The data contained in this repository can be downloaded to your computer using one of several clients.
Please see the documentation of your version control software client for more information.

Please select the desired protocol below to get the URL.

This URL has Read-Only access.

Statistics
| Branch: | Revision:

main_repo / deps / openssl / openssl / doc / crypto / des.pod @ aa3b4b4d

History | View | Annotate | Download (15.9 KB)

1
=pod
2

    
3
=head1 NAME
4

    
5
DES_random_key, DES_set_key, DES_key_sched, DES_set_key_checked,
6
DES_set_key_unchecked, DES_set_odd_parity, DES_is_weak_key,
7
DES_ecb_encrypt, DES_ecb2_encrypt, DES_ecb3_encrypt, DES_ncbc_encrypt,
8
DES_cfb_encrypt, DES_ofb_encrypt, DES_pcbc_encrypt, DES_cfb64_encrypt,
9
DES_ofb64_encrypt, DES_xcbc_encrypt, DES_ede2_cbc_encrypt,
10
DES_ede2_cfb64_encrypt, DES_ede2_ofb64_encrypt, DES_ede3_cbc_encrypt,
11
DES_ede3_cbcm_encrypt, DES_ede3_cfb64_encrypt, DES_ede3_ofb64_encrypt,
12
DES_cbc_cksum, DES_quad_cksum, DES_string_to_key, DES_string_to_2keys,
13
DES_fcrypt, DES_crypt, DES_enc_read, DES_enc_write - DES encryption
14

    
15
=head1 SYNOPSIS
16

    
17
 #include <openssl/des.h>
18

    
19
 void DES_random_key(DES_cblock *ret);
20

    
21
 int DES_set_key(const_DES_cblock *key, DES_key_schedule *schedule);
22
 int DES_key_sched(const_DES_cblock *key, DES_key_schedule *schedule);
23
 int DES_set_key_checked(const_DES_cblock *key,
24
        DES_key_schedule *schedule);
25
 void DES_set_key_unchecked(const_DES_cblock *key,
26
        DES_key_schedule *schedule);
27

    
28
 void DES_set_odd_parity(DES_cblock *key);
29
 int DES_is_weak_key(const_DES_cblock *key);
30

    
31
 void DES_ecb_encrypt(const_DES_cblock *input, DES_cblock *output, 
32
        DES_key_schedule *ks, int enc);
33
 void DES_ecb2_encrypt(const_DES_cblock *input, DES_cblock *output, 
34
        DES_key_schedule *ks1, DES_key_schedule *ks2, int enc);
35
 void DES_ecb3_encrypt(const_DES_cblock *input, DES_cblock *output, 
36
        DES_key_schedule *ks1, DES_key_schedule *ks2, 
37
        DES_key_schedule *ks3, int enc);
38

    
39
 void DES_ncbc_encrypt(const unsigned char *input, unsigned char *output, 
40
        long length, DES_key_schedule *schedule, DES_cblock *ivec, 
41
        int enc);
42
 void DES_cfb_encrypt(const unsigned char *in, unsigned char *out,
43
        int numbits, long length, DES_key_schedule *schedule,
44
        DES_cblock *ivec, int enc);
45
 void DES_ofb_encrypt(const unsigned char *in, unsigned char *out,
46
        int numbits, long length, DES_key_schedule *schedule,
47
        DES_cblock *ivec);
48
 void DES_pcbc_encrypt(const unsigned char *input, unsigned char *output, 
49
        long length, DES_key_schedule *schedule, DES_cblock *ivec, 
50
        int enc);
51
 void DES_cfb64_encrypt(const unsigned char *in, unsigned char *out,
52
        long length, DES_key_schedule *schedule, DES_cblock *ivec,
53
        int *num, int enc);
54
 void DES_ofb64_encrypt(const unsigned char *in, unsigned char *out,
55
        long length, DES_key_schedule *schedule, DES_cblock *ivec,
56
        int *num);
57

