Analysis of Algorithms

Comprehensive Examination, Spring 2001

Sign the exam with your student number - not your name

Answer all three questions to the best of your ability.

1. (40 pts) Provide a time and space analysis of the Floyd-Warshall algorithm below that finds the shortest path between all nodes in a graph with n nodes given an $n \times n$ matrix of edge weights. Explain your reasoning.

```java
public int[][] FloydWarshall(int[][] weights) {
    int n = weights.length;
    int[][] D = new int[n][n];
    D = weights;
    for (int k = 0; k < n; k++) {
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < n; j++) {
                D[i][j] = min(D[i][j], D[i][k]+D[k][j]);
            }
        }
    }
    return D;
}

public int min(a, b) {
    if (a < b) return a;
    else return b;
}
```
2. (40 pts) The recursive algorithm below computes x^n.

```
public double exp(double x, int n) {
    if (0 == n) return 1;
    else if (0 == n % 2) { // n is even
        double y = exp(x, n/2);
        return y*y;
    } else { // n is odd
        return x*exp(x, n-1);
    }
}
```

1. Define a reasonable initial condition for the time complexity when $n = 0$.
2. Define a recurrence relation that describes the recursive nature of the algorithm.
 Note that the recurrence relation will have two cases: for even and odd values of the exponent n.
3. Provide the best analysis you can to describe the time complexity of the algorithm.
 Note that when n is odd in one call it is even in the next call.
3. (10 pts) Solve the recurrence relation

\[T(n) = 2T(n/2) + 1 \]

with initial condition \(T(1) = 1 \) (you may assume \(n \) is a power of 2, e.g., \(n = 2^p \) for some integer \(p \)).
4. (10 pts) Suppose an array $X[0..n-1]$ has been sprinkled with random real numbers chosen uniformly over the range $[0, 1]$, and consider the code fragment:

```java
float max = X[1];
for (int i = 2; i < n; i++) {
    if (max < X[i]) {
        max = X[i];
    }
}
```

What is the expected number of times that the variable `max` will be re-set? That is, what is the average time complexity of the statement `max = X[i]` that is inside the for loop?