1. Determine the point(s) of intersection of the line $p(t) = p_0 + (p_1 - p_0)t$ with the following quadrics:
 Sphere: $(x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2 = r^2$ where (x_0, y_0, z_0) is the center of the sphere and r is its radius.
 Paraboloid: $\frac{(x-x_0)^2}{\alpha^2} + \frac{(y-y_0)^2}{\beta^2} - z + n = 0$ where α and β are the semi-axes. (x_0, y_0, z_0) is the center of the quadric.

2. Determine the equation of a 3-D line between the points p_0 and p_1 such that p_1 is rotated of an angle θ about the x-axis. The rotation matrix in homogeneous coordinates is given by:

 $R_x(\theta) = \begin{bmatrix}
 1 & 0 & 0 & 0 \\
 0 & \cos \theta & \sin \theta & 0 \\
 0 & -\sin \theta & \cos \theta & 0 \\
 0 & 0 & 0 & 1
\end{bmatrix}$ \hfill (1)

3. Show that perspective projection preserves lines. Show that perspective projection projects circles onto ellipses. The perspective projection is given by:

 $x = \frac{fX}{Z}$ \quad $y = \frac{fY}{Z}$ \hfill (2)

 where f is the focal distance, (x, y) represent image coordinates and (X, Y, Z) are world coordinates.

5. Write the pseudo-code of the z-buffer algorithm.