Instructions: Do not put your name on the exam, please answer all the questions directly on the exam itself. You have 90 minutes. Explain answers as fully as possible; if appropriate give examples or define terms. Answer as many questions as you have time for.

1. Please describe one of the following languages in a few sentences: D, erlang, F#, Go, or Rust.

2. Consider the following program with a loop:

```plaintext
i := 1; f := 1;
while (i <> n) {
    i := i+1; f := f*i;
}
```

(a) What does this program compute?

(b) What is the (best) loop invariant for the loop?

(c) Let I be your loop invariant in part (b). Prove the following Hoare triple is valid:

$$\{I\} \ i := i + 1; f := f * i \ {I}$$
3. The programming language Java, like all object-oriented languages, has subtype polymorphism. Write a subprocedure in Java (or C#, C++) that exhibits subtype polymorphism and explain.

4. Java and C# have bounded-quantification polymorphism, an interesting new form of polymorphism which combines subtype and parametric polymorphism. Give an example and explain.
5. Describe *list comprehension* as in Python or Haskell.

6. Consider two separate, independent executions of the following Ada-like program. Assuming that X is passed by copy-in/copy-out, what are the values of I and A after the call? Assuming that X is passed by reference, what are the values of I and A after the call?

```ada
PP: declare
    -- declare an array of 5 elements
    A: array (1..5) of Integer := (1,2,3,4,5);
    I: Integer := 1;
procedure P (X: Integer) is
begin
    X := 18; I := 2; X := 10;
end P;
begin
    P (A[I]); -- call P
    -- value of "I", values of "A"?
end PP;
```
7. Dynamic dispatch is key mechanism in object-oriented languages. Give a simple example, that clearly illustrates dynamic dispatch in Java or C++.
8. Consider the following Haskell function:

\[
\begin{align*}
 z \ f \ e \ n i l &= e \\
 z \ f \ e \ (x:xs) &= f \ x \ (z \ f \ e \ xs)
\end{align*}
\]

(a) What is the type of the Haskell function?

(b) Describe in plain words what the function does.

9. What is the type of the ML function \(f \) below? Describe in a few words what the function does.

```
datatype Tree = nl | lf of int * Tree * Tree;
fun f nl = [] | f (lf (x,l,r)) = (f l) @ (x :: (f r));
```

where \(: \) is the binary, infix “cons” operation and \(@ \) binary, infix append operation on lists.
10. Find the (most general) unifying substitution for each of the following pairs of terms (x, y, and z are variables), if it exists. To the right of each pair, write “no unifier” if none exists, otherwise give the unifying substitution.

(a) \(g(a, c) \rightarrow g(a, d) \)
(b) \(h(a, x, c) \rightarrow h(a, x, d) \)
(c) \(h(c, a, x) \rightarrow h(c, a, y) \)
(d) \(g(a, c) \rightarrow g(c, a) \)
(e) \(g(a, b) \rightarrow g(a, b) \)
(f) \(g(a, x) \rightarrow g(a, h(b, c, x)) \)
(g) \(g(y, x) \rightarrow g(a, h(b, c, y)) \)
(h) \(g(a, y) \rightarrow g(a, y) \)
(i) \(g(g(a, b), h(x, a, y)) \rightarrow g(g(z, b), h(b, a, b)) \)
(j) \(g(g(a, x), h(a, x, b)) \rightarrow g(g(a, b), h(a, a, b)) \)
(k) \(h(z, z, z) \rightarrow h(x, b, y) \)
(l) \(g(g(a, x), h(y, a, b)) \rightarrow g(y, x) \)
(m) \(g(g(a, x), h(y, a, b)) \rightarrow g(z, x) \)

11. Formulate in PROLOG the classical syllogism:

All men are mortal;
Socrates is a man;
Therefore Socrates is mortal.