1. (50 pts) Answer the following questions about the given binary tree $B1$

(a) Give the preorder traversal of this tree
(b) Give the inorder traversal of this tree
(c) Give the postorder traversal of this tree
(d) Give the depth-first search order of this tree
(e) Give the breadth-first search order of this tree
(f) Is B_1 a binary search tree? Explain.
(g) Show B_1 after inserting node n (call the resulting tree B_2)
(h) Show B_1 after deleting node m (call the resulting tree B_3)
(i) Which is more difficult in a search tree: insertion or deletion? Explain.
(j) Is B_1 balanced (AVL)? Explain. If your answer is “not balanced”, convert it into a balanced tree.
(k) Is B_2 balanced (AVL)? Explain. If your answer is “not balanced”, convert it into a balanced tree.
(l) Why is a complete balanced search tree preferable to a random search tree?
2. (25 pts) Given an integer array, its length, and an integer item to be found, write a function that performs binary search and returns the item’s location (or -1 if not found)

(a) iteratively (no recursion) and

(b) recursively (with recursion).
3. (10 pts) Using big-O notation, estimate the running time of \texttt{proc(N)} in terms of \texttt{N}. Explain your answer.

```c
void proc(int x)
{
    if (x > 1)
    {
        proc(x / 4);
        // some constant-time operation here
    }
}
```

4. (15 pts) Given these numbers: 3 8 2 6 5 1, perform Heapsort (in ascending order) and show the heap after each element is sorted.