
Learning Implicit User Interest Hierarchy for Context in
Personalization

By Hyoung R. Kim and Philip K. Chan
Florida Institute of Technology Technical Report CS-2002-15

hokim@fit.edu, pkc@cs.fit.edu

ABSTRACT
To provide a more robust context for personalization, we
desire to extract a continuum of general (long-term) to
specific (short-term) interests of a user. Our proposed
approach is to learn a user interest hierarchy (UIH) from a
set of web pages visited by a user. We devise a divisive
hierarchical clustering (DHC) algorithm to group words
(topics) into a hierarchy where more general interests are
represented by a larger set of words. Each web page can
then be assigned to nodes in the hierarchy for further
processing in learning and predicting interests. This
approach is analogous to building a subject taxonomy for a
library catalog system and assigning books to the
taxonomy. Our approach does not need user involvement
and learns the UIH "implicitly." Furthermore, it allows the
original objects, web pages, to be assigned to multiple
topics (nodes in the hierarchy). In this paper, we focus on
learning the UIH from a set of visited pages. We propose a
few similarity functions and dynamic threshold-finding
methods, and evaluate the resulting hierarchies according
to their meaningfulness and shape.

Keywords
user interest hierarchy, user profile, clustering algorithm,
concept clustering

1. INTRODUCTION
When a user browses the web, at different times, she could
be accessing pages pertaining to different topics. For
example, she might be looking for research papers at one
time and airfare information for conference travel at
another. That is, a user can exhibit different kinds of
interests at different times, which provide different contexts
underlying a user's behavior. However, different kinds of
interests might be motivated by the same kind of interest at
a higher abstraction level (computer science research, for
example). That is, a user might possess interests at different
abstraction levels—the higher-level interests are more

general, while the lower-level ones are more specific.
Furthermore, more general interests, in some sense,
correspond to longer-term interests, while more specific
interests correspond to shorter-term interests. During a
browsing session, the general interests are back on one's
mind, while specific interests are one's current foci. Unlike
News Dude [2], which generates a long-term and a short-
term model, we model a continuum of long-term to short-
term interests. We believe identifying the appropriate
context underlying a user's behavior is important in more
accurately pinpointing her interests. The web is not static
— new documents and new words/phrases are created
every day. Most clustering methods assume each object
(document) is represented by a fixed number of features
(words/phrases). This representation is inadequate in a
dynamic environment like the web. Consider how a
librarian would form taxonomy of the subjects for all the
books in the library. She would first identify the subject(s)
of a book and then cluster all the books on the bases of the
subject. Finally, books are categorized by the taxonomy.
STC [14] does not rely on a fixed vector of word features
in clustering documents. We use a similar approach—
instead of clustering documents, we cluster features in the
documents; documents are then assigned to the clusters.
We propose to model general/long-term and specific/short-
term interests with a concept hierarchy called User Interest
Hierarchy (UIH). The resulting hierarchy (UIH) is used to
build Page Interest Estimator (PIE)'s [3] as well as
provides a context. For each cluster in UIH, the associated
documents are used as positive examples for learning a
PIE. The constructed UIH and its corresponding learned
PIE's are used for estimating interest of a new document.
However, current clustering methods do not generate
clusters that possess all of the key characteristics we desire
in a UIH.
The most common and obvious solution for building a UIH
is for the user to specify their interests explicitly. However,
the explicit approach includes these disadvantages:

• Time and effort in specifying her interests.
• User’s interest may change over time.

Alternatively, an implicit approach can identify a user’s
interests by inference.
The main objective of this research is to build UIH’s
without the user’s involvement (implicitly). We devise a
divisive hierarchical clustering (DHC) algorithm that
constructs such a hierarchy and supports overlapping
clusters of the original objects (web pages in our case). We
believe our approach has significant benefits and possesses
interesting challenges. The main contributions of this work
are the characterization of a user interest hierarchy, an
algorithm that constructs a UIH, similarity functions,
dynamic threshold-finding methods, and evaluation of our
techniques based on real data collected from our
departmental web server.
The rest of this paper is as follows: Section 2 discusses
related work in clustering algorithms and building user
interest profiles; Section 3 introduces user interest
hierarchies (UIH’s); Section 4 details our approach towards
building implicit UIH’s; Section 5 describes our
experiments; Section 6 analyzes the results from the
experiments; Section 7 summarizes our findings and
suggests possible future work.

