Instructions: Do not put your name on the exam, please answer all the questions directly on the exam itself. You have 90 minutes. Explain answers as fully as possible; if appropriate give examples or define terms. Answer as many questions as you have time for.

1. What contributions did Dennis Ritchie, John Backus, Grace M. Hopper, or Alan J. Perlis make to programming?

2. Describe an object-oriented language other than C++ or Java.

3. Compute the weakest precondition for each of the following assignment statements and post-conditions (please simplify):

 (a) \(x := 2y - 4 \{ x > 0 \} \)

 \(\text{Answer: } 2y - 4 > 0 \equiv 2y > 4 \equiv y > 2 \)

 (b) \(b := (c + 10)/3 \{ b > 6 \} \)

 \(\text{Answer: } (c + 10)/3 > 6 \equiv c > 8 \)

 (c) \(a := a + 2b - 1 \{ a > 1 \} \)

 \(\text{Answer: } a + 2b > 2 \)

 (d) \(a := 2b + 1; b := a - 3 \{ b < 0 \} \)

 \(\text{Answer: } 2b + 1 < 3 \equiv b < 1 \)

4. Compare and contrast the three different kinds of “constants” illustrated below.

 \[\text{const pi } = 3.14159; \quad \text{(* I. Pascal. manifest constant *)} \]

 \[\text{S: constant String := Command_Line.Argument(1);-- II. Ada.} \]

 \[\text{final StringBuffer sb } = \text{new StringBuffer (); // III. Java. single assignment} \]

5. What is polymorphism? What kinds of polymorphism are there? Give an example of each kind of polymorphism in Java.

7. What is the difference between overloading and overriding?

8. What is the type of the following ML function? Describe in words what the function does.

 \[
 \text{fun pr [row] } = \text{row}
 \quad | \quad \text{pr [r1::r2::rows] } =
 \quad \quad \text{if abs(hd r1)}\geq\text{abs(hd r2) } \text{then pr(r1::rows) } \text{else pr(r2::rows)}
 \]

 ;
9. What is the type of the following ML function? Describe in a few words what the function does.

```ml
fun map f nil = nil |
    map f (h::t) = (f h) :: (map f t);
```

10. Define the member function in PROLOG that tests if an element is a member of a list.

11. Consider implementing in PROLOG a data structure of key/value pairs or a dictionary. Write a PROLOG definition for a predicate

```prolog
Get (list, key, value)
```

where `list` is a list of pairs, `key` is an atom, and `value` is also an atom. The predicate `Get` is true when the pair of atoms `key` and `value` appears somewhere in the list. You will have to define (use) your own functor for pairs.