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ABSTRACT 
The dynamic time warping (DTW) algorithm is able to find the 
optimal alignment between two time series.  It is often used to 
determine time series similarity, classification, and to find 
corresponding regions between two time series.  DTW has a 
quadratic time and space complexity that limits its use to only 
small time series data sets.  In this paper we introduce FastDTW, 
an approximation of DTW that has a linear time and space 
complexity.  FastDTW uses a multilevel approach that recursively 
projects a solution from a coarse resolution and refines the 
projected solution.  We prove the linear time and space 
complexity of FastDTW both theoretically and empirically.  We 
also analyze the accuracy of FastDTW compared to two other 
existing approximate DTW algorithms:  Sakoe-Chuba Bands and 
Data Abstraction.  Our results show a large improvement in 
accuracy over the existing methods. 
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1. INTRODUCTION 
Motivation.   Dynamic time warping (DTW) is a technique that 
finds the optimal alignment between two time series if one time 
series may be “warped” non-linearly by stretching or shrinking it 
along its time axis.  This warping between two time series can 
then be used to find corresponding regions between the two time 
series or to determine the similarity between the two time series.  
Dynamic time warping is often used in speech recognition to 
determine if two waveforms represent the same spoken phrase.  In 
a speech waveform, the duration of each spoken sound and the 
interval between sounds are permitted to vary, but the overall 
speech waveforms must be similar.  In addition to speech 
recognition, dynamic time warping has also been found useful in 
many other disciplines [8], including data mining, gesture 
recognition, robotics, manufacturing, and medicine.  Dynamic 
time warping is commonly used in data mining as a distance 
measure between time series.  An example of how one time series 
is “warped” to another is shown in Figure 1.  

In Figure 1, each vertical line connects a point in one time series 
to its correspondingly similar point in the other time series.  The 
lines actually have similar values on the y-axis but have been 
separated so the vertical lines between them can be viewed more 
easily.  If both of the time series in Figure 1 were identical, all of 
the lines would be straight vertical lines because no warping 
would be necessary to ‘line up’ the two time series.  The warp 
path distance is a measure of the difference between the two time 

series after they have been warped together, which is measured by 
the sum of the distances between each pair of points connected by 
the vertical lines in Figure 1.  Thus, two time series that are 
identical except for localized stretching of the time axis will have 
DTW distances of zero. 

Time  
Figure 1. A warping between two time series. 

Despite the effectiveness of the dynamic time warping algorithm, 
it has an O(N2) time and space complexity that limits its 
usefulness to small time series containing no more than a few 
thousand data points.  More details of the dynamic time warping 
algorithm are contained in Section 2.1. 

Problem.  We desire to develop a dynamic time warping 
algorithm that is linear in both time and space complexity and can 
find a warp path between two time series that is nearly optimal.   

Approach.  In this paper we introduce the FastDTW algorithm, 
which is able to find an accurate approximation of the optimal 
warp path between two time series.  The FastDTW algorithm 
avoids the brute-force dynamic programming approach of the 
standard DTW algorithm by using a multilevel approach.  The 
time series are initially sampled down to a very low resolution.  A 
warp path is found for the lowest resolution and “projected” onto 
an incrementally higher resolution time series.  The projected 
warp path is refined and projected again to yet a higher resolution.  
The process of refining and projecting is continued until a warp 
path is found for the full resolution time series. 

Contributions.   Our main contribution is the introduction of the 
FastDTW algorithm, which is an accurate approximation of DTW 
that runs in linear time and space.  We prove the O(N) time and 
space complexity both theoretically and empirically.  We also 
empirically demonstrate that FastDTW produces an accurate 
minimum-distance warp path between two time series than is 
nearly optimal (standard DTW is optimal, but has a quadratic time 
and space complexity).  In addition to the FastDTW algorithm, we 
evaluate other existing approximate DTW algorithms, and 
compare their accuracy on a large and diverse group of time series 
data sets. 



 

Organization.  The next section describes the standard dynamic 
time warping algorithm and existing approaches to speed it up.  
Section 3 provides a detailed explanation of our FastDTW 
algorithm.  Section 4 discusses experimental evaluations of the 
FastDTW algorithm based on accuracy, and time/space 
complexity, and Section 5 summarizes our study. 

2. RELATED WORK 

2.1 Dynamic Time Warping (DTW) 
A distance measurement between time series is needed to 
determine similarity between time series and for time series 
classification.  Euclidean distance is an efficient distance 
measurement that can be used.  The Euclidian distance between 
two time series is simply the sum of the squared distances from 
each nth point in one time series to the nth point in the other.  The 
main disadvantage of using Euclidean distance for time series data 
is that its results are very unintuitive.  If two time series are 
identical, but one is shifted slightly along the time axis, then 
Euclidean distance may consider them to be very different from 
each other.  Dynamic time warping (DTW) was introduced [11] to 
overcome this limitation and give intuitive distance measurements 
between time series by ignoring both global and local shifts in the 
time dimension. 