    
58
 void DES_xcbc_encrypt(const unsigned char *input, unsigned char *output, 
59
        long length, DES_key_schedule *schedule, DES_cblock *ivec, 
60
        const_DES_cblock *inw, const_DES_cblock *outw, int enc);
61

    
62
 void DES_ede2_cbc_encrypt(const unsigned char *input,
63
        unsigned char *output, long length, DES_key_schedule *ks1,
64
        DES_key_schedule *ks2, DES_cblock *ivec, int enc);
65
 void DES_ede2_cfb64_encrypt(const unsigned char *in,
66
        unsigned char *out, long length, DES_key_schedule *ks1,
67
        DES_key_schedule *ks2, DES_cblock *ivec, int *num, int enc);
68
 void DES_ede2_ofb64_encrypt(const unsigned char *in,
69
        unsigned char *out, long length, DES_key_schedule *ks1,
70
        DES_key_schedule *ks2, DES_cblock *ivec, int *num);
71

    
72
 void DES_ede3_cbc_encrypt(const unsigned char *input,
73
        unsigned char *output, long length, DES_key_schedule *ks1,
74
        DES_key_schedule *ks2, DES_key_schedule *ks3, DES_cblock *ivec,
75
        int enc);
76
 void DES_ede3_cbcm_encrypt(const unsigned char *in, unsigned char *out, 
77
        long length, DES_key_schedule *ks1, DES_key_schedule *ks2, 
78
        DES_key_schedule *ks3, DES_cblock *ivec1, DES_cblock *ivec2, 
79
        int enc);
80
 void DES_ede3_cfb64_encrypt(const unsigned char *in, unsigned char *out, 
81
        long length, DES_key_schedule *ks1, DES_key_schedule *ks2,
82
        DES_key_schedule *ks3, DES_cblock *ivec, int *num, int enc);
83
 void DES_ede3_ofb64_encrypt(const unsigned char *in, unsigned char *out, 
84
        long length, DES_key_schedule *ks1, 
85
        DES_key_schedule *ks2, DES_key_schedule *ks3, 
86
        DES_cblock *ivec, int *num);
87

    
88
 DES_LONG DES_cbc_cksum(const unsigned char *input, DES_cblock *output, 
89
        long length, DES_key_schedule *schedule, 
90
        const_DES_cblock *ivec);
91
 DES_LONG DES_quad_cksum(const unsigned char *input, DES_cblock output[], 
92
        long length, int out_count, DES_cblock *seed);
93
 void DES_string_to_key(const char *str, DES_cblock *key);
94
 void DES_string_to_2keys(const char *str, DES_cblock *key1,
95
        DES_cblock *key2);
96

    
97
 char *DES_fcrypt(const char *buf, const char *salt, char *ret);
98
 char *DES_crypt(const char *buf, const char *salt);
99

    
100
 int DES_enc_read(int fd, void *buf, int len, DES_key_schedule *sched,
101
        DES_cblock *iv);
102
 int DES_enc_write(int fd, const void *buf, int len,
103
        DES_key_schedule *sched, DES_cblock *iv);
104

    
105
=head1 DESCRIPTION
106

    
107
This library contains a fast implementation of the DES encryption
108
algorithm.
109

    
110
There are two phases to the use of DES encryption.  The first is the
111
generation of a I<DES_key_schedule> from a key, the second is the
112
actual encryption.  A DES key is of type I<DES_cblock>. This type is
113
consists of 8 bytes with odd parity.  The least significant bit in
114
each byte is the parity bit.  The key schedule is an expanded form of
115
the key; it is used to speed the encryption process.
116

    
117
DES_random_key() generates a random key.  The PRNG must be seeded
118
prior to using this function (see L<rand(3)|rand(3)>).  If the PRNG
119
could not generate a secure key, 0 is returned.
120

    
121
Before a DES key can be used, it must be converted into the
122
architecture dependent I<DES_key_schedule> via the
123
DES_set_key_checked() or DES_set_key_unchecked() function.
124

