A Protocol Language Approach to Generating Client-Server Software

MELVIN A.L. DOUGLAS and PHILIP K. CHAN
Department of Computer Sciences
Florida Institute of Technology
Melbourne, FL 32901,USA
Email: Melvin_Douglas @yahoo.com & pkc@cs.fit.edu

ABSTRACT

To ease the burden of repeatedly writing low-level
communication and protocol code for client-server
software, we seek to design a protocol language, “My
Simple Protocol Language” (MSPL), that produces the
corresponding communication code. The programmer
then supplies the rest of the application-specific code. The
main contribution is that, unlike RPC, Corba or RMI, we
provide the user with not only functions that are for
communication, but also for protocols.

KEY WORDS: Software Development, Protocol
Language, Code Generation.

1. INTRODUCTION

Client-server software has become increasingly critical
due to the popularity of the Internet. Implementing the
underlining protocols requires programming low-level
protocol and communication details, which is time-
consuming and reduces maintainability. Furthermore,
changes in the protocol specification demand matching
revisions on both the client and server programs.

In this paper we focus on two problems. The first is
providing a protocol language that allows writing client-
server software efficiently and reliably. The second is to
demonstrate the feasibility of using the protocol language
on ‘real world’ protocols like HTTP RFC 2616.

Section 2 gives an extended overview of related work.
Section 3 details our proposed language MSPL and its
architecture. Section 4 analyzes the use of MSPL to
develop clients and servers that can interact with real-
world servers and clients. Section 5 summarizes our
contributions and potential improvements.

2. RELATED WORK

Specifying protocol using a formal language has been
valuable in verifying the correctness of network protocols
and generating test cases to evaluate implementations.
One such language is Estelle [1], which specifies
protocols as a set of finite state machines. = Though
Estelle eases the formal verification process by machines,
it is not easy for humans to read. In addition, it was not
originally designed to facilitate the automated process of

implementing the specified protocols. Languages like
Prolac [2], on the other hand, are designed to generate
code that implements the specified protocols. These
languages are easier to read by humans, but are not
designed for formal verification by machines. Languages
for protocol specification have been mostly focusing on
the Transport or lower layers in the OSI model because
they constitute the vital infrastructure of the Internet.
However, languages for specifying protocols above the
Transport layer are not well investigated, even though
many distributed and network applications, particularly in
the client-server model, have been developed. Our
proposed language, MSPL, allows the specification of
protocols between a client and server at the Application
layer. The language is not designed for formal
verification; rather, it focuses on readability by humans
(hence ease in programming) and generating
communication code to implement the specified
protocols.

BEA Tuxedo supports four distinct communication
methods that are versatile and easy to use yet powerful
enough to build a wide variety of mission-critical business
applications [3]. Tuxedo and MSPL both basically aim at
developing client-server software at a high-level of
abstraction. MSPL is a specification-based language that
describes the protocols and generates the necessary
communication modules and interface. The four
communication methods supported by Tuxedo are
Events-One Way, Request/Response, Conversational
Interactions and Queued Communications. The user is
allowed to choose one of these communication methods
and then call the appropriate library-based functions.
While Tuxedo supports multiple types of send and receive
commands, MSPL supports complete specification
protocols. MSPL allows the application programmer to
focus more on the specification of the protocol while in
Tuxedo, the application programmer concentrates more
on actual coding and function calls.

RPC is based on the request/response paradigm, modeled
after the local procedure call structure. RPC intertwines
procedures with protocols and demands procedural
thinking. However, MSPL advocates a declarative
approach in specifying the protocols instead of

implementing them. Although RPC is an applicable
programming mechanism, it only allows procedures to be
generated not the actual protocol like MSPL does. Similar
to BEA Tuxedo, if the application programmer wanted or
needed to change the programming language, the same
protocol needs to be ported to the new target language.

2.1 Library/Specification-Based Approaches
Developing client-server software at a higher abstraction
level can be characterized into two main approaches. The
first approach is library-based like BEA Tuxedo. The
second is a specification-language approach like MSPL.
Library-based methods provide a fixed list of abstracted
routines. MSPL provides a higher level of abstraction for
implementing protocols (than library-based methods).
This has several advantages and disadvantages.

