CS Comprehensive Exam
Fall 1998
Analysis of Algorithms

This exam consists of 3 questions that are worth 100 points. Please give brief and precise answers.

1. (15 points) True/False questions

(a) A Greedy algorithm that solves a problem is usually faster than the Dynamic programming based algorithm that solves the same problem.

(b) A Greedy algorithm that solves a problem is usually more accurate than the Dynamic programming based algorithm that solves the same problem.

(c) Exhaustive search methods are usually the slowest out of all other problem solving methods.

(d) In cryptology, Private-key based algorithms provide more security than Public-key based algorithms.

(e) Factorizing large numbers into primes is very hard. Algorithms to do so could require more than a century of run time.
2. **(45 points)** Consider the following algorithm. (note: array indices start at 1)

```plaintext
procedure NEW-SORT (A[], n);
begin
  if n > 1 do
    FIND-MAX(A[], n, max);
    swap(A[n], A[max]);
    NEW-SORT(A[], n - 1);
end

procedure FIND-MAX (A[], n, index);
begin
  index := 1;
  for i := 2 to n do
    if (A[i] > A[index]) index := i;
end
```

(a) Is NEW-SORT a valid (correct) sorting algorithm?
(b) Is NEW-SORT stable?
(c) Calculate the time complexity of FIND-MAX.
(d) Give a recurrence that describes the time complexity of NEW-SORT.
(e) Solve the above recurrence.
(f) Which of the following sorting algorithms is closest to NEW-SORT in terms of processing data: Bubble, Insertion, Selection, Merge, Quick, Heap, Shell, Counting, Radix, Bin?
3. **(40 points)** Consider the following algorithm where a division by 3 is rounded down to the nearest integer (e.g., \(8/3=7/3=6/3=2\)) and the indices of an array start at zero.

procedure Foo \((x, k[\]), lo, hi)\n
begin
 if \((lo > hi)\) then
 return (fail)
 else
 third = \((lo + hi) / 3\)
 if \((x == k[\text{third}]\) then
 return (third)
 elseif \((x < k[\text{third}]\) then
 Foo\((x, k, lo, \text{third - 1})\)
 else
 Foo\((x, k, \text{third + 1}, hi)\)
 endif
 endif
end

(a) What is the value of \(y\) after executing the statement

\[
 y := \text{Foo}(10, [3, 4, 9, 10, 12, 18, 20], 0, 6)
\]

(b) What problem the above algorithm solves?

(c) What is the best case time complexity of Foo? Under what condition the best case occurs?

(d) What is the worst case time complexity of Foo? Under what condition the worst case occurs?

(e) Write a recurrence formula that represents the average case time complexity of Foo. (you do not need to solve it)