1a. Explain why a $O(3^N)$ algorithm is worse than a $O(N^4)$ algorithm when you do not have any idea about the expected input problem instance-size N. [10]

1b. What is the maximum value (N) of the input size when you may choose the exponential algorithm over the other one? [10]
2. Set up a recurrence equation and solve it for the time-complexity of following algorithm fragment.

Algorithm Unknown (Input array A[], integer start, integer end, integer Z)
 Local integer X initialized to 1;
 If start == end do
 X = X+1;
 Z = Z + X;
 Return Z;
 Else
 Return Z + unknown (A[], start+1, end, Z+1);
End algorithm.

Driver: Unknown (A[], 1, N, 1)
where N is the size of the array and the array index starts with 1. [20]
3. The following is a recurrence formula (for aligning sequences with gaps, you need not be concerned about the problem that the formula models). Write a Dynamic Programming algorithm for computing $a[i,j]$ for the given i and j, where i and j are integers between 0 and a constant $N>0$.

$$a[i, 0]= -i, a[0, j]= -j,$$
$$a[i, j] = \max \{a[i-1,j]-1, \ a[i, j-1]-1, \ a[i-1, j-1] + p(i,j)\} \text{ for both } i \text{ and } j >0, \text{ and for a given integer matrix } p(i,j).$$

Analyze the time-complexity of the algorithm. [20]
4. Input to the following algorithm is a sorted array of integers (both the non-increasing and non-decreasing arrays). What is its output for each of the two cases of non-increasing and non-decreasing sorted list? Analyze the asymptotic time complexity. [20]

Algorithm Resorter(int [] a)
{
 int I=1, j=a.length; // the array is from 1 through a.length
 while (I<j) {
 if (a[I] > a[j])
 { int temp=a[I]; a[I]=a[j]; a[j]=temp;};
 I++;
 j--;
 }
}
5. Answer true/false for the following sentences (or explain if there is no such answer): [20]
a. All NP-hard problems are NP-complete problems.
b. The set of NP-complete problems is a subset of the NP-class of problems.
c. NP-complete problems cannot have polynomial algorithms.
d. In order to prove a problem X to be NP-hard one needs to develop a polynomial transformation from X to a known NP-hard problem.
e. 2-SAT is an NP-hard problem.
f. There exists a polynomial-time algorithm for finding the maximum spanning tree in a undirected and weighted graph.
g. QuickSort algorithm takes $O(n \log n)$ time for running on an already sorted array of size n with a pivot choosing policy from one end of the array.
h. This sentence (in question 5h) is false.
i. Suppose that G is a connected and undirected graph. If removing edge e from G disconnects the graph, then e is a tree edge in the depth-first search spanning-tree of G.
j. Suppose that e is a minimum weight edge of a weighted undirected graph G, and all the edge weights are distinct. Then e is always contained in the minimum spanning tree of G.