Problem Formulation.  The dynamic time warping problem is 
stated as follows:  Given two time series X, and Y, of lengths |X| 
and |Y|, 
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construct a warp path W 
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where K is the length of the warp path and the kth element of the 
warp path is 

),( jiwk =  

where i is an index from time series X, and j is an index from time 
series Y.  The warp path must start at the beginning of each time 
series at w1 = (1, 1) and finish at the end of both time series at wK 

= (|X|, |Y|).  This ensures that every index of both time series is 
used in the warp path.  There is also a constraint on the warp path 
that forces i and j to be monotonically increasing in the warp path, 
which is why the lines representing the warp path in Figure 1 do 
not overlap.  Every index of each time series must be used.  Stated 
more formally: 
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The optimal warp path is the warp path is the minimum-distance 
warp path, where the distance of a warp path W is 
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Dist(W) is the distance (typically Euclidean distance) of warp path 
W, and Dist(wki, wkj) is the distance between the two data point 

indexes (one from X and one from Y) in the kth element of the 
warp path. 

DTW Algorithm.   A dynamic programming approach is used to 
find this minimum-distance warp path.  Instead of attempting to 
solve the entire problem all at once, solutions to sub-problems 
(portions of the time series) are found, and used to repeatedly find 
solutions to a slightly larger problem until the solution is found 
for the entire time series.  A two-dimensional |X| by |Y| cost matrix 
D, is constructed where the value at D(i, j) is the minimum-
distance warp path that can be constructed from the two time 
series X’=x1,...,xi  and Y’=y1,...,yj.  The value at D(|X|, |Y|) will 
contain the minimum-distance warp path between time series X 
and Y.  Both axes of D represent time.  The x-axis is the time of 
time series X, and the y-axis is the time of time series Y.  Figure 2 
D shows an example of a cost matrix and a minimum-distance 
warp path traced through it from D(1, 1) to D(|X|, |Y|). 
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Figure 2. A cost matrix with the minimum-distance warp path 

traced through it. 

The cost matrix and warp path in Figure 2 are for the same two 
time series shown in Figure 1.  The warp path is W = {(1,1), (2,1), 
(3,1), (4,2), (5,3), (6,4), (7,5), (8,6), (9,7), (9,8), (9,9), (9,10), 
(10,11), (10,12), (11,13), (12,14), (13,15), (14,15), (15,15), 
(16,16)}.  If the warp path passes through a cell D(i, j) in the cost 
matrix, it means that the ith point in time series X is warped to the 
jth point in time series Y.  Notice that where there are vertical 
sections of the warp path, a single point in time series X is warped 
to multiple points in time series Y, and the opposite is also true 
where the warp path is a horizontal line.  Since a single point may 
map to multiple points in the other time series, the time series do 
not need to be of equal length.  If X and Y were identical time 
series, the warp path through the matrix would be a straight 
diagonal line. 

To find the minimum-distance warp path, every cell of the cost 
matrix must be filled.  The rationale behind using a dynamic 
programming approach to this problem is that since the value at 
D(i,  j) is the minimum warp distance of two time series of lengths 
i and j, if the minimum warp distances are already known for all 



 

slightly smaller portions of that time series that are a single data 
point away from lengths i and j, then the value at D(i, j) is the 
minimum distance of all possible warp paths for time series that 
are one data point smaller than i and j, plus the distance between 
the two points xi and yj.  Since the warp past must either be 
incremented by one or stay the same along the i and j axes, the 
distances of the optimal warp paths one data point smaller than 
lengths i and j are contained in the matrix at D(i-1,  j), D(i,  j-1), 
and D(i-1,  j-1).  So the value of a cell in the cost matrix is: 

),1,(),,1(min[),(),( −−+= jiDjiDjiDistjiD
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The warp path to D(i, j) must pass through one of those three grid 
cells, and since the minimum possible warp path distance is 
already known for them, all that is needed is to simply add the 
distance of the current two points to the smallest one.  Since this 
equation determines the value of a cell in the cost matrix by using 
the values in other cells, the order that they are evaluated in is 
very important.  The cost matrix is filled one column at a time 
from the bottom up, from left to right as depicted in Figure 3.   
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Figure 3. The order that the cost matrix is filled. 

After the entire matrix is filled, a warp path must be found from 
D(1, 1) to D(|X|, |Y|).  The warp path is actually calculated in 
reverse order starting at D(|X|, |Y|).  A greedy search is performed 
that evaluates cells to the left, down, and diagonally to the 
bottom-left. Whichever of these three adjacent cells has the 
smallest value is added to the beginning of the warp path found so 
far, and the search continues from that cell.  The search stops 
when D(1, 1) is reached.   

Complexity of DTW.  Time and Space complexity of the DTW is 
easy to determine.  Each cell in the |X| by |Y| cost matrix is filled 
exactly once, and each cell is filled in constant time.  This yields 
both a time and space complexity of |X| by |Y|, which is O(N2) if 
N=|X|=|Y|.  The quadratic space complexity is particularly 
prohibitive because memory requirements are in the terabyte 
range for time series containing only 177,000 measurements.  A 
linear space-complexity implementation of the DTW algorithm is 
possible by only keeping the current and previous columns in 
memory as the cost matrix is filled from left to right (see Figure 
3).  By only retaining two columns at any one time, the optimal 
warp distance between the two time series can be determined.  
However it is not possible to reconstruct the warp path between 
these two time series because the information required to calculate 
the warp path is thrown away with the discarded columns.  This is 
not a problem if only the distance between two time series is 
required, but applications that find corresponding regions between 
time series [14] or merge time series together [1][3] require the 
warp path to be found. 

2.2 Speeding up Dynamic Time Warping 
The quadratic time and space complexity of DTW creates the need 
for methods to speed up dynamic time warping.  The methods 
used make DTW faster fall into three categories: 

1) Constraints – Limit the number of cells that are 
evaluated in the cost matrix. 

