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ABSTRACT 
To provide a more robust context for personalization, we 
desire to extract a continuum of general (long-term) to 
specific (short-term) interests of a user.  Our proposed 
approach is to learn a user interest hierarchy (UIH) from a 
set of web pages visited by a user. We devise a divisive 
hierarchical clustering (DHC) algorithm to group words 
(topics) into a hierarchy where more general interests are 
represented by a larger set of words.  Each web page can 
then be assigned to nodes in the hierarchy for further 
processing in learning and predicting interests.  This 
approach is analogous to building a subject taxonomy for a 
library catalog system and assigning books to the 
taxonomy.  Our approach does not need user involvement 
and learns the UIH "implicitly."  Furthermore, it allows the 
original objects, web pages, to be assigned to multiple 
topics (nodes in the hierarchy). In this paper, we focus on 
learning the UIH from a set of visited pages.  We propose a 
few similarity functions and dynamic threshold-finding 
methods, and evaluate the resulting hierarchies according 
to their meaningfulness and shape. 
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1. INTRODUCTION 
When a user browses the web, at different times, she could 
be accessing pages pertaining to different topics. For 
example, she might be looking for research papers at one 
time and airfare information for conference travel at 
another. That is, a user can exhibit different kinds of 
interests at different times, which provide different contexts 
underlying a user's behavior. However, different kinds of 
interests might be motivated by the same kind of interest at 
a higher abstraction level (computer science research, for 
example). That is, a user might possess interests at different 
abstraction levels—the higher-level interests are more 

general, while the lower-level ones are more specific. 
Furthermore, more general interests, in some sense, 
correspond to longer-term interests, while more specific 
interests correspond to shorter-term interests. During a 
browsing session, the general interests are back on one's 
mind, while specific interests are one's current foci. Unlike 
News Dude [2], which generates a long-term and a short-
term model, we model a continuum of long-term to short-
term interests. We believe identifying the appropriate 
context underlying a user's behavior is important in more 
accurately pinpointing her interests. The web is not static 
— new documents and new words/phrases are created 
every day. Most clustering methods assume each object 
(document) is represented by a fixed number of features 
(words/phrases). This representation is inadequate in a 
dynamic environment like the web. Consider how a 
librarian would form taxonomy of the subjects for all the 
books in the library. She would first identify the subject(s) 
of a book and then cluster all the books on the bases of the 
subject. Finally, books are categorized by the taxonomy. 
STC [14] does not rely on a fixed vector of word features 
in clustering documents. We use a similar approach—
instead of clustering documents, we cluster features in the 
documents; documents are then assigned to the clusters. 
We propose to model general/long-term and specific/short-
term interests with a concept hierarchy called User Interest 
Hierarchy (UIH). The resulting hierarchy (UIH) is used to 
build Page Interest Estimator (PIE)'s [3] as well as 
provides a context. For each cluster in UIH, the associated 
documents are used as positive examples for learning a 
PIE. The constructed UIH and its corresponding learned 
PIE's are used for estimating interest of a new document. 
However, current clustering methods do not generate 
clusters that possess all of the key characteristics we desire 
in a UIH. 
The most common and obvious solution for building a UIH 
is for the user to specify their interests explicitly. However, 
the explicit approach includes these disadvantages:  

 
 

• Time and effort in specifying her interests. 
• User’s interest may change over time. 

 



Alternatively, an implicit approach can identify a user’s 
interests by inference. 
The main objective of this research is to build UIH’s  
without the user’s involvement (implicitly).  We devise a 
divisive hierarchical clustering (DHC) algorithm that 
constructs such a hierarchy and supports overlapping 
clusters of the original objects (web pages in our case). We 
believe our approach has significant benefits and possesses 
interesting challenges. The main contributions of this work 
are the characterization of a user interest hierarchy, an 
algorithm that constructs a UIH, similarity functions, 
dynamic threshold-finding methods, and evaluation of our 
techniques based on real data collected from our 
departmental web server. 
The rest of this paper is as follows: Section 2 discusses 
related work in clustering algorithms and building user 
interest profiles; Section 3 introduces user interest 
hierarchies (UIH’s); Section 4 details our approach towards 
building implicit UIH’s; Section 5 describes our 
experiments; Section 6 analyzes the results from the 
experiments; Section 7 summarizes our findings and 
suggests possible future work. 

