1. (25 points) Give a simple data structure for singly linked list of integers. Write a function to reverse a list. You should assume the argument of your function is a reference to the first node of the linked list and that it returns a reference to the first node of the reversed linked list.
2. (25 points) Give a simple data structure for an AVL-Tree of integers. Write a function to search for an element in a tree. Your function should return a reference to the node where the element was found.
3. (25 points) Given the graph below.

a) Perform a topological sort of the graph and give the output.

b) Describe a real-world problem in which a topological sort can be used to find a solution.
4. (20 points) Describe two different ways in which a graph can be implemented as a data structure. Compare and contrast the advantages and disadvantages of each.
5. (20 points) Answer the following questions about Quicksort

a) Describe a way in which the partitioning part of the algorithm can be implemented so that the algorithm will more likely perform in \(O(n \log n) \)

b) Write a Quicksort function using the partitioning you have described above. You should also provide the implementation of the partition function.