    
125
DES_set_key_checked() will check that the key passed is of odd parity
126
and is not a week or semi-weak key.  If the parity is wrong, then -1
127
is returned.  If the key is a weak key, then -2 is returned.  If an
128
error is returned, the key schedule is not generated.
129

    
130
DES_set_key() works like
131
DES_set_key_checked() if the I<DES_check_key> flag is non-zero,
132
otherwise like DES_set_key_unchecked().  These functions are available
133
for compatibility; it is recommended to use a function that does not
134
depend on a global variable.
135

    
136
DES_set_odd_parity() sets the parity of the passed I<key> to odd.
137

    
138
DES_is_weak_key() returns 1 if the passed key is a weak key, 0 if it
139
is ok.  
140

    
141
The following routines mostly operate on an input and output stream of
142
I<DES_cblock>s.
143

    
144
DES_ecb_encrypt() is the basic DES encryption routine that encrypts or
145
decrypts a single 8-byte I<DES_cblock> in I<electronic code book>
146
(ECB) mode.  It always transforms the input data, pointed to by
147
I<input>, into the output data, pointed to by the I<output> argument.
148
If the I<encrypt> argument is non-zero (DES_ENCRYPT), the I<input>
149
(cleartext) is encrypted in to the I<output> (ciphertext) using the
150
key_schedule specified by the I<schedule> argument, previously set via
151
I<DES_set_key>. If I<encrypt> is zero (DES_DECRYPT), the I<input> (now
152
ciphertext) is decrypted into the I<output> (now cleartext).  Input
153
and output may overlap.  DES_ecb_encrypt() does not return a value.
154

    
155
DES_ecb3_encrypt() encrypts/decrypts the I<input> block by using
156
three-key Triple-DES encryption in ECB mode.  This involves encrypting
157
the input with I<ks1>, decrypting with the key schedule I<ks2>, and
158
then encrypting with I<ks3>.  This routine greatly reduces the chances
159
of brute force breaking of DES and has the advantage of if I<ks1>,
160
I<ks2> and I<ks3> are the same, it is equivalent to just encryption
161
using ECB mode and I<ks1> as the key.
162

    
163
The macro DES_ecb2_encrypt() is provided to perform two-key Triple-DES
164
encryption by using I<ks1> for the final encryption.
165

    
166
DES_ncbc_encrypt() encrypts/decrypts using the I<cipher-block-chaining>
167
(CBC) mode of DES.  If the I<encrypt> argument is non-zero, the
168
routine cipher-block-chain encrypts the cleartext data pointed to by
169
the I<input> argument into the ciphertext pointed to by the I<output>
170
argument, using the key schedule provided by the I<schedule> argument,
171
and initialization vector provided by the I<ivec> argument.  If the
172
I<length> argument is not an integral multiple of eight bytes, the
173
last block is copied to a temporary area and zero filled.  The output
174
is always an integral multiple of eight bytes.
175

    
176
DES_xcbc_encrypt() is RSA's DESX mode of DES.  It uses I<inw> and
177
I<outw> to 'whiten' the encryption.  I<inw> and I<outw> are secret
178
(unlike the iv) and are as such, part of the key.  So the key is sort
179
of 24 bytes.  This is much better than CBC DES.
180

    
181
DES_ede3_cbc_encrypt() implements outer triple CBC DES encryption with
182
three keys. This means that each DES operation inside the CBC mode is
183
an C<C=E(ks3,D(ks2,E(ks1,M)))>.  This mode is used by SSL.
184

    
185
The DES_ede2_cbc_encrypt() macro implements two-key Triple-DES by
186
reusing I<ks1> for the final encryption.  C<C=E(ks1,D(ks2,E(ks1,M)))>.
187
This form of Triple-DES is used by the RSAREF library.
188

    
189
DES_pcbc_encrypt() encrypt/decrypts using the propagating cipher block
190
chaining mode used by Kerberos v4. Its parameters are the same as
191
DES_ncbc_encrypt().
192