2. RELATED RESEARCH 
Agglomerative (bottom-up) hierarchical clustering 
algorithms initially put every object in its own cluster and 
then repeatedly merge similar clusters together, resulting in 
a tree shape structure that contains clustering information 
on many different levels [12]. Merges are usually binary—
merging two entities, which could be clusters or initial data 
points. Hence, each parent is forced to have two children in 
the hierarchy. Divisive (top-down) hierarchical clustering 
algorithms are similar to agglomerative ones, except that 
initially all objects start in one cluster which is repeatedly 
split.  Splits are usually binary and one usual stopping 
criterion is the desired number of clusters [4].  Our divisive 
algorithm does not necessarily generate binary splits and 
uses a minimum cluster size as one of the stopping criteria. 
Partitioning clustering algorithms such as the K-means 
algorithm initially create a partitioning of K clusters. Those 
initial K clusters are then iteratively refined to achieve the 
final clustering of K clusters. A major drawback of this 
approach is that the number of clusters must be specified 
beforehand as an input parameter, however Perkowitz 
developed a method to automatically determine the value 
of K. They ran the K-means algorithm multiple times, 
starting with a large value and gradually decreasing it. 
They were able to efficiently determine a good value for K 
during the clustering of web pages [9]. Our algorithm only 
needs to cluster strongly connected words, but the K-means 
algorithm divides whole words into K clusters without 
removing weak relations. COBWEB is a incremental 
conceptual clustering algorithm. Each cluster records the 
probability of each attribute and value, and the probabilities 
are updated every time an object is added [4]. However, 

instead of using category utility to determine if child 
clusters are generated, we use a graph-based method and a 
different similarity function. 
To build user interest profiles that can be used for web 
personalization, Richardson and Domingos [10] enhanced 
PageRank by using a more intelligent web-surfer. This 
method collects relevant web pages based only on queries, 
probabilistically combined page contents, and link 
structure. Research has also been performed on a method to 
group web pages into distinct topics and to list the most 
authoritative/informative web pages in each topic. The 
similarity metric that is used incorporates comprehensive 
information regarding text, hyperlink structure, co-citation, 
and the unsupervised clustering method based on spectral 
graph partitioning using normalized cut [7]. Our method is 
only concerned with the text but allows overlapping 
clusters. A news agent called News Dude, developed by 
Billsus and Pazzani [2], learns which stories in the news a 
user is interested in. The news agent uses a multi-strategy 
machine learning approach to create separate models of a 
user’s short-term and long-term interests. Unlike News 
Dude, in out approach we model a continuum of long-term 
to short-term interests. Syskill & Webert [8] use a 
predefined profile, which significantly increases the 
classification accuracy on previously unseen web pages. 
They emphasize the importance of a user profile. Perkowitz 
and Etzioni [9] introduced SCML, a concept learning 
algorithm that only extracts some concepts in a set of data. 

3. USER INTEREST HIEREARCHY  
A user interest hierarchy (UIH) organizes a user’s general 
to specific interests.  Towards the root of a UIH, more 
general (longer-term) interests are represented by larger 
clusters of words while towards the leaves, more specific 
(shorter-term) interests are represented by smaller clusters 
of words.   To generate a UIH for a user, our clustering 
algorithm (details in Sec. 4) accepts a set of web pages 
visited by the user as input. We use only the words in a 
web page and ignore link or image information. The web 
pages are stemmed and filtered by ignoring the most 
common words listed in a stop list [5]. Table 1 has a 
sample data set. 
Page Content 

1 ai machine learning ann perceptron  
2 ai machine learning ann perceptron 
3 ai machine learning decision tree id3 c4.5 
4 ai machine learning decision tree id3 c4.5 
5 ai machine learning decision tree hypothesis space 
6 ai machine learning decision tree hypothesis space 
7 ai searching algorithm bfs 
8 ai searching algorithm dfs 
9 ai searching algorithm constraint reasoning forward 

checking  
10 ai searching algorithm constraint reasoning forward 

checking  
Table 1: Sample data set 



 
 
 
 
 
 
 
 
 
 

Figure 1: Sample user interest hierarchy 
Numbers in the left represent individual web pages; content 
has words stemmed and filtered through stop list. These 
words in the web pages can be represented by a UIH as 
shown in Figure 1. Each cluster node can represent a 
conceptual relationship, for example ‘perceptron’ and ‘ann’ 
(in italic) can be categorized as belonging to neural 
network algorithms, whereas ‘id3’ and ‘c4.5’ (in bold) in 
another node  cannot. Words in these two nodes are 
mutually related to some other words such as ‘machine’ 
and ‘learning’.  This set of mutual words, ‘machine’ and 
‘learning’, performs the role of connecting italic and bold 
words in sibling clusters and forms the parent cluster. We 
illustrate this notion in the dashed box in Figure 1. 