2) Data Abstraction – Perform DTW on a reduced 
representation of the data. 

3) Indexing – Use lower bounding functions to reduce the 
number of times DTW must be run during time series 
classification or clustering. 

Constraints are widely used to speed up DTW.  Two of the most 
commonly used constraints are the Sakoe-Chuba Band [13] and 
the Itakura Parallelogram [4], which are shown in Figure 4. 

 
Figure 4. Two constraints:  Sakoe-Chuba Band (left) and an 

Itakura Parallelogram (right), both have a width of 5. 

The shaded areas in Figure 4 are the cells of the cost matrix that 
are filled in by the DTW algorithm for each constraint.  The width 
of each shaded area, or window, is specified by a parameter.  
When constraints are used, the DTW algorithm finds the optimal 
warp path through the constraint window.  However, the globally 
optimal warp path will not be found if it is not entirely inside the 
window.  Using constraints speeds up DTW by a constant factor, 
but the DTW algorithm is still O(N2) if the size of the input 
window is a function of the length of the input time series.  
Constraints work well in domains where the optimal warp path is 
expected to be close to a linear warp and passes through the cost 
matrix diagonally in a relatively straight line.  Constraints work 
poorly if time series are of events that start and stop at radically 
different times because the warp path can stray very far from a 
linear warp and nearly the entire cost matrix must be evaluated to 
find the optimal warp path.   

Data abstraction speeds up the DTW algorithm by running DTW 
on a reduced representation of the data [2][9].  The left side of 
Figure 5 shows a full-resolution cost matrix for which a 
minimum-distance warp path must be found.  Rather than running 
the DTW algorithm on the full resolution (1/1) cost matrix, the 
time series are reduced in size to make the number of cells in the 
cost matrix more manageable.  A warp path is found for the 
lower-resolution time series and is mapped back to the full 
resolution cost matrix.   
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Figure 5. Speeding up DTW by data abstraction. 

The result is that DTW is sped up by a large constant factor, but 
the algorithm still runs in O(N2) time and space.  Obviously, the 
warp distance that is calculated between the two time series 
becomes increasingly inaccurate as the level of abstraction 
increases.  Projecting the lower resolution warp path to the full 
resolution usually creates a warp path that is far from optimal 
because even IF the optimal warp path actually passes through the 
low-resolution cell, projecting the warp path to the higher 
resolution ignores local variations in the warp path that can be 
very significant. 

Indexing uses lower-bounding functions to prune out the number 
of times DTW needs to be run for certain tasks such as clustering 
a set of time series or finding the time series that is most similar to 
a given time series [6][10].  Indexing significantly speeds up 
many DTW applications by reducing the number of times DTW is 
run, but does not speed up the actual DTW algorithm. 

Our FastDTW algorithm uses ideas from both the constraints and 
data abstraction categories.  Using a combination of both 
overcomes many limitations of using either method individually, 
and yields an algorithm that is O(N) in both time and space. 

3. APPROACH 
The multilevel approach that FastDTW uses is inspired by the 
multilevel approach used for graph bisection [5].  Graph bisection 
is the task of splitting a graph into roughly equal portions, such 
that the sum of the edges that would be broken is as small as 
possible.  Efficient and accurate algorithms exist for small graphs, 
but for large graphs, the solutions found are typically far from 
optimal.  A multilevel approach can be used to find the optimal 
solution for a small graph, and then repeatedly expand the graph 
and “fix” the pre-existing solution for the slightly larger problem.  
A multilevel approach works well if a large problem is difficult to 
solve all at once, but partial solutions can effectively be refined at 
different levels of resolution.  The dynamic time warping problem 
can also be solved with a multilevel approach.  Our FastDTW 
algorithm uses the multilevel approach and is able to find an 
accurate warp path in linear time and space. 

3.1 FastDTW Algorithm 
The FastDTW algorithm uses a multilevel approach with three 
key operations: 

1) Coarsening – Shrink a time series into a smaller time 
series that represents the same curve as accurately as 
possible with fewer data points. 

2) Projection – Find a minimum-distance warp path at a 
lower resolution, and use that warp path as an initial 

guess for a higher resolution’s minimum-distance warp 
path. 

3) Refinement – Refine the warp path projected from a 
lower resolution through local adjustments of the warp 
path. 

Coarsening reduces the size (or resolution) of a time series by 
averaging adjacent pairs of points.  The resulting time series is a 
factor of two smaller than the original time series.  Coarsening is 
run several times to produce many different resolutions of the 
time series.  Projection takes a warp path calculated at a lower 
resolution and determines what cells in the next higher resolution 
time series the warp path passes through.  Since the resolution is 
increasing by a factor of two, a single point in the low-resolution 
warp path will map to at least four points at the higher resolution 
(possibly >4 if |X|≠|Y|).  This projected path is then used as a 
heuristic during solution refinement to find a warp path at the 
higher resolution.  Refinement finds the optimal warp path in the 
neighborhood of the projected path, where the size of the 
neighborhood is controlled by the radius parameter.   

Standard dynamic time warping (DTW) is an O(N2) algorithm 
because every cell in the cost matrix must be filled to ensure an 
optimal answer is found, and the size of the matrix grows 
quadratically with the size of the time series. In the multilevel 
approach, the cost matrix is only filled in the neighborhood of the 
path projected from the previous resolution.  Since the length of 
the warp path grows linearly with the size of the input time series, 
the multilevel approach is an O(N) algorithm. 