One advantage is the fact that high-level programming
languages are easier to read and hide low-level details
from the programmer. Another advantage is the fact they
shorten the development time. Also, by separating the
specification from the implementation, the programmer
only has to specify what to do and not how to do it, a key
difference in declarative and procedural characterization
of expressing solutions in programming languages. In
addition, this separation enhances portability. On the
contrary, the library-based approach is target-language
specific, which means that if the programmer would like
to change the target language, the protocol code would
have to be re-written in the new target language.

Another major advantage of the specification-based
approach is that protocols are automatically “aligned”.
By alignment, we mean that if the number, format, or
order of parameters for a particular request is changed on
the client side, then the server side is automatically
adjusted to match these changes. In the library-based
approach, changes in the server protocol module require
the corresponding changes to be made in the client
protocol module (or vice versa) manually. Errors on the
part of the programmer may lead to unaligned changes.
On the contrary, the specification-based approach uses a
compiler to generate the client and server protocol
modules, which are automatically aligned. Consequently,
the possibility of programmer errors is reduced and
reliability in the resulting client-server software is
enhanced. However, a disadvantage of the specification-
based approach is more abstraction generally leads to less
control and flexibility. = There is also the added
responsibility of mastering another language.

3. MSPL

The first problem stated in Section 1, is handled by
designing ‘My Simple Protocol Language’ (MSPL),
which is used to write programs that implement the
communication protocols. Figure 3-1 shows the
architecture of the entire client-server code generation
process. First, a program representing the Application
Protocol in MSPL must be written by the application

programmer. Then it is sent to the MSPL Compiler,
which outputs the Client Protocol Module and Server
Protocol Module. These protocol modules are then linked
to the MSPL Library and other user-written modules.
This produces the final product of a client-server software
application. The MSPL Compiler is currently
implemented in Java and the target language for code
generation is Java as well.

MSPL
Compiler

Client Server
Other Protocol Protocol Other
Client Module Module Server
Modules Modules

Server Software

Client Software

Figure 3—1. MSPL Architecture

3.1ESFTP

Before we describe exactly how to write a program in
MSPL and how the client and server code is generated, we
introduce a simple protocol called the Extremely Simple
File Transfer Protocol (ESFTP), which will be used as a
running example throughout this section. It is a much
simpler version of the RFC 959 FTP protocol. All
communication takes place over one connection and the
client begins the conversation instead of the server.
ESFTP can be used to transfer files from a client machine
to another machine running the server and also files from
the machine running the server to any machine that has
the client. ESFTP allows three commands: put a file,
get a file and qui t the application; details are in [4].
The protocol is also used to send error messages between
the client and server.

3.2 Implementing ESFTP in MSPL

In this section, we examine how to write a program in
MSPL and how the client and server code is generated. In
Figure 3-2 ESFTP is specified in MSPL

All the parameters have default values, which can be
overridden. In this case, four parameters have been
defined. Both defaul tCientPort and
def aul t Server Port have been assigned the value of
55000 on lines 3 and 4. The buffersize designates
the maximum size of the packets being sent between the
two machines and has been assigned a value of 1000
bytes on line 5. The last parameter assigned a value is on
line 6. This is the maximum number of clients that can
connect to the server at any given time. All of these
parameters are defined more specifically later in
Section 3.3 on Definable Communication Parameters.

Comments may be inserted by preceding the text with a
number # sign.

1. # MSPL file used to generate code for the ESFTP

2. Parameters

3. defaultClientPort 55000, # between O and 65535

4. defaultServerPort 55000, # between 0 and 65535

5. bufferSize 1000, #same size buffer for Client and Server
6. maxClientsSupported 9;

7. Begin

8. Request Get # method for client to receive file from server
9. Constant String “Get ”,

10. String Filename,

11. Constant String “\r\n”;

12. Reply Ok

13. Constant String “200 request executed successfully \r\n”,
14. int statusref,

15. int length,

16. byte[] actualFile;

17. Reply noFile

18. Constant String “400 file does dot exist \r\n";

19. Request Put # method for client to send file to the server
20. Constant String “Put ”,

21. String Filename,

22. int length,

23. byte[] actualFile;

