Comprehensive Examination Spring 2005 (Analysis of Algorithms)

1a. [10 pts] Explain why an $O(N^3)$ algorithm would be preferable over an $O(2^N)$ algorithm when one does not have any idea about the expected input problem instance-size N.

1b. [10 pts] How will the decision be affected when there is some idea on how large the problem size (N) would be as input to the chosen algorithm?

2. [20 pts] Solve the following recurrence equation for the general solution.

$$T_n = 3T_{n-1} - 2T_{n-2}$$

3. [20 pts] The following is a recurrence formula (for aligning sequences with gaps, you need not be concerned about the problem that the formula models).

$$\begin{align*}
 a[i, 0] &= -2i \\
 a[0, j] &= -2j \\
 a[i, j] &= \max_{i, j > 0} \{a[i - 1, j] - 2, a[i, j - 1] - 2, a[i - 1, j - 1] + p(i, j)\}
\end{align*}$$

where $p[i, j]$ is a given matrix of integers, and i and j are integers between 0 and a constant, say n.

a. Write a dynamic programming algorithm for computing $a[i, j]$ for given i and j.

b. Analyze the complexity of your algorithm.

4. [20 pts] A sparse directed binary graph $G = (V, E)$ is represented as an adjacency list, where V is the set of n nodes, and E is the set of e edges, each of which is an ordered pair of nodes. Analyze the time-complexity of the following algorithm fragment.

For each node N_1 in V do {
 Print N_1;
 For each adjacent node N_2 to N_1 such that (N_1, N_2) is in E do {
 Print N_2;
 }
}

5. [20 pts] Write a recursive divide-and-conquer algorithm for finding the maximum value over a sequence of numbers. Analyze your algorithm’s time-complexity.