The FastDTW algorithm first uses coarsening to create all of the 
resolutions that will be evaluated.  Figure 6 shows four 
resolutions that are created when running the FastDTW algorithm 
on the time series that were previously used in Figures 1 and 2.  
The standard DTW algorithm is run to find the optimal warp path 
for the lowest resolution time series.  This lowest resolution warp 
path is shown in the left of Figure 6.  After the warp path is found 
for the lowest resolution, it is projected to the next higher 
resolution.  In Figure 6, the projection of the warp path from a 
resolution of 1/8 is shown as the heavily shaded cells at 1/4 
resolution.   

1/8 1/4 1/2 1/1

 
Figure 6. The four different resolutions evaluated during a 

complete run of the FastDTW algorithm. 

To refine the projected path, a constrained DTW algorithm is run 
with the very specific constraint that only cells in the projected 
warp path are evaluated.  This will find the optimal warp path 
through the area of the warp path that was projected from the 
lower resolution.  However, the entire optimal warp path may not 
be contained within projected path.  To increase the chances of 
finding the optimal solution, there is a radius parameter that 
controls the additional number of cells on each side of the 
projected path that will also be evaluated when refining the warp 
path.  In Figure 6, the radius parameter is set to 1.  The cells 
included during warp path refinement due to the radius are lightly 



 

shaded.  Once the warp path is refined at the 1/4 resolution, that 
warp path is projected to the 1/2 resolution, expanded by a radius 
of 1,   and refined again.  Finally, the warp path is projected to the 
full resolution (1/1) matrix in Figure 6.  The projection is 
expanded by the radius and refined one last time.  This refined 
warp path is the output of the algorithm.   

Notice that the warp path found by the FastDTW algorithm in 
Figure 6 is the optimal warp path that was found by the standard 
DTW in Figure 2.  However, FastDTW only evaluated the shaded 
cells, while DTW evaluates all of the cells in the cost matrix.  
FastDTW evaluated 4+16+44+100=164 cells at all resolutions, 
while DTW evaluates all 235 (162) cells.  This increase in 
efficiency is not very significant for his small problem, especially 
considering the overhead of creating all four resolutions.  
However, the number of cells that FastDTW evaluates scales 
linearly with the length of the time series, while DTW always 
evaluates N2 cells (if both time series are of length N).  FastDTW 
scales linearly because the width of the path through the matrix 
that is being evaluated is constant at all resolutions. 

The example in Figure 6 finds the optimal warp path, but the 
FastDTW algorithm is not guaranteed to always find a warp path 
that is optimal.  However, the path found is usually very close to 
optimal.  The larger the value of the radius parameter, the more 
accurate the warp path will be.  If the radius parameter is set to be 
as large as one of the input time series, then FastDTW generalizes 
to the DTW algorithm (optimal but O(N2)).  The accuracy of 
FastDTW using different settings for the radius parameter will be 
demonstrated in Section 4. 

The pseudocode for the FastDTW algorithm is shown Figure 7.  
The input to the algorithm is two time series, and the radius 
parameter.  The output of FastDTW is a warp path and the 
distance between the two time series along that warp path.  Line 2 
determines the minimum length of a time series at the lowest 
resolution.  This size is dependent on the radius parameter and 
determines the smallest possible resolution size for which 
decreasing the resolution further would be pointless because full 
dynamic time warping would need to be calculated at more than 
one resolution.   

FastDTW has a straightforward recursive implementation.  The 
base case is when one of the input time series has a length less 
than minTSsize.  For the base case, the algorithm simply returns 
the result of the standard DTW algorithm.  The recursive case has 
three main steps.  First, two new lower-resolution time series are 
created that have half as many points as the input time series 
(coarsening).  This is performed by lines 17-18 in Figure 7.  
Next, a low resolution path is found for the coarsened time series 
(lines 20-21) and projected to a higher resolution (lines 23-25).  
This projected path is also expanded by radius cells to create a 
search window that will be passed to a constrained version of the 
DTW algorithm that only evaluates the cells in the search window 
(line 27).  The constrained DTW algorithm refines the warp path 
that was projected form the lower resolution.  The result of this 
refinement is then returned. 

 
Figure 7. The FastDTW algorithm. 

The execution of the FastDTW algorithm repeatedly runs lines 
17-18 in recursive calls to lower resolutions are made by line 21.  
This creates multiple resolutions until the base case is reached 
(line 8).  The base case is executed only a single time, and 
afterwards lines 23-27 are executed for each recursive call (or 
resolution) on the stack. 

Next, we will provide a theoretical analysis of FastDTW based on 
time and space complexity. 

Time Complexity of FastDTW.  To simplify the calculations we 
will assume that the two full-resolution time series X and Y are 
both of length N.  All analysis will be performed on worst-case 
behavior.   

The number of cells in the cost matrix that are filled by FastDTW 
in a single resolution is equal the number of cells in the projected 
warp path and any other cells within radius (denoted as r in the 
rest of this analysis to save space) cells away from the projected 
path.  The worst case, a straight diagonal projected warp path is 
depicted in Figure 8. 