24. Reply Successfull

25. Constant String “200 File transfer successful \r\n”;

26. Reply fileExists

217. Constant String “300 File already exists \r\n”;

28. End

Figure 3-2. Specification of ESFTP in MSPL

Line 7 signals the beginning of the Request—Reply
structure. No parameters can be assigned a value after
this keyword. The get request on line 8 sends a string
value from the client to the server. The expected reply
from the server is either Ok or noFi | e as shown on lines
12 and 17. The first token sent back in all protocols
including RFC, is the name of the Reply. In this case the
first token will either be 200 or 400. If the reply is Ok,
then the next data type expected is an integer followed by
another integer and then finally bytes. The first integer is
used by the user-written modules to see if this is just a
continuation of receiving a file or is it the start of
receiving a new file. The second integer is the size of the
file being sent and is used to inform the client of just how
many bytes will be sent. Finally, the actual file is
transferred in chunks no larger than the buf f ersi ze
until the entire file has been transferred. If the reply is
nof il e, then as line 18 shows, a string follows which
may contain more information as to exactly why the
request was unsuccessful.

The next possible request is put , which is shown on line
19. This request sends the request name put, followed
by a string for the name of the file to be sent to the server,
an integer representing the size of the file to be sent and
then finally bytes equivalent to or smaller than the
specified buf f er si ze. All these fields in the message
packet are defined on lines 20 through 23. The two
possible replies to this request are Successful or
fil eExists. Successful is the name of the reply

on line 24 and has a string sent back describing the
current state. This simply means if the request was
executed successfully then that is all the information that
needs to be reported to the client. The second reply on
line 26 is fi | eExi sts and is followed by a Stri ng
type, which may be used to describe what the server side
plans to do since the file already exists.

The last request that is present in all the generated
protocol modules is the qui t request. This request sends
quit as a string to notify the server the connection is
being closed and does not expect a reply. The quit
command is not written in Figure 3-2 because it is
standard in most protocols; therefore it is automatically
generated. It can be overridden but in the case of this
protocol it is not necessary. Due to space limitations, the
EBNF definition of MSPL may be found in [4].

3.3 Definable Communication Parameters

In Figure 3-2 the section between the keywords
Par amet ers and Begin, Lines 2 to 7, is where
parameters are initialized. One parameter gives the
programmer control over which port to communicate. It
is left up to the programmer to ensure this port is
available. If the chosen port is not available, then the
generated code will simply print a message saying the
port is already in use, upon which, it will halt all attempts
to use the port. Another parameter allows the
programmer to define the buffer size in bytes for each
message sent to and from the client. The blocks of data
sent are guaranteed to be no larger than this number
provided. The maxi munCl i ent sSupported
parameter allows one to specify how many clients are
allowed to connect to the generated server at any given
moment. All the parameters have default values if the
programmer does not want to specify them.

Also in order to handle unpredictable disconnections of
mobile computing platforms there is a variable called
timeout. This allows one to specify the amount of
time before a standard message is displayed by the client
when it is unable to send or receive from a server due to
network delay or disconnection. The message informs the
user the connection cannot be established and gives them
the option to retry right away or later. If they decide to
retry then the entire request will be resent to the server.

After setting all the desired parameters, the main body of
code between the keywords Begi n and End may be
written. There is an option to send a Handshake which
allows the server to send a message before the client does.
Not all client server protocols start with a request from the
client side. In some instances, the server first sends a
message stating it is ready to provide a service and it is
running a certain version of the application. The server
does not expect a reply to this message. Therefore, it is
really not correct to call it a request. It simply informs the
client side of some information, which is why it was

named Handshake in MSPL. It is referred to as Events-
One Way in Tuxedo [3].

3.4 Structure of request—eply statement
Whether a Handshake takes place or not, the next
command is a Request. Every Request and Reply has a
name, which is placed right after the keyword Request
or Repl y. Request represents a message from the client
intended for the server. It consists of sending a
combination of integers, strings and bytes. Each type is
sent separately in the order in which they are written in
the MSPL program. The server code is also generated to
accept the data structures in this order providing the
necessary alignment. After all data has been sent, then
Reply data structures are sent from the server to the client
in the same way.