4. APPROACH 
We desire to cluster web pages to provide contexts for 
predicting user interest. To allow overlapping clusters of 
pages, instead of clustering pages directly, we cluster the 
words in pages and pages are assigned to clusters 
subsequently. That is, instead of directly clustering the 
original objects (web pages), we first cluster the features 
(words) of the objects and then the objects are assigned to 
the clusters based on the features in each cluster.  During 
clustering, the similarity/distance between features are 
based on their relationship with the objects.  Consequently, 
objects are clustered based on possessing similar related 
features and each object may belong to multiple clusters.  
Since the more challenging step is the initial hierarchical 
clustering of the features, our primary focus for this paper 
is on devising and evaluating algorithms for this step. 
Our divisive hierarchical clustering (DHC) algorithm 
recursively partitions the words into smaller clusters, which 
represent more related words. We assume words occurring 
close to each other (within a window size) are related to 
each other. We investigated a few similarity functions that 
measure how close two words are related. We also 
investigated techniques that dynamically locate a threshold 
that decides whether two words are strongly related or not. 
If two words are determined to be strongly related, they 
will be in the same cluster; otherwise, they will be in 
different clusters.  In the following subsections, we detail 

our algorithm, similarity functions, threshold-finding 
techniques, choice of window size, and minimum cluster 
size for leaves. 

ai, machine, learning, ann, perceptron, decision, tree, 
id3, c4.5, hypothesis, space, searching, algorithm, bfs, 

dfs, constraint, reasoning, forward, checking 

4.1 Algorithm 
Our algorithm is a divisive hierarchical clustering method 
called DHC, that recursively divides clusters into child 
clusters until it meets the stopping conditions. Figure 2 
illustrates the pseudo code for the HDC algorithm.  In 
preparation for our clustering algorithm, we extract words 
from web pages visited by the user, filter them through a 
stop list, and stem them [5]. Using a similarity function, we 
calculate the strength of the relationship between a pair of 
words. We then build a weighted undirected graph with 
each vertex representing a word and each weight denoting 
the similarity between two words. Since related words are 
more likely to appear in the same document than unrelated 
terms, we measure co-occurrence of words in a document. 
Given the graph, called SimilarityMatrix, the clustering 
algorithm recursively partitions the graph into subgraphs, 
called Cluster, each of which represents a sibling node in 
the resulting UIH. Documents that contain words in a 
cluster are in the cluster. Note that a document can have 
terms in different clusters, hence, a document can be in 
more than one cluster. At each partitioning step, edges with 
“weak” weights are removed and the resulting connected 
components constitute sibling clusters (we can also 
consider cliques as clusters, but more computation is 
required). We treat determining what value is considered to 
be “strong” or “weak” as another clustering problem (more 
details in Sec. 4.3). The recursive partitioning process stops 
when one of the stopping criteria is satisfied. The first 
criterion is when the current graph does not have any 
connected components after weak edges are removed. The 
second criterion is a new child cluster is not formed if the 
number of words in the cluster falls below a predetermined 
threshold.  

machine, learning, ann, 
perceptron, decision, tree, id3, 

c4.5, hypothesis 

searching, algorithm,
bfs, dfs, constraint, 

reasoning,  
forward, checking 

constraint, reasoning, 
forward, checking 

ann, 
perceptron,  

decision, tree, 
id3, c4.5, 

hypothesis, 

The CalculateSimilarityMatrix function takes a similarity 
function (details in Sec. 4.2), cluster, and window size as 
parameters and return the similarity matrix, where the 
window size affects how far two words (in terms of 
number of words) can be to be considered as related. The 
CalculateThreshold function takes a threshold-finding 
method and similarity matrix as parameters and returns the 
threshold.  The similarity function and threshold-finding 
method greatly influence the clustering algorithm and are 
discussed next. 
 
UIH (Examples, SIMILARITYFUNCTION, 

FINDTHRESHOLD, WindowSize) 
Examples: A set of web pages visited by the user. 
SIMILARITYFUNCTION: A function that calculates the 

"closeness" of two words. 
FINDTHRESHOLD: A function that calculates the cutoff value 

for determining strong and weak similarity values. 



WindowSize: the maximum distance (in number of words) 
between two related words in calculating their similarity value. 

