1. Answer the following short questions: [20 pts]
a. The Dynamic Programming algorithms have bottom up control while the Divide and Conquer algorithms have top down control. True/False
b. The set of NP-complete problems is a subset of the NP-class of problems. True/False
c. It has been proved that NP-complete problems cannot have polynomial algorithms. True/False
d. In order to prove a problem X to be NP-hard one should develop a polynomial transformation from X to a known NP-hard problem. True/False
e. The Single source shortest path finding problem is P-class problem. True/False
f. Name a well-known algorithm for the Minimum spanning tree finding problem.
g. 4-SAT (where each clause in a Boolean Satisfiability problem has four literals) is an NP-hard problem. True/False
h. In general O(N^2) algorithm is worse than O(N\log N) algorithm. True/False
i. When would you buy an O(N^{100}) algorithm over an O(2^N) algorithm for the same problem?
j. Which problem does the well-known Floyd’s algorithm solve?
2. The next question is related to the Maximum Subsequence problem. MaxSubseq problem over a sequence of positive and negative numbers is to find a subsequence that produces the largest sum. For instance, over a sequence (3 -1 9 -5 2), the answer is 11 for the subsequence (3 –1 9). The following iterative algorithm calculates the MaxSubseq.

Algorithm MaxSubseq1(an array of numbers \(a \), of length \(n \))
\[
\begin{align*}
\text{MaxSum} &= 0; \\
\text{For } (i = 0; i < n; i = i + 1) \\
&\hspace{1cm} \text{For } (j = i; j < n; j = j + 1) \\
&\hspace{2cm} \text{thisSum} = 0; \\
&\hspace{3cm} \text{For } (k = i; k \leq j; k = k + 1) \\
&\hspace{4cm} \text{thisSum} = \text{thisSum} + a[k]; \\
&\hspace{3cm} \text{If } (\text{thisSum} > \text{MaxSum}) \\
&\hspace{4cm} \text{MaxSum} = \text{thisSum}; \\
&\hspace{2cm} \}; \\
&\text{return } \text{MaxSum}; \\
\text{End Algorithm.}
\end{align*}
\]

The innermost loop over \(k \) is redundant. Improve the algorithm by appropriately removing it and describe how is the time-complexity improved in your algorithm. [20]
3. The following is a recurrence formula. Write a Dynamic Programming algorithm for computing all $a[i,j]$'s, where i and j are integers between 0 and a constant $N>0$.

$a[i, 0]= -i$, $a[0, j]= -j$,

$a[i, j] = \max\{ a[i-1,k]-2, 0 \leq k < j; a[p, j-1]-2, 0 \leq p < i; a[p-1, k-1] -1\}, 0 \leq p < i, 0 \leq k < j\}$, for both i and $j >0$.

Analyze the time-complexity of the algorithm. [20]
4. Set up the recurrence equation for asymptotic time complexity of the following algorithm and solve it for the usual theta function. [Assume $n=\text{end-start+1}=2k$, for some integer $k>0$.]

Algorithm Little (int array A[], int start, int end)
begin
if end == start do
 return // null
else
 Little (A, start+2, end);
end

End Algorithm. [20]
5. The following is a directed weighted graph. Draw it first. [Usual presumption of adjacency list representation of the graphs holds for a graph theoretic question.]

V={a, b, c, d, e}, E={(a, b, 2), (a, d, 8), (b, c, 3), (c, d, 2), (c, e, 5), (d, e, 1), (e, b, 2)}.

For the following algorithm find out what the output from line 4 would be.

(1) enqueue all arcs in Q;
(2) while Q not empty do
(3) (v, w, d) = pop(Q);
(4) print (v, w, d);
(5) \(d = d - 3; \)
(6) if \(d \geq 0 \) then push \((v, w, d) \) on Q;
 end while loop;