Function FastDTW() 
Input:  X – a TimeSeries of length |X| 
   Y – a TimeSeries of length |Y| 

  radius –  distance to search outside of the projected 
warp path from the previous resolution 
when refining the warp path  

Output:  1) A min. distance warp path between X and Y  
  2) The warped path distance between X and Y 
 
 1| // The min size of the coarsest resolution. 
 2| Integer minTSsize = radius+2 
 3|  
 4| IF (|X|≤minTSsize OR |Y|≤minTSsize) 
 5| { 
 6|   // Base Case: for a very small time series run 
 7|   //    the full DTW algorithm. 
 8|   RETURN DTW(X, Y) 
 9| } 
10| ELSE 
11| { 
12|   // Recursive Case: Project the warp path from 
13|   //    a coarser resolution onto the current 
14|   //    current resolution.  Run DTW only along 
15|   //    the projected path (and also ‘radius’ cells 
16|   //    from the  projected path). 
17|   TimeSeries shrunkX = X.reduceByHalf() 
18|   TimeSeries shrunkY = Y.reduceByHalf() 
19|  
20|   WarpPath lowResPath =                 
21|       FastDTW(shrunkX,shrunkY, radius) 
22| 
23|   SearchWindow window =  
24|       ExpandedResWindow(lowResPath, X, Y, 
25|                         radius) 
26|  
27|   RETURN DTW(X, Y, window) 
28| } 
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Figure 8. Maximum (worst-case) number of cells evaluated for 

a radius of 1. 

The lightly shaded cells in Figure 8 are the 2Nr cells on each side 
of the projected path (heavily shaded cells), which itself has 3N 
cells.  The projected path therefore has the following maximum 
number of cells at a resolution with two time series containing N 
points:  

)34()2(23 +=+ rNNrN                      [1] 

The length of the time series at each resolution (res) follows the 
sequence (N points are contained in the original time series): 
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Therefore, the number of cells evaluated at all resolutions is 
(combine Equations 1 and 2) L++++++=+∑∞
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The series in Equation 3 is very similar to the series 
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Multiplying Equation 4 by Equation 1 yields 
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Since the sequence in Equation 5 is identical to the sequence in 
Equation 3, the number of cells evaluated at all resolutions is 

Total number of cells filled = )34(2 +rN          [6] 

In addition to the number of cells calculated there is also time 
complexity for creating the coarser resolutions and determining 
the warp path by tracing through the matrix.   

The time complexity needed to create the resolutions is 
proportional to the number of points in all of the resolutions, 
which is the series in Equation 2.  The solution of Equation 2 is 
obtained by multiplying Equation 4 by N, which yields 2N.  Since 
multiple resolutions of both time series must be created, 2N is 
multiplied by two to get the final time complexity. 

Time to create all resolutions = N4                 [7] 

The time complexity needed to trace the warp path back through a 
matrix is measured by the length of the warp path.  A resolution 
containing N points has a length of 2N in the worst case (N is the 
best case for a diagonal line).  Multiplying Equation 4 by 2N 
gives the worst-case length of all warp paths added together from 
every resolution: 

Time to trace warp paths = N4                      [8] 

Adding Equations 6, 7, and 8 gives the total worst-cast time 
complexity of FastDTW 

FastDTW time complexity = )148( +rN              [9] 

which is O(N) if r (radius) is a small constant value. 

Space Complexity of FastDTW.  The space complexity of 
FastDTW consists of the space required to store the resolutions 
(other than the full-resolution input time series), the maximum 
amount of cells that are used at any one time in a cost matrix, and 
the size of the warp path stored In memory.  The space complexity 
of storing all extra resolutions other than the full resolution for 
one input time series is Equation 2 without the first them, which is 
2N-N=N.  For both input time series the space complexity is 

Space of resolutions (other that full resolution) = N2     [10] 

The space complexity of the cost matrix is the maximum size cost 
matrix that is created for the full resolution matrix.  The number 
of cells in the matrix is Equation 1 

Space of cost matrix = )34( +rN                [11] 

The space complexity of storing the warp path is equal to the 
longest warp path that can exist at full resolution.  If the warp path 
traces the perimeter of the cost matrix, then the length of that path 
will be 

Space complexity of storing the warp path = N2        [12] 

And adding Equations 10, 11, and 12 gives the total worst-cast 
space complexity of 

FastDTW space complexity = )74( +rN             [13] 

which is also O(N) if r (radius) is a small (<N) constant value. 

4. EMPIRICAL EVALUATION 
The goal of this evaluation is demonstrate the efficiency and 
accuracy of the FastDTW algorithm on a wide range of time series 
data sets.  To ensure reproducibility, all datasets and algorithms 
used in this evaluation can be found online at “http://cs.fit.edu/ ~pkc/FastDTW/”.  This evaluation will first demonstrate the 
accuracy of the FastDTW algorithm and will then empirically 
verify its linear time complexity. 

4.1 Accuracy of FastDTW 
4.1.1 Procedures and Criteria 
The accuracy of an approximate DTW algorithm can be measured 
by determining how much the approximate warp path distance 
differs from the optimal warp path distance.  The error of an 



 

approximate DTW algorithm, such as our FastDTW algorithm, is 
calculated by the following equation: 

Error of a warp path = 100×−
toptimalDis

toptimalDisapproxDist   [14] 

If the DTW algorithm finds a warp path with a distance equal to 
the optimal warp path distance, then there is zero error.  The 
optimal warp path distance can be found by running the standard 
DTW algorithm.  The error of a warp path will always be ≥0% 
(because optimalDist is never larger than approxDist) and can 
exceed 100% if the distance of the approximate warp path is more 
than double the optimal distance. 

