Q1. Write a recurrence for the time complexity of the following algorithm, and solve it. You may assume \(n \) is a power of 2.

Draw the recurrence tree for \(n = 16 \), and \(t = 15 \).

function \(f(n, t) \)
if \(n \leq 1 \):
 print_line("leaf \n")
else
 if \(t > n \) then \(f(n/2, t) \)
 else \(f(n/2, t) \)

[20]
Q2. Consider the following problem:
INPUT: A set \(S = \{(x_i, y_i) \mid 1 \leq i \leq n\} \) of intervals over the real numbers.
OUTPUT: A pair of distinct intervals from \(S: \{(x_k, y_k), (x_m, y_m) \mid k \neq m\} \) such that \((y_m - x_k)\) is the shortest distance amongst all such pairs.
Write a recursive backtracking algorithm to solve it. No pruning is necessary. Discuss its time complexity. [20]
Q3. Q1. Write a dynamic programming algorithm for computing $A(n, 1)$ from the following formula. Analyze the complexity for your algorithm. Draw a template table A to explain your algorithm.

$A(p, p)$ are given as input for all p, and $A(p, q) = 0$, for all $p < q$, for p and q being integers.

$A(p, q) = \max \{ A(p, k+1) + A(k, q) + 2 \mid \text{for all } k \text{ with } q \leq k < p \}, \text{ for all } 1 \leq q < p \leq n$

[20]
Q4a. Can the *Depth first traversal* on a graph produce a spanning tree?

Q4b. Define the *Strongly Connected Component* of a directed graph.

Q4c. What is the main difference between the *Depth first search* on a tree and on a graph.

Q4d. If the *time complexity* of an algorithm is \(O(n^2) \) for \(n \) input size, what is the largest size of output that the algorithm may produce in terms of \(n \)? Explain your answer.

Q4e. On a city street system we would like to know what is the shortest distance between every pair of addresses. Name the specific algorithm for solving this problem.

Answer *true/false* for the following sentences. Explain your answer if you cannot answer as true/false.

Q4f. There are problems which are P-class of problems but not NP-class.

Q4g. The set of P-class problems is a subset of the NP-hard problems.

Q4h. Non-deterministic algorithms are nothing but deterministic backtracking algorithms.

Q4i. In order to prove a problem \(X \) to be NP-hard one needs to develop a polynomial transformation from a known NP-hard problem \(Y \) to \(X \). So, if \(Y \) had a polynomial-time algorithm, then \(X \) would also have a polynomial-time algorithm.

Q4j. Suppose, there exists a polynomial transformation from a problem \(Y \) to a known P-class problem \(X \). Is \(Y \) also a P-class problem?
Q5. Depth First Search algorithm for a graph:
Input: graph $G=(V, E)$; Output: a DFS spanning tree over G

$DFS(node \; v)$

(2a) Write the DFS algorithm to print pre-order numbering of the nodes. [20]

(2b) Draw a undirected $G=(V=\{a, b, c, d, e\}, E=\{(a,b), (b,c), (b,e), (b, d), (c,e), (c,d)\})$. Starting with a call to $DFS(a)$, show your call sequences (i.e., the recursion tree or the traversal of the graph) and your pre-order numbering of the nodes. [10]