 
1. Words are extracted from Examples, stemmed, and filtered 

through a stop list. 
2. Cluster ← distinct words [with information of web page 

membership] 
3. Return DHC(Cluster, SIMILARITYFUNCTION, 

FINDTHRESHOLD, WindowSize) 
 
DHC (Cluster) 
1. SimilarityMatrix ← CalculateSimilarityMatrix 

(SIMILARITYFUNCTION, Cluster, WindowSize) 
2. Threshold ← CalculateThreshold(FINDTHRESHOLD, 

SimilarityMatrix) 
3. If  all similarity values are the same or a threshold is not found 
          Return EmptyHierarchy 
4. Remove weights that are less than Threshold from 

SimilarityMatrix 
5. While (ChildCluster←NextConnectedComponent 

(SimiarityMatrix)) 
          If size of ChildCluster >= MinClusterSize 
               ClusterHierarchy←ClusterHierarchy + ChildCluster + 
                     DHC(ChildCluster, SIMILARITYFUNCTION,   

FINDTHRESHOLD, WindowSize) 
6. Return ClusterHierarchy 
 

Figure 2: DHC algorithm 
4.2 Similarity Functions 
The similarity function calculates how strongly two words 
are related. Since related words are likely to be close to 
each other than unrelated words, we assume two words co-
occurring within a window size are related.  To simplify 
our discussion, we have been assuming the window size to 
be the entire length of a document (details in Sec. 4.4).  
That is, two words co-occur if they are in the same 
document. 

4.2.1 AEMI 
We use AEMI (Augmented Expected Mutual Information) 
[3] as a similarity function. AEMI is enhanced version of 
MI (Mutual Information) and EMI (Expected Mutual 
Information).  Unlike MI which considers only one corner 
of the confusion matrix and EMI which sums the MI of all 
four corners of the confusion matrix, AEMI sums 
supporting evidence and subtracts counter-evidence.  Chan 
[3] demonstrates that AEMI could find more meaningful 
multi-word phrases than MI or EMI. Concretely, consider A 
and B in AEMI(A,B) are the events for the two words. 

 is the probability of a document containing a and )( aAP =
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both terms a and b. These probabilities are estimated from 
the documents visited by the user. AEMI(A,B) is defined as: 
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The first term computes supporting evidence that a and b 
are related and the second term calculates counter-
evidence. 
Using our running example in Figure 1, Table 2 shows a 
few examples of how AEMI is computed. The AEMI value 
between ‘searching’ and ‘algorithm’ is 0.36, which is 
higher than the AEMI value between ‘space’ and 
‘constraint’, –0.09.  

)(aP )(aP )(bP )(bP )(abP  )( baP  )( baP AEMI(a,b)
a = searching, b = algorithm 

0.4 0.6 0.4 0.6 0.4 0 0 0.36
a = space, b = constraint 

0.2 0.8 0.2 0.8 0 0.2 0.6 -0.09
a = ann, b = perceptron 

0.2 0.8 0.2 0.8 0.2 0 0 0.32
Table 2: AEMI values 

4.2.2 AEMI-SP 
Inspired by work in the information retrieval community, 
we would like to enhance AEMI by incorporating a 
component for inverse document frequency (IDF) in the 
similarity function.  The document frequency of a word 
calculates the number of documents that contain the word. 
Words that are commonly used in many documents are 
usually not informative in characterizing the content of the 
documents.  Hence, the inverse document frequency  (the 
reciprocal of document frequency) measures how 
informative a word is in characterizing the content.  Since 
our formulation is more sophisticated than IDF and it 
involves a pair of words rather than one word in IDF, we 
use a different name and call our function specificity (SP). 
We estimate the probability of word occurrence in 
documents instead of just document frequency so that we 
can scale the quantity between 0 and 1.  We desire to give 
high SP values to words with probability below 0.3 
(approximately), gradually decreasing values from 0.3 to 
0.7, and low values above 0.7. This behavior can be 
approximated by a sigmoid function, commonly used as a 
smoother threshold function in neural networks, though 
ours needs to be smoother.   Figure 3 shows the shape of 
the SP function with respect to m, where m is defined as: 
MAX (P(a), P(b)). We choose the larger probability so that 
SP is more conservative.  SP(m) is defined as: 

1/(1 + exp(0.6 × (m × 10.5 – 5))), 

where the factor 0.6 smoothes the curve, and constants 10.5 
and –5 shift the range of m from between 0 and 1 to 
between -5 and 5.5. The new range of -5 and 5.5 is slightly 
asymmetrical because we would like to give a small bias to 
more specific words. For instance, for a = ‘ann’ and b = 
‘perceptron’, m is 0.2 and SP(m) is 0.85, but for =‘machin’ 
and b=‘ann’, m is 0.6 and SP(m) is 0.31.  
Our similarity function AEMI-SP is defined as: AEMI * 
SP/2. The usual range for AEMI is 0.1 – 0.45 and SP is 0 – 
1. To scale SP to a similar range as AEMI, we divide SP by 



2. For example in Table 4 the AEMI-SP value for 
‘searching’ and ‘algorithm’ is lower than the value for 
‘ann'’ and ‘perceptron’ because the SP value for ‘ann’ and 
‘percetpron’ is higher even though the AEMI value is 
lower. 