The FastDTW algorithm is evaluated against two other existing 
approximate DTW algorithms:  Sakoe-Chuba bands and data 
abstraction.  Sakoe-Chuba bands (see left side of Figure 4) 
constrain the DTW algorithm to only evaluate a specified radius 
away from a linear warp within the cost matrix.  Itakura 
Parallelograms (see right side of Figure 4) are not evaluated 
because, for a given radius, a band will always find a warp path 
equal to or better than that of the parallelogram.  This is because 
the parallelogram constraint is a subset of the band constraint.  
The data abstraction DTW algorithm used in this evaluation first 
samples the data, and then runs the standard DTW algorithm to 
find a warp path on the sampled data.  This warp path is then 
projected to the full resolution as previously shown in Figure 5.   

The radius parameter performs a similar function for all three 
algorithms.  It expands the region of the cost matrix searched from 
an initial “guess”.  For bands, the initial guess is a linear warp.  
For data abstraction, it is the projected warp path from the 
sampled data, and for FastDTW it is the projected warp path from 
the previous resolution.  Each algorithm will be run with multiple 
radius parameters on a wide range of data sets. 

All three algorithms (FastDTW, bands, and data abstraction) are 
only being evaluated based on accuracy in this section.  However, 
care has been taken to ensure that the time each algorithm requires 
to execute is similar for the same radius.  The data abstraction 
algorithm is made O(N) by sampling the data down to N  points 

before performing quadratic time warping (O(N 2) = O(N)).  All 
three algorithms evaluate roughly the same number of cells in the 
cost matrix for any particular radius.  FastDTW has some 
overhead for evaluating previous resolutions, and data abstraction 
has overhead for running standard DTW on the sampled time 
series.  However, all three algorithms are linear with respect to the 
length of the input time series, and the number of cells evaluated 
for a given radius does not differ by more than a power of two of 
for any pair of algorithms. 

The time series data sets used to evaluate the accuracy of the 
FastDTW algorithm include very similar data sets that are from 
the same domain, and dissimilar data sets that are from different 
domains.  Both types of data are used to show that FastDTW 
works well on a wide range of data, regardless of the similarity or 

characteristics of the time series.  Dynamic time warping is most 
frequently used to compare the similarity between time series, so 
it is likely that the majority of time series that are compared are 
similar and from the same domain.  However, very dissimilar time 
series are also evaluated to ensure that the approximate FastDTW 
algorithm works well when warping two time series that do not 
share common features.  The accuracy of each DTW algorithm is 
measured on three groups of data: 

1) Random – 990 time warps between 45 time series from 
different domains (eeg, random walk, earthquake, speech, 
tide, etc.).  The average length is 1128 points. 

2) Trace - 10,900 time warps between 200 time series data 
sets.  The Gun domain contains 4 classes that simulate 
instrumentation failure in a nuclear power plant.  All time 
series have a length of 275 points. 

3) Gun – 10,900 time warps between 200 time series data 
sets.  The Gun domain contains 2 classes, with 100 time 
series of a gun being drawn from a holster and 100 time 
series of a gun being pointed.  All time series have a 
length of 151 points. 

All data sets used in this evaluation were obtained from the UCR 
Time Series Data Mining Archive and are publicly available [7].  
Each algorithm and group of data is also run multiple times with 
the following settings for the radius parameter:  0, 1, 2, 3, 4, 5, 6, 
7, 8, 9, 10, 20, and 30.  For a given algorithm, group of data, and 
radius, the average error of all possible warp paths between time 
series in the group are recorded. 

4.1.2 Results and Analysis 
The FastDTW algorithm is very accurate for all three groups of 
data that it was tested on.  FastDTW has an error of only 19.2% to 
0.0%, depending on the value of the radius parameter.  For all 
algorithms, the error decreases as the radius parameter increases.  
However, FastDTW converges to 0% error much faster than the 
other two algorithms.  A summary of the results for several radius 
settings is contained in Table 1. 

Table 1. Average error of three the algorithms at selected 
radius values (errors of the 3 groups of data are averaged). 

radius  
0 1 10 20 30 

FastDTW 19.2% 8.6% 1.5% 0.8% 0.6% 

Abstraction 983.3% 547.9% 6.5% 2.8% 1.8% 

Band 2749.2% 2385.7% 794.1% 136.8% 9.3% 

Table 1 shows the average error for all three algorithms over all 
three test cases, when run with the radius set to 0, 1, 10, 20, and 
30.  FastDTW has a small amount of error for all radius settings, 
and begins to approach 0% error when radius is set at or above 
10.  Data abstraction is inaccurate for small radius values, but 
begins to be reasonably accurate when run with larger radius 
settings.  The band algorithm is very inaccurate for all radius 
settings except for 30. 
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Figure 9. Accuracy of FastDTW compared to Bands and Data Abstraction.  The top figure’s y-axis is 0%-100% and the bottom 

figure’s y-axis is 0%-10%.