The language accepts as many Request—Reply statements
as required by the protocol being implemented. For every
Request there is zero or more possible Replies. An
example of a request that may not need a reply is the
gui t command in the FTP protocol. It is also possible to
name a Request with no parameters. This was done to
easily handle more complex protocols in RFC. When no
parameters are supplied, then bytes are sent. They are
stored in a standard variable created in every message
packet with the size of the field set to buf f ersi ze.
After all the Request—Reply statements have been written,
the keyword End is written which signifies the end of the
MSPL program.

3.5 Compiler and Generated Modules

The current MSPL Compiler is very basic, printing error
messages that will help you find where an error may be
and what might be the cause of it. If the MSPL program
is not successfully compiled, then the code generation
process never commences. Similar to the Fabius
Compiler, the Java code is pre-generated with holes
where values need to be inserted [5]. Details of the parser
and MSPL Compiler are beyond the scope of this paper
and they are described in [4].

Once the program written in MSPL passes through the
Syntax Parser successfully, the Code Generation Process
may begin. The process of code generation creates four
main files as output. These files can be categorized as the
message packet file, the client file, the server interface file
and the server file.

3.5.1 Message packet ar chitecture

Every variable declared in a Request statement or a Reply
statement appears in the message packet structure. This
message class is the return type of the generated
functions. The structure of an ESFTP message packet is
dynamic since not all the data types represented are ever
sent in one message packet. The possible data types are
Strings, integers and bytes. These are all the data types
specified in the MSPL program written for ESFTP that

will be required either for a request or a reply statement.
Each data type is also assigned a variable name allowing
us to send more than one value of the same data type.
Depending on the Request made, the message structure
will change dynamically to send only the necessary
parameters for the specified request. The server code
does the same for each reply to the client. The client
knows which reply to expect by checking a standard
variable called the Reply name.

3.5.2 Client protocol module

The generated client module contains functions, which
will be called by the user’s client module to take care of
low-level communication and the ordering that was
embedded in MSPL. For example, in the ESFTP code
shown earlier, a function called put would be generated
with parameters St ri ng for the name of the file, i nt
for the size of the file being sent and byt e[] for the
actual bytes of the file which are being sent to the server.
All these parameters must be present when this function is
called by the user’s client code. The main advantage here
over the common RPC, RMI and Corba code is that once
this function is called, the work of receiving the reply to
this request is also executed and a reply of success or
an er r or is sent back to the user’s client program in the
form of a message, which contains several predefined
fields that the user knows to check to get the relevant
information needed. That is, the client and server code is
automatically aligned as described earlier in Section 2.1.

3.5.3 Generated server interface

The generated interface file is the interface between the
generated server module and the user’s server modules.
The interface allows the user to not have to edit any of the
generated code. The interface is extended using the
i mpl ement s command in Java. The advantage of using
an interface file is that if for some reason, the code
generated must be regenerated, then since the user did not
modify the generated code, no extra coding or
modifications by the user are lost.

3.5.4 Server protocol module

The next file generated is the server module, which calls
the user’s server program once it receives a message from
the client side. This file receives messages from the client
Request statements and sends data over the network
connection for Reply statements.

Upon receiving data for a Request statement, it calls a
function in the generated interface, which must be defined
by the user’s code. For example, if the put request is
executed, then the generated server would call the put
function in the interface class which must be implemented
by the user. This is true because a server that implements
a given interface promises to support all the methods
defined by the interface. The client need not be
concerned with how the server implements the interface.

3.6 User-Written Modules

The user-written code is simplified greatly by writing a
few lines in MSPL, which generates the communication
code and also takes care of ordering. The main goal of
the user’s code is to manipulate the information it sends
and receives from the client or server in order to carry out
the task the application is supposed to do.

The user-written client modules import the generated
client module, which then permits the user to call any
functions in the generated client protocol code. The reply
type of all the generated functions is Message type. The
user is responsible for checking the fields they asked to be
created in the Message. For example, in ESFTP, if a
Request Statement was get and it had the variable
filenane as a String, then in Message there would
be a field of type String with the variable name
fil enanme. Now if the function returns type Message,
which is stored in the variable put Repl y, then to access
the fil ename field you would write
put Reply. fil enane.