2. RELATED RESEARCH
Agglomerative (bottom-up) hierarchical clustering
algorithms initially put every object in its own cluster and
then repeatedly merge similar clusters together, resulting in
a tree shape structure that contains clustering information
on many different levels [12]. Merges are usually binary—
merging two entities, which could be clusters or initial data
points. Hence, each parent is forced to have two children in
the hierarchy. Divisive (top-down) hierarchical clustering
algorithms are similar to agglomerative ones, except that
initially all objects start in one cluster which is repeatedly
split. Splits are usually binary and one usual stopping
criterion is the desired number of clusters [4]. Our divisive
algorithm does not necessarily generate binary splits and
uses a minimum cluster size as one of the stopping criteria.
Partitioning clustering algorithms such as the K-means
algorithm initially create a partitioning of K clusters. Those
initial K clusters are then iteratively refined to achieve the
final clustering of K clusters. A major drawback of this
approach is that the number of clusters must be specified
beforehand as an input parameter, however Perkowitz
developed a method to automatically determine the value
of K. They ran the K-means algorithm multiple times,
starting with a large value and gradually decreasing it.
They were able to efficiently determine a good value for K
during the clustering of web pages [9]. Our algorithm only
needs to cluster strongly connected words, but the K-means
algorithm divides whole words into K clusters without
removing weak relations. COBWEB is a incremental
conceptual clustering algorithm. Each cluster records the
probability of each attribute and value, and the probabilities
are updated every time an object is added [4]. However,

instead of using category utility to determine if child
clusters are generated, we use a graph-based method and a
different similarity function.
To build user interest profiles that can be used for web
personalization, Richardson and Domingos [10] enhanced
PageRank by using a more intelligent web-surfer. This
method collects relevant web pages based only on queries,
probabilistically combined page contents, and link
structure. Research has also been performed on a method to
group web pages into distinct topics and to list the most
authoritative/informative web pages in each topic. The
similarity metric that is used incorporates comprehensive
information regarding text, hyperlink structure, co-citation,
and the unsupervised clustering method based on spectral
graph partitioning using normalized cut [7]. Our method is
only concerned with the text but allows overlapping
clusters. A news agent called News Dude, developed by
Billsus and Pazzani [2], learns which stories in the news a
user is interested in. The news agent uses a multi-strategy
machine learning approach to create separate models of a
user’s short-term and long-term interests. Unlike News
Dude, in out approach we model a continuum of long-term
to short-term interests. Syskill & Webert [8] use a
predefined profile, which significantly increases the
classification accuracy on previously unseen web pages.
They emphasize the importance of a user profile. Perkowitz
and Etzioni [9] introduced SCML, a concept learning
algorithm that only extracts some concepts in a set of data.

3. USER INTEREST HIEREARCHY
A user interest hierarchy (UIH) organizes a user’s general
to specific interests. Towards the root of a UIH, more
general (longer-term) interests are represented by larger
clusters of words while towards the leaves, more specific
(shorter-term) interests are represented by smaller clusters
of words. To generate a UIH for a user, our clustering
algorithm (details in Sec. 4) accepts a set of web pages
visited by the user as input. We use only the words in a
web page and ignore link or image information. The web
pages are stemmed and filtered by ignoring the most
common words listed in a stop list [5]. Table 1 has a
sample data set.
Page Content

1 ai machine learning ann perceptron
2 ai machine learning ann perceptron
3 ai machine learning decision tree id3 c4.5
4 ai machine learning decision tree id3 c4.5
5 ai machine learning decision tree hypothesis space
6 ai machine learning decision tree hypothesis space
7 ai searching algorithm bfs
8 ai searching algorithm dfs
9 ai searching algorithm constraint reasoning forward

checking
10 ai searching algorithm constraint reasoning forward

checking
Table 1: Sample data set

Figure 1: Sample user interest hierarchy
Numbers in the left represent individual web pages; content
has words stemmed and filtered through stop list. These
words in the web pages can be represented by a UIH as
shown in Figure 1. Each cluster node can represent a
conceptual relationship, for example ‘perceptron’ and ‘ann’
(in italic) can be categorized as belonging to neural
network algorithms, whereas ‘id3’ and ‘c4.5’ (in bold) in
another node cannot. Words in these two nodes are
mutually related to some other words such as ‘machine’
and ‘learning’. This set of mutual words, ‘machine’ and
‘learning’, performs the role of connecting italic and bold
words in sibling clusters and forms the parent cluster. We
illustrate this notion in the dashed box in Figure 1.

4. APPROACH
We desire to cluster web pages to provide contexts for
predicting user interest. To allow overlapping clusters of
pages, instead of clustering pages directly, we cluster the
words in pages and pages are assigned to clusters
subsequently. That is, instead of directly clustering the
original objects (web pages), we first cluster the features
(words) of the objects and then the objects are assigned to
the clusters based on the features in each cluster. During
clustering, the similarity/distance between features are
based on their relationship with the objects. Consequently,
objects are clustered based on possessing similar related
features and each object may belong to multiple clusters.
Since the more challenging step is the initial hierarchical
clustering of the features, our primary focus for this paper
is on devising and evaluating algorithms for this step.
Our divisive hierarchical clustering (DHC) algorithm
recursively partitions the words into smaller clusters, which
represent more related words. We assume words occurring
close to each other (within a window size) are related to
each other. We investigated a few similarity functions that
measure how close two words are related. We also
investigated techniques that dynamically locate a threshold
that decides whether two words are strongly related or not.
If two words are determined to be strongly related, they
will be in the same cluster; otherwise, they will be in
different clusters. In the following subsections, we detail

our algorithm, similarity functions, threshold-finding
techniques, choice of window size, and minimum cluster
size for leaves.