0

0.2

0.4

0.6

0.8

1

 
Figure 3: SP Function 

 AEMI SP AEMI-SP
a = searching 
b = algorithm 

 
0.36 

 
0.62 

 
0.113 

a = ann 
b = perceptron 

 
0.32 

 
0.85 

 
0.137 

Table 4: AEMI-SP values 

4.2.3 Other Similarity Functions 
We also investigated other existing similarity functions. 
The Jaccard function [6] is defined as: 

)(
),(
baP

baP
∪

. Although 

Jaccard produces meaningful clusters, it did not generate 
suitable hierarchical clusters. When we calculated the 
similarity matrix on the sample data using the Jaccard 
function, the related value of ‘ai’ was expected to be very 
small, since the words were very general; however, the 
computed Jaccard values was bigger than average, which 
made it hard to make child clusters, which means it is not 
proper for making hierarchical clusters.  
For instance, using our running example in Figure 1, the 
Jaccard value between ‘ai’ and ‘machine’ is 0.6 and the 
value between ‘ai’ and ‘search’ is 0.5. If the threshold is 
0.49, both pairs are in the same cluster and ‘ai’ may 
perform the role to connect ‘machine’ and ‘search’. Even 
though if the threshold is 0.55, ‘ai’ still remains in the child 
cluster with ‘machine’ (since their similarity value is over 
the threshold), which is a wrong decision. 
The MIN method is defined as MIN(P(a|b), P(b|a)). The 
idea is that if we assign the same similarity value to 
connected words and connecting words, they would go 
together. For instance in Figure 1, ‘ai’ connects ‘machine’ 
and ‘searching’, so they were grouped together in one 
cluster. However, when they were divided into  child 
clusters, ‘ai’ should be removed because ‘ai’ is too general. 
But MIN (P(‘ai’|’machine’), P(‘machine’|’ai’)) still yielded 
relatively higher value than the average. Alternatively, the 
MAX function defined as MAX (P(a|b), P(b|a)) did not 
distinguish the value for ‘ai’ and ‘machine’ and the value 
for ‘machine’ and ‘learning’, even though the latter pair 
has a much stronger relationship. Since Jaccard, MIN, and 

MAX did not generate desirable cluster hierarchies, we 
excluded them from further experiments. 

4.3 Threshold-finding Methods 
Instead of using a fixed user-provided threshold (as in STC 
[14]) to differentiate strong from weak similarity values 
between a pair of words, we examine methods that 
dynamically determine a reasonable threshold value.   
Weights with weak similarity are removed from 
SimilarityMatrix and child clusters are identified (Sec. 3). 

SP(m) 

4.3.1 Valley 
To determine the threshold, we would like to find a sparse 
region that does not have a lot of similar values. That is, the 
frequency of weights in that region is low. We first 
determine the highest observed and lowest desirable 
similarity values and quantize the interval into ten regions 
of equal width.  The lowest desirable similarity value is 
defined as the value achieved by a pair of words that occur 
together only in one document. We then determine the 
frequency of values in each region.  

m 
0 0.5 1 

Generally, lower weights have a higher frequency and 
higher weights have a lower frequency. If the frequency 
monotonically decreases with regions of higher weights, 
picking the region with the lowest frequency will always be 
the region with the highest weights. Unfortunately, the 
threshold will be too high and too many edges will be cut. 
In this case the threshold is set to be the average plus one 
standard deviation (biasing to removing more edges with 
lower weights).  
However, if the frequency does not decrease 
monotonically, we attempt to identify the “widest and 
steepest” valley. Steepness can be measured by the slopes 
of the two sides of a valley and the width of how many 
regions the valley covers. Since the regions are of equal 
width, we calculate the “quality” of a valley 
by: ∑ −

ji ji freqfreq
,

, where i and j are successive 

regions on the two sides of a valley. Once the widest and 
steepest valley is located, we identify the threshold in the 
region that constitutes the bottom (lowest frequency) of the 
valley. For example, in Table 5, there are three valleys: one 
from Region 0 through 3, (quality is 17), another one from 
Region 3 through 5, (quality is 14), and the last one is from 
Region 5 through 9, (quality is 15).  Therefore, the widest 
and steepest valley is the first valley and its bottom is in 
Regions 1 and 2. 
To identify the threshold inside the bottom region, we 
ignore the frequency information and find two clusters of 
similarity values.  In this case, it is a one-dimensional two-
cluster task, which can be accomplished by sorting the 
weights and splitting at the largest gap between two 
successive weights (LargestGap in Sec. 4.4). In our 
example in Table 5, since the bottom has zero frequency, 
any value between .28 and .30 can be the threshold. 
 