Data abstraction is inaccurate (500-1000% error) for small radius 
settings because it blindly projects the warp path from a sampled 
time series onto a full resolution cost matrix.  This projection may 
be “in the neighborhood” of a near-optimal warp path, but it fails 
to take into consideration any local variation in the warp path that 
is obscured by sampling.  Local variations in the warp path can 
have a huge impact on the accuracy of a warp path.  Increasing the 
radius setting (which is not part of the original data abstraction 
algorithm, it is introduced in this paper), can make it rather 
accurate because this begins to adjust the warp path to cover local 
variations.  However, the accuracy is still worse than FastDTW 
for a given radius because FastDTW projects the “neighborhood” 
of the near-optimal warp path from the previous resolution in 
several small steps rather than a single large step.   

Bands can only have good results if a near-optimal warp path is 
entirely contained within radius cells from a linear warp.  When 
bands are used with a radius of 0, and the two time series are of 
equal length, it generalizes to Euclidean distance...which is a 
notoriously inaccurate similarity measure for time series [15].  A 
slight misalignment between the two time series being warped can 
cause a very large amount of error in the warp path. 

The accuracy of each algorithm on the different groups of data is 
displayed in Figure 9. 

In Figure 9, the x-axis is the radius parameter used, and the y-axis 
is the error of the tested algorithm.  Each of the 9 lines is a 

combination between the three algorithms and the three groups of 
data sets.  The FastDTW algorithm curves are solid lines, data 
abstraction curves are dotted lines, and band curves are dashed 
lines.  The three groups of data can be identified by the shape of 
the markers on the curves.  Round markers are used on curves 
using Random data, triangle markers are for the Trace data, and 
square markers are for the Gun data. 

The three solid lines at the bottom of Figure 9 are the error curves 
for FastDTW on all three groups of data.  The error is small for all 
three lines, meaning that the accuracy FastDTW is not effected 
very much by the characteristics or similarity of the input time 
series.  FastDTW is significantly more accurate than the other two 
methods when the radius parameter is set to small values.  When 
the radius parameter is larger, the abstraction method begins to 
approach the accuracy of FastDTW.  However, FastDTW was 
always at least 2-3 times more accurate than abstraction in our 
experiments. 

The three dotted Abstraction lines all have large errors for small 
radius values, but converge to less than 5% error on all data sets 
as the radius is increased to 30.  This is due to the previously 
stated problem of the projected warp path being close to a near-
optimal solution, but not taking local variations of the warp path 
into account.  Abstraction does perform reasonably well if the 
radius is increased to at least 10.  The ability of data abstraction to 
locally refine its projected path within the neighborhood of radius 
cells is not a part of the original algorithm, and is introduced in 



 

this paper.  The run-time of the original data abstraction algorithm 
is the same as our improved implementation when using a radius 
of 0, which has a very large average error of 983.3% over the 
three groups of data used in this evaluation. 

The three dashed Band lines all have errors greater than 100% (as 
high as 7225%) for small radius values, and converge very slowly 
to 0% error as the radius increases.  Band performs best on the 
random data because if two time series have almost nothing in 
common, an arbitrary warp path probably has a warp path 
distance that is not significantly much different from the 
minimum-distance or maximum-distance warp paths.  The other 
two groups of data are data sets in a similar domain, which means 
that the optimal warp distance can be very small.  Due to the way 
that error is calculated in Equation 14, if the optimal warp 
distance is very small, then the potential error can be very large 
because the optimal warp distance is the denominator of a 
fraction.  The Band approach on the Trace data group has 
extremely poor accuracy because the time series contain events 
that are shifted in time, and bands only work well if a near-
optimal warp path exists that is close to a linear warp.  The Gun 
data group also does not work very well with the Band algorithm, 
which is surprising since the time series seem to be reasonably in 
phase with each other (near a linear warp). 

4.2 Efficiency 
4.2.1 Procedures and Criteria 
The efficiency of the FastDTW algorithm will be measured in 
seconds, with respect to the length of the input time series, and 
compared to the standard DTW algorithm.  The FastDTW 
algorithm will be run with the radius parameter set to:  0, 20, and 
100 over a range of varying-length time series.  The data sets used 
are synthetic data sets of a single period of a sine wave with 
Gaussian noise inserted.  Only the lengths of the time series are 
significant because the shape of the time series has little 
significance on the run-time of either algorithm.  The lengths of 
the time series evaluated vary from 10 to 150,000. 

The standard DTW algorithm used in this evaluation is the linear-
space implementation that only retains the last two columns of the 
cost matrix.  If the standard DTW implementation is used, the test 
machine runs out of memory when the length of the time series 
exceeds ~3,000.  The FastDTW algorithm is implemented as 
described in this paper except that the cost matrix is filled using 
secondary storage if the lengths of the time series grow so large 
that the number of cells in the search window is larger than can fit 
into main memory.  Both algorithms are implemented in Java, and 
the runtime is measured using the system clock on a machine with 
minimal background processes running. 

4.2.2 Results and Analysis 
The FastDTW algorithm was significantly faster than the standard 
DTW algorithm for all but the smallest time series.  FastDTW is 
50 to 150 times faster than standard DTW (using radius values of 

0 and 100 respectively) when the time series have lengths of 
150,000 points.  A sample of the results of the FastDTW 
algorithm can be seen in Table 2. 

Table 2. Execution time (in seconds) of DTW and FastDTW on 
time series of four different lengths. 