ai, machine, learning, ann, perceptron, decision, tree,
id3, c4.5, hypothesis, space, searching, algorithm, bfs,

dfs, constraint, reasoning, forward, checking

4.1 Algorithm
Our algorithm is a divisive hierarchical clustering method
called DHC, that recursively divides clusters into child
clusters until it meets the stopping conditions. Figure 2
illustrates the pseudo code for the HDC algorithm. In
preparation for our clustering algorithm, we extract words
from web pages visited by the user, filter them through a
stop list, and stem them [5]. Using a similarity function, we
calculate the strength of the relationship between a pair of
words. We then build a weighted undirected graph with
each vertex representing a word and each weight denoting
the similarity between two words. Since related words are
more likely to appear in the same document than unrelated
terms, we measure co-occurrence of words in a document.
Given the graph, called SimilarityMatrix, the clustering
algorithm recursively partitions the graph into subgraphs,
called Cluster, each of which represents a sibling node in
the resulting UIH. Documents that contain words in a
cluster are in the cluster. Note that a document can have
terms in different clusters, hence, a document can be in
more than one cluster. At each partitioning step, edges with
“weak” weights are removed and the resulting connected
components constitute sibling clusters (we can also
consider cliques as clusters, but more computation is
required). We treat determining what value is considered to
be “strong” or “weak” as another clustering problem (more
details in Sec. 4.3). The recursive partitioning process stops
when one of the stopping criteria is satisfied. The first
criterion is when the current graph does not have any
connected components after weak edges are removed. The
second criterion is a new child cluster is not formed if the
number of words in the cluster falls below a predetermined
threshold.

machine, learning, ann,
perceptron, decision, tree, id3,

c4.5, hypothesis

searching, algorithm,
bfs, dfs, constraint,

reasoning,
forward, checking

constraint, reasoning,
forward, checking

ann,
perceptron,

decision, tree,
id3, c4.5,

hypothesis,

The CalculateSimilarityMatrix function takes a similarity
function (details in Sec. 4.2), cluster, and window size as
parameters and return the similarity matrix, where the
window size affects how far two words (in terms of
number of words) can be to be considered as related. The
CalculateThreshold function takes a threshold-finding
method and similarity matrix as parameters and returns the
threshold. The similarity function and threshold-finding
method greatly influence the clustering algorithm and are
discussed next.

UIH (Examples, SIMILARITYFUNCTION,

FINDTHRESHOLD, WindowSize)
Examples: A set of web pages visited by the user.
SIMILARITYFUNCTION: A function that calculates the

"closeness" of two words.
FINDTHRESHOLD: A function that calculates the cutoff value

for determining strong and weak similarity values.

WindowSize: the maximum distance (in number of words)
between two related words in calculating their similarity value.

1. Words are extracted from Examples, stemmed, and filtered

through a stop list.
2. Cluster ← distinct words [with information of web page

membership]
3. Return DHC(Cluster, SIMILARITYFUNCTION,

FINDTHRESHOLD, WindowSize)

DHC (Cluster)
1. SimilarityMatrix ← CalculateSimilarityMatrix

(SIMILARITYFUNCTION, Cluster, WindowSize)
2. Threshold ← CalculateThreshold(FINDTHRESHOLD,

SimilarityMatrix)
3. If all similarity values are the same or a threshold is not found
 Return EmptyHierarchy
4. Remove weights that are less than Threshold from

SimilarityMatrix
5. While (ChildCluster←NextConnectedComponent

(SimiarityMatrix))
 If size of ChildCluster >= MinClusterSize
 ClusterHierarchy←ClusterHierarchy + ChildCluster +
 DHC(ChildCluster, SIMILARITYFUNCTION,

FINDTHRESHOLD, WindowSize)
6. Return ClusterHierarchy

Figure 2: DHC algorithm
4.2 Similarity Functions
The similarity function calculates how strongly two words
are related. Since related words are likely to be close to
each other than unrelated words, we assume two words co-
occurring within a window size are related. To simplify
our discussion, we have been assuming the window size to
be the entire length of a document (details in Sec. 4.4).
That is, two words co-occur if they are in the same
document.

