1. (30 pts) Give big-O estimates on the size of the following sums.

- $\sum_{i=1}^{n} 1$

- $\sum_{i=1}^{n} i$

- $\sum_{i=0}^{n} 2^i$

- $\sum_{i=1}^{n} \frac{1}{i}$

- $\sum_{i=1}^{n} \log i$

- $\sum_{i=1}^{n} i \log i$
2. (20 pts) What is the time and space complexity of the algorithm given below.

```java
longestCommonSubsequence(String X, String Y) {
    int m = X.length();
    int n = Y.length();
    int C[m][n];
    int B[m][n];
    for (int i = 0; i < m; i++) { C[i][0] = 0; }
    for (int j = 0; j < n; j++) { C[0][j] = 0; }
    for (int i = 1; i < m; i++) {
        for (int j = 1; j < n; j++) {
            if (X.charAt(i) == Y.charAt(j)) {
                C[i][j] = C[i-1][j-1]+1;
                B[i][j] = 0;
            }
            else if (C[i-1][j] >= C[i][j-1]) {
                C[i][j] = C[i-1][j];
                B[i][j] = 1;
            }
            else {
                C[i][j] = C[i][j-1];
                B[i][j] = 2;
            }
        }
    }
}
```
3. (20 pts) The algorithm given below solves the matrix chain multiplication problem: given a multiplication chain $A_1A_2 \cdots A_n$ of matrices specify the order of multiplications to minimize the scalar multiplications. This minimum number is returned as $m[1][n]$, and the array $p[]$ holds the orders of the matrices (A_1 is $p_0 \times p_1$, A_2 is $p_1 \times p_2$, ... A_n is $p_{n-1} \times p_n$).

```c
#define INFINITY MAX_VALUE // 2147483647
matrix-chain(int[] p, int i, int j) {
    if (i == j) { return 0;}
    m[i][j] = INFINITY;
    for (k=i; k < j; k++) {
        q = matrix-chain(p, i, k) + matrix-chain(p, k+1, j) + p[i-1]*p[k]*p[j];
        if (q < m[i][j]) { m[i][j]=q;}
    }
    return m[i][j];
}
```

Let $T(n)$ denote the time to compute $m[1][n]$ by the call `matrixChain(p, 1, n)`. Pretend $T(1) = 1$.

• Write a recurrence relation that expresses $T(n)$ in terms of a sum of $T(1), \ldots, T(n-1)$ (and any other needed terms or factors).

• Use your formula with mathematical induction to prove that $T(n) \geq 2^{n-1}$.
4. (30 pts) This question asks you to analyze 2 algorithms that compute Fibonacci numbers. Pretend the cost of adding, subtracting, or multiplying two numbers is $O(1)$, independent of the size of the numbers.

a) One algorithm to evaluate Fibonacci numbers is given in the code below.

```c
int Fibonacci(int n) {
    if ((0==n) || (1==n)) { return n; }
    else { return Fibonacci(n-1) + Fibonacci(n-2); }
}
```

i) What is the time complexity of the algorithm?

ii) Is the algorithm efficient or not? Give reasons for you answer.

2) Another algorithm for evaluating Fibonacci numbers is:

```c
int Fibonacci(int n) {
    int F1=1, F0=0;
    for (int i=1; i <= n; i++) {
        F0=F1 + F0;
        F1=F0-F1;
    }
    return F0;
}
```

i) What is the time complexity of the algorithm?

ii) Is the algorithm efficient or not? Give reasons for you answer.