    
193
DES_cfb_encrypt() encrypt/decrypts using cipher feedback mode.  This
194
method takes an array of characters as input and outputs and array of
195
characters.  It does not require any padding to 8 character groups.
196
Note: the I<ivec> variable is changed and the new changed value needs to
197
be passed to the next call to this function.  Since this function runs
198
a complete DES ECB encryption per I<numbits>, this function is only
199
suggested for use when sending small numbers of characters.
200

    
201
DES_cfb64_encrypt()
202
implements CFB mode of DES with 64bit feedback.  Why is this
203
useful you ask?  Because this routine will allow you to encrypt an
204
arbitrary number of bytes, no 8 byte padding.  Each call to this
205
routine will encrypt the input bytes to output and then update ivec
206
and num.  num contains 'how far' we are though ivec.  If this does
207
not make much sense, read more about cfb mode of DES :-).
208

    
209
DES_ede3_cfb64_encrypt() and DES_ede2_cfb64_encrypt() is the same as
210
DES_cfb64_encrypt() except that Triple-DES is used.
211

    
212
DES_ofb_encrypt() encrypts using output feedback mode.  This method
213
takes an array of characters as input and outputs and array of
214
characters.  It does not require any padding to 8 character groups.
215
Note: the I<ivec> variable is changed and the new changed value needs to
216
be passed to the next call to this function.  Since this function runs
217
a complete DES ECB encryption per numbits, this function is only
218
suggested for use when sending small numbers of characters.
219

    
220
DES_ofb64_encrypt() is the same as DES_cfb64_encrypt() using Output
221
Feed Back mode.
222

    
223
DES_ede3_ofb64_encrypt() and DES_ede2_ofb64_encrypt() is the same as
224
DES_ofb64_encrypt(), using Triple-DES.
225

    
226
The following functions are included in the DES library for
227
compatibility with the MIT Kerberos library.
228

    
229
DES_cbc_cksum() produces an 8 byte checksum based on the input stream
230
(via CBC encryption).  The last 4 bytes of the checksum are returned
231
and the complete 8 bytes are placed in I<output>. This function is
232
used by Kerberos v4.  Other applications should use
233
L<EVP_DigestInit(3)|EVP_DigestInit(3)> etc. instead.
234

    
235
DES_quad_cksum() is a Kerberos v4 function.  It returns a 4 byte
236
checksum from the input bytes.  The algorithm can be iterated over the
237
input, depending on I<out_count>, 1, 2, 3 or 4 times.  If I<output> is
238
non-NULL, the 8 bytes generated by each pass are written into
239
I<output>.
240

    
241
The following are DES-based transformations:
242

    
243
DES_fcrypt() is a fast version of the Unix crypt(3) function.  This
244
version takes only a small amount of space relative to other fast
245
crypt() implementations.  This is different to the normal crypt in
246
that the third parameter is the buffer that the return value is
247
written into.  It needs to be at least 14 bytes long.  This function
248
is thread safe, unlike the normal crypt.
249

    
250
DES_crypt() is a faster replacement for the normal system crypt().
251
This function calls DES_fcrypt() with a static array passed as the
252
third parameter.  This emulates the normal non-thread safe semantics
253
of crypt(3).
254

    
255
DES_enc_write() writes I<len> bytes to file descriptor I<fd> from
256
buffer I<buf>. The data is encrypted via I<pcbc_encrypt> (default)
257
using I<sched> for the key and I<iv> as a starting vector.  The actual
258
data send down I<fd> consists of 4 bytes (in network byte order)
259
containing the length of the following encrypted data.  The encrypted
260
data then follows, padded with random data out to a multiple of 8
261
bytes.
262

    
263
DES_enc_read() is used to read I<len> bytes from file descriptor
264
I<fd> into buffer I<buf>. The data being read from I<fd> is assumed to
265
have come from DES_enc_write() and is decrypted using I<sched> for
266
the key schedule and I<iv> for the initial vector.
267