4.2.1 AEMI
We use AEMI (Augmented Expected Mutual Information)
[3] as a similarity function. AEMI is enhanced version of
MI (Mutual Information) and EMI (Expected Mutual
Information). Unlike MI which considers only one corner
of the confusion matrix and EMI which sums the MI of all
four corners of the confusion matrix, AEMI sums
supporting evidence and subtracts counter-evidence. Chan
[3] demonstrates that AEMI could find more meaningful
multi-word phrases than MI or EMI. Concretely, consider A
and B in AEMI(A,B) are the events for the two words.

 is the probability of a document containing a and)(aAP =
)(aAP =

(BP
 is the probability of a document not having term

a. and)b=)(bB =P are defined likewise.
 is the probability of a document containing

both terms a and b. These probabilities are estimated from
the documents visited by the user. AEMI(A,B) is defined as:

)b=,(BaAP =

∑
====

−=
),)(,()()(

),(log),(
)()(

),(log),(),(
bBaAbBaA BPAP

BAPBAP
bPaP

baPbaPBAAEMI

The first term computes supporting evidence that a and b
are related and the second term calculates counter-
evidence.
Using our running example in Figure 1, Table 2 shows a
few examples of how AEMI is computed. The AEMI value
between ‘searching’ and ‘algorithm’ is 0.36, which is
higher than the AEMI value between ‘space’ and
‘constraint’, –0.09.

)(aP)(aP)(bP)(bP)(abP)(baP)(baP AEMI(a,b)
a = searching, b = algorithm

0.4 0.6 0.4 0.6 0.4 0 0 0.36
a = space, b = constraint

0.2 0.8 0.2 0.8 0 0.2 0.6 -0.09
a = ann, b = perceptron

0.2 0.8 0.2 0.8 0.2 0 0 0.32
Table 2: AEMI values

4.2.2 AEMI-SP
Inspired by work in the information retrieval community,
we would like to enhance AEMI by incorporating a
component for inverse document frequency (IDF) in the
similarity function. The document frequency of a word
calculates the number of documents that contain the word.
Words that are commonly used in many documents are
usually not informative in characterizing the content of the
documents. Hence, the inverse document frequency (the
reciprocal of document frequency) measures how
informative a word is in characterizing the content. Since
our formulation is more sophisticated than IDF and it
involves a pair of words rather than one word in IDF, we
use a different name and call our function specificity (SP).
We estimate the probability of word occurrence in
documents instead of just document frequency so that we
can scale the quantity between 0 and 1. We desire to give
high SP values to words with probability below 0.3
(approximately), gradually decreasing values from 0.3 to
0.7, and low values above 0.7. This behavior can be
approximated by a sigmoid function, commonly used as a
smoother threshold function in neural networks, though
ours needs to be smoother. Figure 3 shows the shape of
the SP function with respect to m, where m is defined as:
MAX (P(a), P(b)). We choose the larger probability so that
SP is more conservative. SP(m) is defined as:

1/(1 + exp(0.6 × (m × 10.5 – 5))),

where the factor 0.6 smoothes the curve, and constants 10.5
and –5 shift the range of m from between 0 and 1 to
between -5 and 5.5. The new range of -5 and 5.5 is slightly
asymmetrical because we would like to give a small bias to
more specific words. For instance, for a = ‘ann’ and b =
‘perceptron’, m is 0.2 and SP(m) is 0.85, but for =‘machin’
and b=‘ann’, m is 0.6 and SP(m) is 0.31.
Our similarity function AEMI-SP is defined as: AEMI *
SP/2. The usual range for AEMI is 0.1 – 0.45 and SP is 0 –
1. To scale SP to a similar range as AEMI, we divide SP by

2. For example in Table 4 the AEMI-SP value for
‘searching’ and ‘algorithm’ is lower than the value for
‘ann'’ and ‘perceptron’ because the SP value for ‘ann’ and
‘percetpron’ is higher even though the AEMI value is
lower.

0

0.2

0.4

0.6

0.8

1

Figure 3: SP Function

 AEMI SP AEMI-SP
a = searching
b = algorithm

0.36

0.62

0.113

a = ann
b = perceptron

0.32

0.85

0.137

Table 4: AEMI-SP values

4.2.3 Other Similarity Functions
We also investigated other existing similarity functions.
The Jaccard function [6] is defined as:

)(
),(
baP

baP
∪

. Although

Jaccard produces meaningful clusters, it did not generate
suitable hierarchical clusters. When we calculated the
similarity matrix on the sample data using the Jaccard
function, the related value of ‘ai’ was expected to be very
small, since the words were very general; however, the
computed Jaccard values was bigger than average, which
made it hard to make child clusters, which means it is not
proper for making hierarchical clusters.
For instance, using our running example in Figure 1, the
Jaccard value between ‘ai’ and ‘machine’ is 0.6 and the
value between ‘ai’ and ‘search’ is 0.5. If the threshold is
0.49, both pairs are in the same cluster and ‘ai’ may
perform the role to connect ‘machine’ and ‘search’. Even
though if the threshold is 0.55, ‘ai’ still remains in the child
cluster with ‘machine’ (since their similarity value is over
the threshold), which is a wrong decision.
The MIN method is defined as MIN(P(a|b), P(b|a)). The
idea is that if we assign the same similarity value to
connected words and connecting words, they would go
together. For instance in Figure 1, ‘ai’ connects ‘machine’
and ‘searching’, so they were grouped together in one
cluster. However, when they were divided into child
clusters, ‘ai’ should be removed because ‘ai’ is too general.
But MIN (P(‘ai’|’machine’), P(‘machine’|’ai’)) still yielded
relatively higher value than the average. Alternatively, the
MAX function defined as MAX (P(a|b), P(b|a)) did not
distinguish the value for ‘ai’ and ‘machine’ and the value
for ‘machine’ and ‘learning’, even though the latter pair
has a much stronger relationship. Since Jaccard, MIN, and

