Operating Systems Comprehensive Exam

Fall 2013

Student ID # __________________________

10/31/2013

You must complete all of Section I

You must complete two of the problems in Section II

If you need more space to answer a question, use the back of a page and indicate which question is being answered.
Section I: You must complete all problems in this section.

1. When an I/O request is being handled for a user’s process, which term refers to the policy of returning control to the user process before the I/O is completed?
 synchronous I/O asynchronous I/O delayed I/O none of these

2. The working set model for paging is based upon the assumption of ________________.
 locality fragmentation static linking none of these

3. Given a time-sharing operating system, which of the following would be an advantage of increasing the length of the time quantum? (circle the best answer)
 shorter response time lower context switching overhead
 longer turnaround time there is no advantage to doing this

4. Belady’s anomaly can affect the performance of the ________________ page replacement algorithm.
 FIFO LRU optimal none of these

5. ________________ is commonly used to implement virtual memory.
 static linking limit register demand paging compaction

6. A process that does not affect, and is not affected by, another process is referred to as:
 static independent cooperating dynamic unbounded

7. List the three requirements that must be satisfied to implement a valid critical section:
8. A UNIX process calls `fork()` to create a child process as shown: `pid = fork();`

 a) What value will be assigned to `pid` in the parent process by the call to `fork()`?

 the parent’s process id the child’s process id zero none of these

 b) What value will be assigned to `pid` in the child process by the call to `fork()`?

 the parent’s process id the child’s process id zero none of these

9. Is there an error in the following pair of `Semaphore` operations (assume that S is initially = 1)?

   ```c
   wait(S) {  
     while(S > 0);
     S--;  
   }
   
   signal(S) {  
     S++;  
   }
   ```

 Yes No

 If your answer is Yes, briefly explain the error and explain how to correct it:

10. Explain the difference between deadlock avoidance and deadlock prevention:
Matching: choose the best answer for questions 11-13 from the list below:

A. mutex B. page fault C. thrashing
D. atomic E. blocking F. busy waiting

11. _______ This describes the situation when a process spends more time paging than executing.

12. When a process uses a ___________ send to deliver a message, it must wait until the receiving process gets the message.

13. _______ This occurs when attempting to access a memory page that is not currently in memory.

14. Memory compaction cannot reduce fragmentation when ________________ is used.
 paging segmentation contiguous allocation

15. What specific term refers to the set of machine instructions that can only be executed while in the system (i.e. supervisor) mode?
 bounded code privileged instructions monitor instructions static code

16. Which of the following file allocation methods can result in external fragmentation?
 linked allocation indexed allocation contiguous allocation

17. Regarding memory allocation, explain the difference between paging and segmentation. Include the advantages and disadvantages of each approach and specifically mention the types of fragmentation that can occur with each approach.
Section II: You must complete two of the following three problems (A, B, C). If you complete more than two problems, clearly indicate which two problems you want graded. Otherwise, only the first two attempted problems will be graded.

A. Consider the following list of disk access requests, in arrival order. For each disk scheduling algorithm, calculate the number of tracks that the read/write head crosses without stopping. The disk drive has 200 tracks, from 0 to 199, and the read/write head has a starting location of track 100.

Show your work to receive partial credit, otherwise an incorrect answer will get zero points.

65, 132, 147, 93, 72, 111, 121, 35

(a) First-Come, First-Served

(b) Shortest Seek Time First

(c) Given the following segment table:

<table>
<thead>
<tr>
<th>Segment</th>
<th>Base</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>600</td>
<td>190</td>
</tr>
<tr>
<td>1</td>
<td>220</td>
<td>320</td>
</tr>
<tr>
<td>2</td>
<td>950</td>
<td>150</td>
</tr>
<tr>
<td>3</td>
<td>480</td>
<td>80</td>
</tr>
</tbody>
</table>

Calculate the correct physical addresses for the following logical addresses [segment, offset], indicate any addressing errors that occur.

a) [0, 110] physical address? _______________________

b) [2, 225] physical address? _______________________
B. Given the following set of processes, answer the questions below. Assume that each new process arrives after the interrupted process has been returned to the ready queue. If two processes arrive at the same time, or have the same remaining burst time, schedule them in process number order.

<table>
<thead>
<tr>
<th>Process Id</th>
<th>Burst Time</th>
<th>Arrival Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Fill in the following Gantt charts as specified and answer the questions associated with each part. Write the process number of the executing process in the cell for each time unit.

1) **First-Come-First-Served** (non-preemptive):

 Average waiting time =

 What was the turnaround time for process 2 ________

2) **Shortest-job-first** (preemptive):

 Average waiting time =

 Which process had the longest response time ________

3) **Round Robin** (time slice (quantum) is 1 time unit):

 Average waiting time =

 What was the turnaround time for process 4 ________
C. Given the following list of page references, in execution order:

\[1, 2, 3, 4, 5, 1, 2, 4, 3, 2, 3, 4, 5 \]

Given the number of available frames shown in the table below, how many page faults will occur for each of the following page replacement algorithms? (All pages are initially empty.)

You must show your work to receive partial credit, otherwise only your answers will count.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th># of page faults</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIFO with 4 frames</td>
<td></td>
</tr>
<tr>
<td>LRU with 4 frames</td>
<td></td>
</tr>
<tr>
<td>LRU with 3 frames</td>
<td></td>
</tr>
</tbody>
</table>