    
268
B<Warning:> The data format used by DES_enc_write() and DES_enc_read()
269
has a cryptographic weakness: When asked to write more than MAXWRITE
270
bytes, DES_enc_write() will split the data into several chunks that
271
are all encrypted using the same IV.  So don't use these functions
272
unless you are sure you know what you do (in which case you might not
273
want to use them anyway).  They cannot handle non-blocking sockets.
274
DES_enc_read() uses an internal state and thus cannot be used on
275
multiple files.
276

    
277
I<DES_rw_mode> is used to specify the encryption mode to use with
278
DES_enc_read() and DES_end_write().  If set to I<DES_PCBC_MODE> (the
279
default), DES_pcbc_encrypt is used.  If set to I<DES_CBC_MODE>
280
DES_cbc_encrypt is used.
281

    
282
=head1 NOTES
283

    
284
Single-key DES is insecure due to its short key size.  ECB mode is
285
not suitable for most applications; see L<des_modes(7)|des_modes(7)>.
286

    
287
The L<evp(3)|evp(3)> library provides higher-level encryption functions.
288

    
289
=head1 BUGS
290

    
291
DES_3cbc_encrypt() is flawed and must not be used in applications.
292

    
293
DES_cbc_encrypt() does not modify B<ivec>; use DES_ncbc_encrypt()
294
instead.
295

    
296
DES_cfb_encrypt() and DES_ofb_encrypt() operates on input of 8 bits.
297
What this means is that if you set numbits to 12, and length to 2, the
298
first 12 bits will come from the 1st input byte and the low half of
299
the second input byte.  The second 12 bits will have the low 8 bits
300
taken from the 3rd input byte and the top 4 bits taken from the 4th
301
input byte.  The same holds for output.  This function has been
302
implemented this way because most people will be using a multiple of 8
303
and because once you get into pulling bytes input bytes apart things
304
get ugly!
305

    
306
DES_string_to_key() is available for backward compatibility with the
307
MIT library.  New applications should use a cryptographic hash function.
308
The same applies for DES_string_to_2key().
309

    
310
=head1 CONFORMING TO
311

    
312
ANSI X3.106
313

    
314
The B<des> library was written to be source code compatible with
315
the MIT Kerberos library.
316

    
317
=head1 SEE ALSO
318

    
319
crypt(3), L<des_modes(7)|des_modes(7)>, L<evp(3)|evp(3)>, L<rand(3)|rand(3)>
320

    
321
=head1 HISTORY
322

    
323
In OpenSSL 0.9.7, all des_ functions were renamed to DES_ to avoid
324
clashes with older versions of libdes.  Compatibility des_ functions
325
are provided for a short while, as well as crypt().
326
Declarations for these are in <openssl/des_old.h>. There is no DES_
327
variant for des_random_seed().
328
This will happen to other functions
329
as well if they are deemed redundant (des_random_seed() just calls
330
RAND_seed() and is present for backward compatibility only), buggy or
331
already scheduled for removal.
332

    
333
des_cbc_cksum(), des_cbc_encrypt(), des_ecb_encrypt(),
334
des_is_weak_key(), des_key_sched(), des_pcbc_encrypt(),
335
des_quad_cksum(), des_random_key() and des_string_to_key()
336
are available in the MIT Kerberos library;
337
des_check_key_parity(), des_fixup_key_parity() and des_is_weak_key()
338
are available in newer versions of that library.
339

    
340
des_set_key_checked() and des_set_key_unchecked() were added in
341
OpenSSL 0.9.5.
342

    
343
des_generate_random_block(), des_init_random_number_generator(),
344
des_new_random_key(), des_set_random_generator_seed() and
345
des_set_sequence_number() and des_rand_data() are used in newer
346
versions of Kerberos but are not implemented here.
347

    
348
des_random_key() generated cryptographically weak random data in
349
SSLeay and in OpenSSL prior version 0.9.5, as well as in the original
350
MIT library.
351

    
352
=head1 AUTHOR
353

    
354
Eric Young (eay@cryptsoft.com). Modified for the OpenSSL project
355
(http://www.openssl.org).
356

    
357
=cut