 
 

Region Range Freq. # of Children
0 0.27 <= x < 0.28 16 Not counted
1 0.28 <= x < 0.29 0 Not counted
2 0.29 <= x < 0.30 0 Not counted
3 0.30 <= x < 0.31 1 Not counted
4 0.31 <= x < 0.32 0 Not counted
5 0.32 <= x < 0.33 13 6
6 0.33 <= x < 0.34 0 1
7 0.34 <= x < 0.35 0 1
8 0.35 <= x < 0.36 0 1
9 0.36 <= x 2 Not applicable

Table 5: Distribution of frequency and number of children 

4.3.2 MaxChildren 
The MaxChildren method selects a threshold such that 
maximum of child clusters are generated.  This ensures that 
the resulting hierarchy does not degenerate to a tall and 
thin tree (which might be the case for other methods).  This 
preference stems from the fact that topics are in general 
more diverse than detailed and the library catalog 
taxonomy is typically short and wide.  MaxChildren 
calculates the number of child clusters for each boundary 
value between two quantized regions. To guarantee the 
selected threshold is not too low, the method ignores the 
first half of the boundary values. For example, in Table 5, 
the boundary value 0.33 (between Regions 5 and 6) 
generates the most children and is selected as the threshold. 

4.3.3 Other Threshold-finding Methods 
There are some other threshold-finding methods that we 
initially studied but are inferior to Valley or MaxChildren 
and are not included in this paper. LargestGap sorts the 
values and split at the largest gap between two successive 
values (the same method used in the Valley method after 
the bottom of the largest valley is found).  Again this is 
motivated by trying to form two clusters in a one-
dimensional space. However, in our initial experiments, the 
largest gap is close to the largest observed value and hence 
the resulting tree is usually too small. To prevent the 
threshold being too large, Top30% selects a threshold that 
retains values in the top 30%.  However, this method 
generates tall and thin trees.  To keep ‘abnormally’ large 
values, we also studied Average+StandardDeviation to 
select a threshold a standard deviation larger than the 
average.  This is later combined into the Valley method. 

4.4 Window Size and Minimum Size of a Cluster 
The window size parameter specifies the maximum 
‘physical’ distance (in terms of number of words) between 
a pair of words for consideration of co-occurrence.  We 
have been using the entire document length as the window 
size to simplify our discussion.  However, considering two 
words occurring in the same page as related might be too 
optimistic.  Hence, we investigated smaller window sizes 
that roughly cover a paragraph (e.g., 100 words) or a 

sentence (e.g., 15 words). However, in our experiments the 
window size does not make a significant difference.  
The minimum size of a cluster affects the number of 
clusters.  A larger number of clusters makes the hierarchy 
less comprehensible and requires more computation. We 
picked 4 as the minimum size of a cluster. 

5. EXPERIMENTS 
Experiments were conducted on data obtained from our 
departmental web server. By analyzing the server access 
log from January to April 1999, we identified hosts that 
were accessed at least 50 times in the first two months and 
also in the next two months. We filtered out proxy, crawler, 
and our computer lab hosts, and identified “single-user” 
hosts, which are at dormitory rooms and a local company 
[3]. We yielded 13 different users and collected the web 
pages they visited. The number of words on the web pages 
visited by each user was on the average 1,918, minimum 
number of words was 340, and maximum was 3,708. We 
evaluate the effectiveness of our algorithms by analyzing 
the generated hierarchies in terms of meaningfulness and 
shape.  Separate experiments were conducted to evaluate 
the effectiveness of different similarity functions, 
threshold-finding methods, and window sizes. 

6. ANALYSIS 
To evaluate a UIH, we use both qualitative and quantitative 
measures. Qualitatively, we examine if the cluster 
hierarchies are reasonably describing some topics 
(meaningfulness). Quantitatively, we measure the shape of 
the cluster trees by calculating the average branching factor 
[11] (ABF). ABF is defined as the total number of branches 
of all non-leaf nodes divided by the number of non-leaf 
nodes. 
We categorized meaningfulness as ‘good’, ‘fair,’ or ‘bad’. 
Since the leaf clusters should have specific meaning and 
non-leaf clusters are hard to interpret due to their size, we 
only evaluated the leaf clusters for meaningfulness. This 
measure is based on interpretability and usability [6] and 
checks two properties of the leaf the existence of related 
words and possibility of combining words. For instance for 
the related words, consider ‘formal’, ‘compil’, ‘befor’, 
‘graphic’, ‘mathemat’, and ‘taken’ are in a cluster, even 
though ‘befor’ and ‘taken’ do not have any relationship 
with other words, since other words are classified as a class 
name, this cluster is evaluated as ‘good’. And for the 
possibility of combining words, consider ‘research’, 
‘activ’, ‘class’, and ‘web’ are in a cluster. In this case the 
meaning of the cluster can be estimated as ‘research 
activity’ or ‘research class’, so we regard this cluster as 
good [13]. A cluster is marked as ‘good’ when it has more 
than 2/5 of the words that are related or has more than 2 
possible composite phrases. This is hard to measure, so we 
tried to be skeptical as much as possible. For example, 
suppose a cluster has ‘test’, ‘info’, ‘thursdai’, ‘pleas’, 
‘cours’, ‘avail’, and ‘appear’. In this case one can say ‘test 



