
individual classifiers using the natural distribution (the
average of 32 classifiers). (We did not perform exper-
iments on simply replicating the minority instances to
achieve 50:50 in one single data set because this ap-
proach increases the training set size and is not appro-
priate in domains with large amounts of data—one of
the three primary issues we try to address here.) Com-
pared to the other three methods, class-combining on
subsets with a 50:50 fraud distribution clearly achieves
a significant increase in savings—at least $110K for
the month (6/96). When the overhead is $50, more
than half of the losses were prevented. Surprisingly,
we also observe that when the overhead is $50, a clas-
sifier (“single CART”) trained from one’s month data
with the desired 50:50 distribution (generated by throw-
ing away some data) achieved significantly more savings
than combining classifiers trained from all eight months’
data with the natural distribution. This reaffirms the
importance of employing the appropriate training class
distribution in this domain.

Class distribution in the validation set

Thus far we have concentrated on the class distributions
in training the base classifiers. We hypothesize that the
class distribution in the validation set (and hence the
meta-level training set) affects the overall performance
of meta-learning. To investigate that hypothesis, in this
set of experiments, we fixed the training distribution of
the base classifiers to 50:50 and varied the distribution
of the validation set from 30:70 to 70:30 (as in the pre-
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Figure 4: Distribution in validation set vs. cost using
meta-learning

vious set of experiments). The different distributions
are generated by keeping all the fraudulent transactions
and randomly selecting the corresponding number of le-
gitimate transactions (i.e., some legitimate records are
thrown away).

Each data point in Figure 4 is an average of 10 runs
using different random seeds (though the same seeds as
in previous experiments). To prevent amplifying small
differences unnecessarily, we use the same scale in Fig-
ure 4 as in the other similar figures. Unexpectedly, the
curves are quite flat. That is, changing the class distri-
bution in the validation set does not seem to affect the
cost performance (a subject of further investigation).

Table 3 has the same format as the previous cost
and savings tables, but the fraud% columns denote the
fraud percentage in the validation set. The first row
shows the results from class-combiner using the natural
distribution in the validation set (from Table 2). The
second row has the lowest cost performance and the
corresponding fraud percentage in the validation set.
The cost is minimized at around 50% (the difference is
negligible among different distributions (Figure 4)), but
it is not much different from the performance obtained
from the natural distribution. Note that a 50:50 distri-
bution was obtained by throwing away 60% of the data
from the natural 20:80 distribution in the validation
set. That is, comparable performance can be achieved
with less data in the validation set, which is particu-
larly beneficial in this domain that has large amounts
of data.

Concluding Remarks

This study demonstrates that the training class dis-
tribution affects the performance of the learned clas-
sifiers and the natural distribution can be different
from the desired training distribution that maximizes
performance. Moreover, our empirical results indicate
that our multi-classifier meta-learning approach using
a 50:50 distribution in the data subsets for training can
significantly reduce the amount of loss due to illegit-
imate transactions. The subsets are independent and
can be processed in parallel. Training time can further
be reduced by also using a 50:50 distribution in the
validation set without degrading the cost performance.
That is, this approach provides a means for efficiently



Table 2: Cost and savings using meta-learning

Overhead = $50 Overhead = $75 Overhead = $100
Method Cost | fraud% | Yosaved | $saved | Cost | fraud% | Yosaved | $saved | Cost | fraud% | Yosaved | $saved
Class-combiner 17.96 | 50% 51% 761K || 20.07 | 50% 46% 676K || 21.87 | 50% 1% 604K
Single CART 20.80 50% 44% 647K 23.64 50% 36% 534K 26.05 50% 30% 437K
Class-combiner (nat.) 22.61 | natural 39% 575K 23.99 | natural 35% 519K 25.20 | natural 32% 471K
Avg. single classifier 27.97 | natural 24% 360K 29.08 | natural 21% 315K 30.02 | natural 19% 278K

Table 3: Cost and savings using different validation distributions (base distribution is 50:50)

Overhead = $50

Overhead = $75 Overhead = $100

Method Cost | fraud% | %saved | $saved | Cost | fraud% | %saved | $saved | Cost | fraud% | %saved | $saved
Class-combiner (nat.) 17.96 | natural 51% 761K 20.07 | natural 46% 676K 21.87 | natural 41% 604K
Class-combiner 17.84 70% 52% 766K 19.99 50% 46% 679K 21.81 50% 41% 607K

handling learning tasks with skewed class distributions,
non-uniform cost per error, and large amounts of data.
Not only is our method efficient, it is also scalable to
larger amounts of data.

Although downsampling instances of the majority
class is not new for handling skewed distributions
(Breiman et al. 1984), our approach does not dis-
card any data, allows parallelism for processing large
amounts of data efficiently, and permits the usage of
multiple “off-the-shelf” learning algorithms to increase
diversity among the learned classifiers. Furthermore,
how the data are sampled is based on the cost model,
which might dictate downsampling instances of the mi-
nority class instead of the majority class.

One limitation of our approach is the need of running
preliminary experiments to determine the desired dis-
tribution based on a defined cost model. This process
can be automated but it is unavoidable since the desired
distribution is highly dependent on the cost model and
the learning algorithm.

Using four learning algorithms, our approach gener-
ates 128 classifiers from a 50:50 class distribution and
eight months of data. We might not need to keep all
128 classifiers since some of them could be highly cor-
related and hence redundant. Also, more classifiers are
generated when the data set is more skewed or addi-
tional learning algorithms are incorporated. Metrics
for analyzing an ensemble of classifiers (e.g., diversity,
correlated error, and coverage) can be used in prun-
ing unnecessary classifiers. Furthermore, the real dis-
tribution is more skewed than the 20:80 provided to
us. We intend to investigate our approach with more
skewed distributions. As with a large overhead, a highly
skewed distribution can render fraud detection econom-
ically undesirable. More importantly, since thieves also
learn and fraud patterns evolve over time, some classi-
fiers are more relevant than others at a particular time.
Therefore, an adaptive classifier selection method is es-
sential. Unlike a monolithic approach of learning one
classifier using incremental learning, our modular multi-
classifier approach facilitates adaptation over time and
removal of out-of-date knowledge.
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