MAX did not generate desirable cluster hierarchies, we
excluded them from further experiments.

4.3 Threshold-finding Methods
Instead of using a fixed user-provided threshold (as in STC
[14]) to differentiate strong from weak similarity values
between a pair of words, we examine methods that
dynamically determine a reasonable threshold value.
Weights with weak similarity are removed from
SimilarityMatrix and child clusters are identified (Sec. 3).

SP(m)

4.3.1 Valley
To determine the threshold, we would like to find a sparse
region that does not have a lot of similar values. That is, the
frequency of weights in that region is low. We first
determine the highest observed and lowest desirable
similarity values and quantize the interval into ten regions
of equal width. The lowest desirable similarity value is
defined as the value achieved by a pair of words that occur
together only in one document. We then determine the
frequency of values in each region.

m
0 0.5 1

Generally, lower weights have a higher frequency and
higher weights have a lower frequency. If the frequency
monotonically decreases with regions of higher weights,
picking the region with the lowest frequency will always be
the region with the highest weights. Unfortunately, the
threshold will be too high and too many edges will be cut.
In this case the threshold is set to be the average plus one
standard deviation (biasing to removing more edges with
lower weights).
However, if the frequency does not decrease
monotonically, we attempt to identify the “widest and
steepest” valley. Steepness can be measured by the slopes
of the two sides of a valley and the width of how many
regions the valley covers. Since the regions are of equal
width, we calculate the “quality” of a valley
by: ∑ −

ji ji freqfreq
,

, where i and j are successive

regions on the two sides of a valley. Once the widest and
steepest valley is located, we identify the threshold in the
region that constitutes the bottom (lowest frequency) of the
valley. For example, in Table 5, there are three valleys: one
from Region 0 through 3, (quality is 17), another one from
Region 3 through 5, (quality is 14), and the last one is from
Region 5 through 9, (quality is 15). Therefore, the widest
and steepest valley is the first valley and its bottom is in
Regions 1 and 2.
To identify the threshold inside the bottom region, we
ignore the frequency information and find two clusters of
similarity values. In this case, it is a one-dimensional two-
cluster task, which can be accomplished by sorting the
weights and splitting at the largest gap between two
successive weights (LargestGap in Sec. 4.4). In our
example in Table 5, since the bottom has zero frequency,
any value between .28 and .30 can be the threshold.

Region Range Freq. # of Children
0 0.27 <= x < 0.28 16 Not counted
1 0.28 <= x < 0.29 0 Not counted
2 0.29 <= x < 0.30 0 Not counted
3 0.30 <= x < 0.31 1 Not counted
4 0.31 <= x < 0.32 0 Not counted
5 0.32 <= x < 0.33 13 6
6 0.33 <= x < 0.34 0 1
7 0.34 <= x < 0.35 0 1
8 0.35 <= x < 0.36 0 1
9 0.36 <= x 2 Not applicable

Table 5: Distribution of frequency and number of children

4.3.2 MaxChildren
The MaxChildren method selects a threshold such that
maximum of child clusters are generated. This ensures that
the resulting hierarchy does not degenerate to a tall and
thin tree (which might be the case for other methods). This
preference stems from the fact that topics are in general
more diverse than detailed and the library catalog
taxonomy is typically short and wide. MaxChildren
calculates the number of child clusters for each boundary
value between two quantized regions. To guarantee the
selected threshold is not too low, the method ignores the
first half of the boundary values. For example, in Table 5,
the boundary value 0.33 (between Regions 5 and 6)
generates the most children and is selected as the threshold.

4.3.3 Other Threshold-finding Methods
There are some other threshold-finding methods that we
initially studied but are inferior to Valley or MaxChildren
and are not included in this paper. LargestGap sorts the
values and split at the largest gap between two successive
values (the same method used in the Valley method after
the bottom of the largest valley is found). Again this is
motivated by trying to form two clusters in a one-
dimensional space. However, in our initial experiments, the
largest gap is close to the largest observed value and hence
the resulting tree is usually too small. To prevent the
threshold being too large, Top30% selects a threshold that
retains values in the top 30%. However, this method
generates tall and thin trees. To keep ‘abnormally’ large
values, we also studied Average+StandardDeviation to
select a threshold a standard deviation larger than the
average. This is later combined into the Valley method.