info’ or ‘cours info’ are possible composite phrases, but 
‘test info’ does not have any conceptual meaning in our 
opinion, so we did not count that phrase.  A cluster is 
marked as ‘bad’ when a leaf cluster has more than 15 
words because a big leaf cluster is hard to interpret. ‘Fair’ 
leaf clusters are those that are neither good nor bad.  
We categorized shape as ‘thin’, ‘medium,’ or ‘fat’. If a 
tree’s ABF value is 1, the tree is considered a ‘thin’ tree 
(marked as ‘T’ in the following tables). If the ABF value of 
a tress is at least 10, the tree is considered a ‘fat’ tree 
(marked as ‘F’). The rest are ‘medium’ trees (marked as 
‘M’). We consider one more tree type: ‘conceptual’ tree 
(marked as ‘C’), which subsumes ‘M’ or ‘F’ type trees. A 
conceptual tree is one that has at least one node with more 
than two child clusters and more than 80% of the words in 
each child cluster have similar meaning. An instance is 
explained in Section 6.1. Since we prefer a tree that can 
represent meaningful concepts, ‘C’ type trees are the most 
desirable. ‘T’ type trees are degenerate and are undesirable. 
Based on these evaluation criteria, we analyze different 
similarity functions (Sec. 6.1), threshold-finding methods 
(Sec. 6.2) and window sizes (Sec. 6.3). 

6.1 Similarity Function 
We compared two similarity functions: AEMI versus 
AEMI-SP.  We fixed the threshold-finding method to 
Valley and the window size to ‘entire page.’ Table 6 
illustrates the results.  The letter ‘U’ stands for user, ‘Total’ 
means the total number of nodes in the cluster tree, ‘# of L’ 
means the number of leaf nodes. ‘G %’ is calculated by 
dividing the number of ‘good’ leaves by the ‘# of L’. 
.AEMI yielded significantly more meaningful leaf clusters 
(61% good) than AEMI–SP (47%).  Both methods 
generated trees whose shapes are mostly ‘medium’.   For 
U8, AEMI generated a conceptually related tree. The tree 
has a node with two child clusters and they contain words 
from course titles.  All the ‘C’ trees in the other tables are 
the same as this particular tree.  For U2 with AEMI-SP, the 
generated tree is ‘fat’ and has an ABF value of 10. 

AEMI 
 U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 Sum

# of L 4 4 3 6 4 4 2 6 4 8 8 4 2 59
Good 3 2 2 6 4 3 2 6 2 1 1 2 2 36
Fair 1 2 1   1   2 7 7 2 23
Bad            0
G % 75 50 67 100 100 75 100 100 50 13 13 50 100 61
ABF 2.5 2 2 2.7 2 2 2 2.2 2.5 2.4 2.4 2.5 2

Shape M M M M M M M C M M M M M

AEMI-SP 
 U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 Sum

# of L 10 10 5 10 9 7 7 5 10 13 17 8 4 115
Good 2 6 1 3 3 3 3 3 4 5 6 4 4 47
Fair 8 4 4 7 6 4 2 2 4 5 8 4 58
Bad       2  2 3 3 10
G % 20 60 20 30 33 43 43 60 40 38 35 50 100 41
ABF 2.8 10 2.3 3.3 3 3 2.5 3 4 2.7 2.8 3.3 2.5

Shape M F M M M M M M M M M M M
Table 6: AEMI versus AEMI -SP  

6.2 Threshold-finding Method 
We compared two threshold-finding methods: Valley 
versus MaxChildren. We fixed the similarity function to 
AEMI and the window size to entire page.  Table 7 
illustrates the results. MaxChildren generated more 
meaningful leaf clusters (61%) than Valley. Tree shapes 
are similar (medium) in both methods.  However, 
generally,  trees generated by MaxChildren are shorter, 
which indicates that MaxChildren reduces the number of 
iterations in the DHC algorithm by dividing the cluster in 
early stage. Hence, MaxChildren is faster than Valley.  
Most of the trees generated by both methods are ‘medium’ 
trees. 