The server-written code consists of functions that should
be called depending on the Request Message received
from the client. If the ESFTP put Request is sent to the
server, then the generated server calls the put function of
the user’s server module with the message packet that was
sent to it from the client side. This function is guaranteed
to exist because of the generated interface that is
implemented by the user’s server module.

3.7 MSPL Library

The main thrust behind having a MSPL Library is to
reduce the time of generating code. Calls to the MSPL
Library are generated not the code. That is, repeated code
does not have to be reproduced several times. Instead,
these lines of code frequently used across many protocols,
are abstracted into functions. For example, request and
reply use the same communication concepts every time.

Due to space limitation, we have not included a sample of
the generated code and the conversation script recorded
while the client and server were running. This can be
found, however, in [4].

4. RFC PROTOCOL IMPLEMENTATIONS
As experiments for proof of concept and usability, basic
parts of the Simple Mail Transfer Protocol (SMTP),
Hypertext Transfer Protocol (HTTP), and the File
Transfer Protocol (FTP) were implemented using MSPL.
These protocols are widely used and are specified in
Request For Comments (RFC). Due to space limitations,
only the implementation of HTTP RFC 2616 is described
in this paper. The details of the SMTP and FTP
implementations may be found in [4]. After compiling
the MSPL programs, sample user code was also written.
Communication between the generated client code and an
existing server which implements the same RFC was

attempted as was communication between the generated
server code with an existing client that implement the
same RFC. The goal of testing a generated client with an
existing server and a generated server with an existing
client was to demonstrate that “ real world” protocols can
be specified in MSPL and the MSPL Compiler produces
the appropriate code for communication.

4.1 Implementation of HTTP RFC 2616

HTTP is a request/reply protocol. A client sends a request
to the server in the form of a request method,
URI (Uniform Resource Identifiers) or URL (Uniform
Resource Locator), and protocol version, followed by
several lines with client information. The server replies
with a status line, including the message's protocol
version and a success or error code, followed by several
lines with server information [5]. HTTP communication
usually takes place over TCP/IP connections. The default
port is 80, but other ports can be used [6]. For the
purpose of a functional client and or server, the only
methods required were the GET and QUI T methods.
Figure 4-1 shows the MSPL code used to generate the
java protocol modules.

1. Parameters

2. defaultClientPort 55000, # between 0 and 65535
3. defaultServerPort 55000, # between 0 and 65535
4, bufferSize 1024, # buffer for Client and Server
5. maxClientsSupported 10;

6. Begin

7. Request Get

8. Constant String “GET ”,

9. String filename,

10. Constant String “ HTTP/1.1 \\nAccept: ”,

11. String accept,

12. Constant String “\r\nAccept-Language: ”,

13. String acceptLanguage,

14. Constant String “\r\nAccept-Encoding: ,

15. String acceptEncoding,

16. Constant String “\\nUser-Agent: ”,

17. String userAgent;

18. Constant String “\r\nHost: «,

19. String hostname,

20. Constant String "\r\nConnection: ”,

21. String connection,

22, Constant String “\\n\r\n”; #CRLF’s end request
23. Reply Ok # successfully received and accepted
24, Constant String “HTTP/1.1 200 OK \n\n”,

25. Constant String “Server: ,

26. String serverType,

27. Constant String “\r\nDate: “,

28. String currentDate,

29. Constant String “\r\nContent-type: “,

30. String contentType, #i.e. text/plain
31. Constant String “\r\nLink: “,

32. String link,

33. Constant String “\r\nEtag: “,

34. String etag,

35. Constant String “\r\nLast-modified: “,

36. String lastModified,

37. Constant String “\r\nContent-length: “,

38. String contentLength,

39. Constant String “\r\nAccept-ranges: «,

40. String acceptRanges,

41. Constant String “\r\n”,

42. byte[] actualFile,

43, Constant String “\\n\r\n”;

44, Reply fileNotFound # The request contained bad

45, Constant String “400 file not found \\n\r\n”;