Length of Time Series  
100 1,000 10,000 100,000 

DTW 0.02 0.92 57.45 7969.59 
FastDTW 
(radius=0) 

0.01 0.02 0.38 67.94 

FastDTW 
(radius=100) 

0.02 0.06 8.42 207.19 

In Table 2, FastDTW and DTW have similar execution times for 
the 100 point time series.  For the larger 10,000 and 100,000 
point time series FastDTW runs much more quickly than DTW.  
But execution time for the 1,000 point time series is both faster 
and slower than DTW, depending on the radius parameter.  The 
exact length at which FastDTW runs quicker than DTW depends 
on the radius parameter.  Figure 10 shows the critical region 
where one algorithm is faster than the other depending on the 
radius parameter. 
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Figure 10. The efficiency of FastDTW and DTW on small time 

series. 

The FastDTW algorithm, with a radius of 100, takes longer to run 
than DTW until the size of the time series exceeds approximately 
900 points.  However, with a radius of 0 or 20, the DTW 
algorithm is never faster than the FastDTW algorithm for small 
time series, and once the length of the time series exceed 200-300 
points, FastDTW becomes the more efficient algorithm.  For small 
time series it makes more sense to use the DTW algorithm rather 
than FastDTW.  The FastDTW algorithm is not significantly faster 
(and possibly a little slower) than DTW for small time series, and 
DTW is guaranteed to always find the optimal warp path.  
However, for large time series, the quadratic time complexity 
becomes prohibitive. 
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Figure 11. The eficiency of FastDTW and DTW on large time series.  The top figure is scaled normally, and the bottom figure has 

log-log scaling. 

The full results, using radius values of 0, 20, and 100 on time 
series ranging in length from 10 to 200,000 are shown in Figure 
11.  In Figure 11, the y-axis is the execution time and the x-axis is 
the length of the time series.  The two graphs in Figure 11 are two 
views of the same data.  The top graph is scaled normally, and the 
bottom graph has log-log scaling.  Looking at the top graph, it is 
immediately obvious that the time complexity of DTW is much 
greater than that of FastDTW.  DTW has an exponential curve, 
while all three FastDTW curves are approximately straight lines.  
In the log-scaled graph at the bottom of Figure 11, the three 
curves of FastDTW can be viewed more easily.  The radius 
parameter increases the execution of FastDTW by a constant 
factor, which is why the three FastDTW lines seem to be 
converging on the log-scaled graph as length of the time series 
increases.  The constant factor difference between them gets less 
significant as the length of the time series increases. 

In Section 3.1, we proved theoretically that the FastDTW 
algorithm was O(N).  Using the empirical data in Figure 11, the 
equation of the FastDTW curve with a radius of 100 is   

7337.0001.000000001.0 2 −+= xxy  

This coefficient of the squared term is very small, and it seems 
like the linear term is the most significant term in the 
equation...which would empirically prove that the FastDTW 
algorithm is O(N).  However, since the values for x are so large, 
the squared term actually dominates the equation when 
x>100,000.  The reason for this slight sub-linearity in the 

algorithm occurs when the number of cells being filled in the 
search window will not fit into main memory, and must be saved 
to the disk.  Writing the cells to the disk can be performed in 
linear time.  However, when reading the cells from the random-
access file to construct a warp path, reading individual non-
sequential cells from the disk cannot be performed in linear time.  
Larger time series create larger swap files, which require the disk 
head to move further to perform each random-access read 
operation.  In other words, the number of cells in the cost matrix 
that must be filled/read is linear with respect to the length of the 
time series.  So the algorithm is O(N), but the implementation is 
not quite O(N) for large time series when the entire search 
window will not fit into main memory. 

5. CONCLUDING REMARKS 
In this paper we introduced the FastDTW algorithm, a linear and 
accurate approximation of dynamic time warping (DTW).  
FastDTW uses a multilevel approach that recursively projects a 
warp path from a coarser resolution to the current resolution and 
refines it.  While the quadratic time and space complexity of DTW 
has limited its use to only the smallest time series data sets, 
FastDTW can be run on much larger data sets.  FastDTW is an 
order of magnitude faster than DTW, and it also compliments 
existing indexing methods that speed up time series similarity 
search and classification. 

Our theoretical and empirical analysis showed that FastDTW has 
a linear time and space complexity.  Expirical results have also 



 

shown that FastDTW is accurate when warping both similar and 
dissimilar time series.  With a radius of only 1, FastDTW had an 
average error of  8.6%, and increasing the radius to 20 lowers the 
error to under 1%.  FastDTW’s accuracy was compared to two 
existing methods, Data Abstraction and Sakoe-Chiba Bands, and 
was found to be far more accurate than either approach when 
using small radius values.  FastDTW’s solutions also always 
approached zero error (optimal warp path) with smaller radius 
values than the other two methods.  An additional contribution of 
this paper is demonstrating how to apply the refinement portion of 
the FastDTW algorithm to the Data Abstraction approximate 
DTW algorithm.  Doing so increased the accuracy of Data 
Abstraction by more than 100-fold in our evaluation with a radius 
of only 10. 

The main limitation of the FastDTW algorithm is that it is an 
approximate algorithm and is not guaranteed to find the optimal 
solution (although it very often does).  If for some reason a 
problem requires optimal warp paths to be found.  Future work 
will look into increasing the accuracy of FastDTW.  Possibilities 
to increase the accuracy of FastDTW include changing the step 
size (magnitute of the resolution change) between resolutions and 
evaluating search algorithms to guide search during the 
refinement step rather than simple expanding the search window 
in both directions. 
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