1a. (10 pts) Explain why an $O(n^4)$ algorithm would be preferable over an $O(2^n)$ algorithm when one does not have any idea about the expected input problem instance-size n.

1b. (10 pts) How will the decision be affected when there is some idea on how large the problem size (n) would be as input to the chosen algorithm?
2. (20 pts) The **MAXSUM** problem over a sequence of positive and negative numbers is to find a subsequence that produces the largest sum. For instance, over a sequence \((3, -1, 9, -5, 2)\), the answer is 11 for the subsequence \((3, -1, 9)\). The following iterative algorithm calculates the maximum subsequence sum.

Algorithm MaxSum1(an array of numbers a, of length n)

MaxSum=0;
For (i=0; i<n; i=i+1) {
 For (j=i; j<n; j=j+1) {
 thisSum=0;
 For (k=i; k<=j; k=k+1) {
 thisSum=thisSum+a[k];
 }
 If (thisSum>MaxSum) MaxSum=thisSum;
 }
} return MaxSum;
End Algorithm.

Analyze the time-complexity of the algorithm MaxSum1.
3. (20 pts) For the MAXSUM problem a recurrence equation can calculate the result:

\[
\text{MaxSum}[i, j] = \begin{cases}
\max\{\text{MaxSum}[i - 1, j] + a[i], \text{MaxSum}[i, j - 1] + a[j]\} & \text{for } i < j \\
a[i] & \text{for } i = j
\end{cases}
\]

where MaxSum[i, j] is the maximum subsequence sum over the subsequence a[i..j]. Of course, the result would be obtained for the whole sequence in MaxSum[1, n].

Design a dynamic programming algorithm for this optimization problem. Just outlining the algorithm with an example run (over the above problem instance in the question 2) will suffice as an answer. Hint: compute the \(i \times j\)-matrix diagonally, first for \(j=i\), then for \(j=i+1\), then for \(j=i+2\), and so on.
4. (20 pts) A sparse directed graph $G = (V, E)$ is represented as an adjacency list, where V is a set of n nodes, and E is the set of e edges, each of which is an ordered pair of nodes.

Carefully analyze the time-complexity of the following algorithm-fragment. Express your answer in terms of $|e|$ and $|n|$.

```plaintext
For each node N1 in V do {
    Print N1;
    For each node N2 adjacent to N1 do { Print N2; }
}
```
5. (20 pts) Write a recursive divide-and-conquer algorithm for computing the sum over a sequence of numbers. Analyze its time-complexity.