1. (30 pts) Here’s a problem from Brassard and Bratley. Consider the `wastePaper()` algorithm below. Let \(W(n) \) stand for the number of lines of output generated by a call to `wastePaper(n)`.

 a. (10 pts) What is the value of \(W(0) \)?

 b. (10 pts) Use summation notation to compute the complexity lines 1 – 5.

 c. (10 pts) Write a recurrence equation for \(W(n) \)

```
(Waste Paper)≡
0: public void wastePaper(int n) {
1:     for (int i = 0; i < n; i++) {
2:         for (int j = 0; j <= i; j++) {
3:             System.out.println("i = "+i", j= "+j", n = "$+n);
4:         }
5:     }
6:     if (n > 0) {
7:         for (int i = 0; i < 4; i++) {
8:             wastePaper(n/2);
9:         }
10:     }
11: }
```
2. (25 pts) Find a simple formula for the recurrence equation:

\[T(n) = 2T(n - 2) + 1 \quad T(0) = 0, \ T(1) = 1 \]
3. (30 pts) This problem asks questions about the heap data structure.

 a. (5 pts) Define: *left-complete binary tree*.

 b. (5 pts) Explain how a left-complete binary tree can be stored in an array.

 c. (5 pts) Define: *the heap property of a left-complete binary tree*.

 d. (15 pts) The following algorithm, from Sedgewick, is used in building a heap. What is the worst case time complexity of *heapify*?

```java
public void heapify (int[] A, int k, int n) {
    while (2*k <= n) {
        j = 2*k;
        if ((j < n) && (A[j] < A[j+1])) j++;
        if (A[k] >= A[j]) break;
        swap(A[k], A[j]);
        k = j;
    }
}
```

3 of 4
4. (15 pts) You are to design an algorithm for the following task.

Given two positive integers \(M \) and \(N \), with \(M < N \). Output a sorted list of \(M \) random integers in the range 1—\(N \) with no integer occurring more than once.

You may use a function \texttt{RandInt}(I,J) that returns a random integer chosen uniformly from the range \(I—J \) or a function \texttt{RandReal}(0,1) that returns a random real number chosen uniformly from the range \([0,1)\). Analyze the complexity of your algorithm.