4.4 Window Size and Minimum Size of a Cluster
The window size parameter specifies the maximum
‘physical’ distance (in terms of number of words) between
a pair of words for consideration of co-occurrence. We
have been using the entire document length as the window
size to simplify our discussion. However, considering two
words occurring in the same page as related might be too
optimistic. Hence, we investigated smaller window sizes
that roughly cover a paragraph (e.g., 100 words) or a

sentence (e.g., 15 words). However, in our experiments the
window size does not make a significant difference.
The minimum size of a cluster affects the number of
clusters. A larger number of clusters makes the hierarchy
less comprehensible and requires more computation. We
picked 4 as the minimum size of a cluster.

5. EXPERIMENTS
Experiments were conducted on data obtained from our
departmental web server. By analyzing the server access
log from January to April 1999, we identified hosts that
were accessed at least 50 times in the first two months and
also in the next two months. We filtered out proxy, crawler,
and our computer lab hosts, and identified “single-user”
hosts, which are at dormitory rooms and a local company
[3]. We yielded 13 different users and collected the web
pages they visited. The number of words on the web pages
visited by each user was on the average 1,918, minimum
number of words was 340, and maximum was 3,708. We
evaluate the effectiveness of our algorithms by analyzing
the generated hierarchies in terms of meaningfulness and
shape. Separate experiments were conducted to evaluate
the effectiveness of different similarity functions,
threshold-finding methods, and window sizes.

6. ANALYSIS
To evaluate a UIH, we use both qualitative and quantitative
measures. Qualitatively, we examine if the cluster
hierarchies are reasonably describing some topics
(meaningfulness). Quantitatively, we measure the shape of
the cluster trees by calculating the average branching factor
[11] (ABF). ABF is defined as the total number of branches
of all non-leaf nodes divided by the number of non-leaf
nodes.
We categorized meaningfulness as ‘good’, ‘fair,’ or ‘bad’.
Since the leaf clusters should have specific meaning and
non-leaf clusters are hard to interpret due to their size, we
only evaluated the leaf clusters for meaningfulness. This
measure is based on interpretability and usability [6] and
checks two properties of the leaf the existence of related
words and possibility of combining words. For instance for
the related words, consider ‘formal’, ‘compil’, ‘befor’,
‘graphic’, ‘mathemat’, and ‘taken’ are in a cluster, even
though ‘befor’ and ‘taken’ do not have any relationship
with other words, since other words are classified as a class
name, this cluster is evaluated as ‘good’. And for the
possibility of combining words, consider ‘research’,
‘activ’, ‘class’, and ‘web’ are in a cluster. In this case the
meaning of the cluster can be estimated as ‘research
activity’ or ‘research class’, so we regard this cluster as
good [13]. A cluster is marked as ‘good’ when it has more
than 2/5 of the words that are related or has more than 2
possible composite phrases. This is hard to measure, so we
tried to be skeptical as much as possible. For example,
suppose a cluster has ‘test’, ‘info’, ‘thursdai’, ‘pleas’,
‘cours’, ‘avail’, and ‘appear’. In this case one can say ‘test

info’ or ‘cours info’ are possible composite phrases, but
‘test info’ does not have any conceptual meaning in our
opinion, so we did not count that phrase. A cluster is
marked as ‘bad’ when a leaf cluster has more than 15
words because a big leaf cluster is hard to interpret. ‘Fair’
leaf clusters are those that are neither good nor bad.
We categorized shape as ‘thin’, ‘medium,’ or ‘fat’. If a
tree’s ABF value is 1, the tree is considered a ‘thin’ tree
(marked as ‘T’ in the following tables). If the ABF value of
a tress is at least 10, the tree is considered a ‘fat’ tree
(marked as ‘F’). The rest are ‘medium’ trees (marked as
‘M’). We consider one more tree type: ‘conceptual’ tree
(marked as ‘C’), which subsumes ‘M’ or ‘F’ type trees. A
conceptual tree is one that has at least one node with more
than two child clusters and more than 80% of the words in
each child cluster have similar meaning. An instance is
explained in Section 6.1. Since we prefer a tree that can
represent meaningful concepts, ‘C’ type trees are the most
desirable. ‘T’ type trees are degenerate and are undesirable.
Based on these evaluation criteria, we analyze different
similarity functions (Sec. 6.1), threshold-finding methods
(Sec. 6.2) and window sizes (Sec. 6.3).