46. Reply serverNotAvailable # failed to connect
47 . Constant String “500 server not available \r\n\r\n”;
48. End

Figure 4-1. Part of HTTP specified in MSPL

The generated client was linked to user-written modules
to produce the client software. This is the only example
where maxC i ent sSupport ed was tested extensively
and worked well. Most web browsers developed now
automatically request several connections to the same
server in order to speed up the time required to download
a web page that has several pictures. Line 5 specifies that
up to 10 connections can be made to the server at once.
The Get request starts on line 7. Lines 10 through 17
send the server information about data formats that the
client understands. The Get request is completed in lines
18 through 22. The end of a request is signified by a
double CRLF (i.e. \r\n\r\n) as shown on line 22. There are
three possible replies to the Get request which are ok,
fil eNot Found, orserver Not Avai | abl e. Lines
23 through 41 shows the server’s preferred data formats
and the file format which is sent back to the client when
the server determines the request is ok. Line 42 is where
the actual file is sent to the client and the following line
signals the end of the reply. The latter two replies are
used when there is an error of some sort. Each sends a
string to the client that is prefixed with a number to
represent the general type of error that has occurred.

From the generated code of the HTTP protocol
specification, the generated server was tested with the
Microsoft Internet Explorer Version 5.0 client. The
server was set up to run on port 55000 instead of the
default http port which is 80. The generated server was
able to send both graphics and text back to the client
which displayed them. Depending on the buffer size
entered in the MSPL code, the time to load a standard 8%2
by 11 inch page with a picture varied by over 5 seconds.
There are several other commands that were not
implemented but the GET request was sufficient to
transfer files and images between the client and server. In
addition, the generated client was successfully tested with
a real server. Due to space limitation, we have not
included a sample of the generated code and the
conversation script recorded while the client and server
were running. This can be found, however, in [4].

5. CONCLUSION

We have made several initial definitive steps in the right
direction, we believe, to increase the quality in the
development of client-server software. MSPL proved to
be useful not only in non-standard protocols like ESFTP,
but also in standard protocols like SMTP RFC 821, HTTP
RFC 2616, and FTP RFC 959. Many existing tools
concentrate on providing function calls. This research,
however, focuses on how to generate code from a
protocol specification. Part of MSPL’S strength is its

readability. MSPL allows and promotes more efficient
development of reliable client-server software. MSPL
seems relatively easy to use although there have not yet
been many users of the system. The independent
development of MSPL from the compiler makes this
solution quite portable since a compiler from MSPL to
any target programming language can be developed.

There are several prospects for future work. One direction
is to extend MSPL to support more than one connection
between a client and a server, which are allowed in
RFC 959 File Transfer Protocol. This leads to additional
issues that have to be addressed. For example, in FTP
RFC 959, the port for the data connection can change
several times in one session as it is only open long enough
to service one Request. Once it closes and reopens again
for another Request, it is quite possible and likely that a
different port will be used. This leads to the next question
of whether it is worth changing the language to allow the
user to change the port from the user’s code. This method
could be placed in the MSPL Library. Another direction
would be to provide more error handling features similar
to the BEA Tuxedo package described in Section 2. This
would greatly increase the reliability of the language
when it is used in the real world. Other directions include
allowing optional fields and order-insensitive fields to be
specified in MSPL, nested request-reply structures for
conversations spanning across multiple request-reply
interactions, and extending our implementation to specify
the remaining parts of the three standard protocols studied
here and other standard protocols.

REFERENCES

[1] P. D. Amer, A. S. Sethi, M. Fecko, and M. Uyar,
Formal Design and Testing of Army Communication
Protocols Based on Estelle, Proc. 1% ARL/ATIRP Conf.,
1997, 107-114.

[2] E. Kohler, M. F. Kasshoek, and D. R. Montgomery, A
Readable TCP in the Prolac Protocol Language, Proc.
S GCOMM99,1999.

[3] BEA, Programming a Distributed Application: The
BEA Tuxedo® Approach, White Paper,1996.

[4] Melvin A.L. Douglas, MSPL: A Protocol Language
For Generating Client-Server Software, MS Thesis, Dept.
of Computer Sciences, Florida Tech, 2000.

[5] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L.
Masinter, P. Leach, T. Berners-Lee, Hypertext Transfer
Protocol Request For Comments (RFC) 2616,1999.

[6] J. Reynolds and J. Postel, “Assigned Numbers”, STD
2, RFC 1700, 1994.