MaxChildren 
U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 Sum

# of L 4 4 3 6 4 4 2 6 4 8 8 4 2 59
Good 3 2 2 6 4 3 2 6 2 1 1 2 2 36
Fair 1 2 1 1   2 7 7 2 23
Bad     0
G % 75 50 67 100 100 75 100 100 50 13 13 50 100 61
ABF 2.5 2 2 2.7 2 2 2 2.2 2.5 2.4 2.4 2.5 2

Shape M M M M M M M C M M M M M

Valley  
U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 Sum

# of L 6 6 4 6 5 5 4 3 3 8 11 4 7 72
Good 4 4 1 5 2 3 4 1 1 1 2 3 3 34
Fair 2 1 3 1 2 2  2 2 7 7 1 4 34
Bad 1 1     2 4
G % 67 67 25 83 40 60 100 33 33 13 18 75 43 47
ABF 2.7 2 2 2.7 2.3 2.3 2 2 3 2.5 2.4 2.5 2.5

Shape M M M M M M M M M M M M M
Table 7: MaxChildren versus Valley 

6.3 Window Size 
We compared the performance using different window 
sizes: ‘entire page’ versus 100 words (paragraph length). 
We fixed the similarity function to AEMI and the 
threshold-finding method to Valley.  

Window size = entire page
U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 Sum

# of L 4 4 3 6 4 4 2 6 4 8 8 4 2 59
Good 3 2 2 6 4 3 2 6 2 1 1 2 2 36
Fair 1 2 1 1   2 7 7 2 23
Bad     0
G % 75 50 67 100 100 75 100 100 50 13 13 50 100 61
ABF 2.5 2 2 2.7 2 2 2 2.2 2.5 2.4 2.4 2.5 2
Shape M M M M M M M C M M M M M

Window size = 100 words 
U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 Sum

# of L 5 2 12 9 4 4 2 7 8 13 1 6 4 77
Good 5 2 3 5 4 3 2 7 3 2 1 3 4 44
Fair 8 4 1   5 11 3 32
Bad 1     1
G % 100 100 25 56 100 75 100 100 38 15 100 50 100 57
ABF 3 2 4.7 3.7 2.5 2.5 2 3 3.3 3.4 1 3.5 4
Shape M M M M M M M M M M T M M



Table 8: Window size of entire page versus 100 words 
 
 

Table 8 illustrates the results.  Window size of the entire 
page generated slightly more meaningful clusters (61% 
good) than window size of 100 (57% good). However, 
window size of 100 yields more tress with 100% good leaf 
clusters (6) than window size of the entire page (5).  Hence, 
it is clear which window size produces more meaningful 
clusters. Both methods resulted in trees whose shape we 
evaluated to be ‘medium’. Window size of 100 generated 
one thin tree for U11. The ‘T’ tree in Table 8 has only two 
nodes: the root and one leaf. 

7. CONCLUDING REMARKS 
To create a more robust context for personalization, we 
proposed learning a cluster hierarchy that can represent a 
continuum of general (long-term) to specific (short-term) 
interests from a set of web pages visited by a user.  This 
approach is non-intrusive and allows web pages to be 
assigned to multiple clusters. We proposed our divisive 
hierarchical clustering (DHC) algorithm and evaluated it 
based on data obtained from 13 users on our web server.  
We also introduced similarity functions and threshold-
finding methods for the clustering algorithm.  Our 
empirical results suggest that the AEMI similarity function 
and the MaxChildren threshold-finding method yielded 
more meaningful leaf clusters. Using AEMI and  
MaxChildren, DHC generated over 60% 
interpretable hierarchical clusters. 
The window size does not make significant difference; 
however, we suggest a window size of 100 since usually 
meaning within one paragraph is more cohesive than within 
one document.  Results from experiments not reported here 
indicate that stemmed words are more effective than whole 
words. The minimum cluster size affects the number of leaf 
clusters and size 4 was easy to use and seemed to produce 
reasonable results.  
Till now, we have considered only single words; phrases 
may provide more information about topics compared to 
words. For instance, “apple” has different meanings in 
“apple tree” and in “apple computer”. Phrases can be found 
using AEMI [3]. Since nodes with only one child are 
undesirable and they could lead to degenerate trees, we can 
improve HDC to ensure that “single-child” parents do        
not exist.  After the threshold is determined, if only one 
child exists, the child is not added.  We repeatedly apply 
the threshold-finding method in the “unborn” child until 
more than one child is produced. 
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