6.1 Similarity Function
We compared two similarity functions: AEMI versus
AEMI-SP. We fixed the threshold-finding method to
Valley and the window size to ‘entire page.’ Table 6
illustrates the results. The letter ‘U’ stands for user, ‘Total’
means the total number of nodes in the cluster tree, ‘# of L’
means the number of leaf nodes. ‘G %’ is calculated by
dividing the number of ‘good’ leaves by the ‘# of L’.
.AEMI yielded significantly more meaningful leaf clusters
(61% good) than AEMI–SP (47%). Both methods
generated trees whose shapes are mostly ‘medium’. For
U8, AEMI generated a conceptually related tree. The tree
has a node with two child clusters and they contain words
from course titles. All the ‘C’ trees in the other tables are
the same as this particular tree. For U2 with AEMI-SP, the
generated tree is ‘fat’ and has an ABF value of 10.

AEMI
 U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 Sum

of L 4 4 3 6 4 4 2 6 4 8 8 4 2 59
Good 3 2 2 6 4 3 2 6 2 1 1 2 2 36
Fair 1 2 1 1 2 7 7 2 23
Bad 0
G % 75 50 67 100 100 75 100 100 50 13 13 50 100 61
ABF 2.5 2 2 2.7 2 2 2 2.2 2.5 2.4 2.4 2.5 2

Shape M M M M M M M C M M M M M

AEMI-SP
 U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 Sum

of L 10 10 5 10 9 7 7 5 10 13 17 8 4 115
Good 2 6 1 3 3 3 3 3 4 5 6 4 4 47
Fair 8 4 4 7 6 4 2 2 4 5 8 4 58
Bad 2 2 3 3 10
G % 20 60 20 30 33 43 43 60 40 38 35 50 100 41
ABF 2.8 10 2.3 3.3 3 3 2.5 3 4 2.7 2.8 3.3 2.5

Shape M F M M M M M M M M M M M
Table 6: AEMI versus AEMI -SP

6.2 Threshold-finding Method
We compared two threshold-finding methods: Valley
versus MaxChildren. We fixed the similarity function to
AEMI and the window size to entire page. Table 7
illustrates the results. MaxChildren generated more
meaningful leaf clusters (61%) than Valley. Tree shapes
are similar (medium) in both methods. However,
generally, trees generated by MaxChildren are shorter,
which indicates that MaxChildren reduces the number of
iterations in the DHC algorithm by dividing the cluster in
early stage. Hence, MaxChildren is faster than Valley.
Most of the trees generated by both methods are ‘medium’
trees.

MaxChildren
U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 Sum

of L 4 4 3 6 4 4 2 6 4 8 8 4 2 59
Good 3 2 2 6 4 3 2 6 2 1 1 2 2 36
Fair 1 2 1 1 2 7 7 2 23
Bad 0
G % 75 50 67 100 100 75 100 100 50 13 13 50 100 61
ABF 2.5 2 2 2.7 2 2 2 2.2 2.5 2.4 2.4 2.5 2

Shape M M M M M M M C M M M M M

Valley
U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 Sum

of L 6 6 4 6 5 5 4 3 3 8 11 4 7 72
Good 4 4 1 5 2 3 4 1 1 1 2 3 3 34
Fair 2 1 3 1 2 2 2 2 7 7 1 4 34
Bad 1 1 2 4
G % 67 67 25 83 40 60 100 33 33 13 18 75 43 47
ABF 2.7 2 2 2.7 2.3 2.3 2 2 3 2.5 2.4 2.5 2.5

Shape M M M M M M M M M M M M M
Table 7: MaxChildren versus Valley

6.3 Window Size
We compared the performance using different window
sizes: ‘entire page’ versus 100 words (paragraph length).
We fixed the similarity function to AEMI and the
threshold-finding method to Valley.

Window size = entire page
U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 Sum

of L 4 4 3 6 4 4 2 6 4 8 8 4 2 59
Good 3 2 2 6 4 3 2 6 2 1 1 2 2 36
Fair 1 2 1 1 2 7 7 2 23
Bad 0
G % 75 50 67 100 100 75 100 100 50 13 13 50 100 61
ABF 2.5 2 2 2.7 2 2 2 2.2 2.5 2.4 2.4 2.5 2
Shape M M M M M M M C M M M M M

Window size = 100 words
U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 Sum

of L 5 2 12 9 4 4 2 7 8 13 1 6 4 77
Good 5 2 3 5 4 3 2 7 3 2 1 3 4 44
Fair 8 4 1 5 11 3 32
Bad 1 1
G % 100 100 25 56 100 75 100 100 38 15 100 50 100 57
ABF 3 2 4.7 3.7 2.5 2.5 2 3 3.3 3.4 1 3.5 4
Shape M M M M M M M M M M T M M

Table 8: Window size of entire page versus 100 words

Table 8 illustrates the results. Window size of the entire
page generated slightly more meaningful clusters (61%
good) than window size of 100 (57% good). However,
window size of 100 yields more tress with 100% good leaf
clusters (6) than window size of the entire page (5). Hence,
it is clear which window size produces more meaningful
clusters. Both methods resulted in trees whose shape we
evaluated to be ‘medium’. Window size of 100 generated
one thin tree for U11. The ‘T’ tree in Table 8 has only two
nodes: the root and one leaf.

7. CONCLUDING REMARKS
To create a more robust context for personalization, we
proposed learning a cluster hierarchy that can represent a
continuum of general (long-term) to specific (short-term)
interests from a set of web pages visited by a user. This
approach is non-intrusive and allows web pages to be
assigned to multiple clusters. We proposed our divisive
hierarchical clustering (DHC) algorithm and evaluated it
based on data obtained from 13 users on our web server.
We also introduced similarity functions and threshold-
finding methods for the clustering algorithm. Our
empirical results suggest that the AEMI similarity function
and the MaxChildren threshold-finding method yielded
more meaningful leaf clusters. Using AEMI and
MaxChildren, DHC generated over 60%
interpretable hierarchical clusters.
The window size does not make significant difference;
however, we suggest a window size of 100 since usually
meaning within one paragraph is more cohesive than within
one document. Results from experiments not reported here
indicate that stemmed words are more effective than whole
words. The minimum cluster size affects the number of leaf
clusters and size 4 was easy to use and seemed to produce
reasonable results.
Till now, we have considered only single words; phrases
may provide more information about topics compared to
words. For instance, “apple” has different meanings in
“apple tree” and in “apple computer”. Phrases can be found
using AEMI [3]. Since nodes with only one child are
undesirable and they could lead to degenerate trees, we can
improve HDC to ensure that “single-child” parents do
not exist. After the threshold is determined, if only one
child exists, the child is not added. We repeatedly apply
the threshold-finding method in the “unborn” child until
more than one child is produced.

ACKNOWLEDGMENTS
We thank the members of Laboratory for Learning
Research (LLR) for their comments.

REFERENCES
1. Bellegarda, J.R. Exploiting both local and global

constraints for multi-span statistical language modeling,
IEEE Proc. Intl. Conf. on Acoustics, Speech, and Signal
Processing, vol. 2, 677-680, 1998.

2. Billsus, D., and Pazzani, M.J. A Hybrid User Model for
News Story Classification, Conf. User Modeling, 1999.

3. Chan, P.K. A non-invasive learning approach to
building web user profiles, KDD-99 Workshop on Web
Usage Analysis and User Profiling, 7-12, 1999.

4. Fisher, D.H. Knowledge Acquisition via Incremental
Conceptual Clustering. Machine Learning 2, 139-172,
1987.

5. Frakes, W.B., and Baeza-Yates, R. Information
Retrieval: Data Structures and Algorithms, Prentice-
Hall, 1992.

6. Han, J. Data Mining Concepts and Techniques, San
Francisco : Morgan Kaufmann Publishers, 2001.

7. He, X., and Ding, C.H.Q., (etc). Automatic topic
identification using webpage clustering IEEE ICDM,
2001.

8. Pazzani, M., and Billsus, D. Learning and Revising
User Profiles: The Identification of Interesting Web
Sites, Machine Learning, 27(3), 313-331, 1997.

9. Perkowitz, M., and Etzioni, O. Towards adaptive Web
sites: Conceptual framework and case study, Artificial
Intelligence 118, 245-275, 2000.

10. Richardson, M., and Domingos, P. The Intelligent
Surfer: Probabilistic Combination of Link and Content
Information in PageRank Advances in Neural
Information Processing Systems 14, 2002.

11. Russell, S., and Norvig, P. Artificial Intelligence A
Modern Approach. Prentice Hall, 74, 1995.

12. Voorhees, E.M. Implementing Agglomerative
Hierarchical Clustering Algorithms for use in document
retrieval, Information Processing & Management, 22
(6) 465-476, 1986.

13. Zamir, O., and Etzioni, O. Groper: A Dynamic
Clustering Interface to Web Search Results, The Eighth
International World Wide Web Conference, Toronto,
1999.

14. Zamir, O., and Etzioni, O. Web document clustering: a
feasibility demonstration. In Proc. SIGIR-98, 1998.

	ABSTRACT
	Keywords

	1. INTRODUCTION
	2. RELATED RESEARCH
	3. USER INTEREST HIEREARCHY
	4. APPROACH
	4.1 Algorithm
	4.2 Similarity Functions
	4.2.1 AEMI
	4.2.2 AEMI-SP
	4.2.3 Other Similarity Functions
	4.3 Threshold-finding Methods
	4.3.1 Valley
	4.3.2 MaxChildren
	4.3.3 Other Threshold-finding Methods
	4.4 Window Size and Minimum Size of a Cluster
	5. EXPERIMENTS
	6. ANALYSIS
	6.1 Similarity Function
	
	AEMI
	
	AEMI-SP

	6.2 Threshold-finding Method
	6.3 Window Size
	7. CONCLUDING REMARKS
	ACKNOWLEDGMENTS
	REFERENCES

