CSE 5211/4081
Fall 2003 Final
Time 115 min Points: 50(UG) 60(G)

PRINT NAME:

Status: Undergraduate
/ Graduate Std.

1. String Matching: Create an automaton for the following string cgatat, over a four alphabet set {a, t, c, g}. Use the automaton to find the string within T=cgcgcgatata. Draw the automaton and show the steps clearly.

Automaton for string P:

0-c-1-g-2-a-3-t-4-a-5-t-6(Accept)

Transition(*, c)=1, Transition(*, not c)=0, where * indicates any state

Matching on string T using the above automaton:

0-c-1-g-2-c-1-g-2-c-1-g-2-a-3-t-4-a-5-t-6(A, print position-|P|=10-6=4)-a-0

2. Dynamic Programming: An optimization problem needs to find the best way to divide a list of numbers A. The formula for the optimal value between the I-th and the j-th elements is C(I,j) = A[I] when I=j, or C[I,j]=max{C(I,k)/C(k+1,j), for I (k <j} when I<j, just like the matrix chain product problem. Run a dynamic programming algorithm over the list A=(2 22 23 22 2) in order to solve the problem. Complete the matrix over the following list and show at least a few sample steps for j=I+2, and j=I+3 toward the computation.

	C(I,j)
	j=1
	2
	3
	4
	5

	I=1
	2
	1/2
	4
	1
	2

	2
	
	4
	1/2
	2
	1

	3
	
	
	8
	2
	4

	4
	
	
	
	4
	2

	5
	
	
	
	
	2

Division is not associative, so, the result differs in which order one divides the chain. The algorithm is almost identical to the matrix chain product DP algorithm.

3. Complexity theory:

a) Answer true/false for the following sentences (answer on the question paper): [5]

All NP-hard problems are NP-complete problems. False, NP-hard is superset of NP-complete problems.

The set of NP-complete problems is a subset of the NP-class of problems. True.

NP-complete problems DO NOT have polynomial algorithms. False, this is not proved yet.

In order to prove a problem X to be NP-hard one needs to develop a polynomial transformation from X to a known NP-hard problem. False, the direction should be reverse.

2-SAT is an NP-hard problem. False, A polynomial algorithm do exist for 2-Sat.

b) Transform the following SAT problem to a 3-SAT problem. U={a, b, c, d, e}, C={{-a, b}, {b}, {-b, a, -c, -d}}. Count how many variables and how many clauses are there in the created target problem instance.

[4+1]

{-a, b} -> {-a, b, z1}, {-z1, -a, b}

{b} -> {b, z2, z3}, {b, -z2, z3}, {b, z2, -z3}, {b, -z2, -z3}

{-b, a, -c, -d}-> {-b, a, z4}, {-z4, -c, -d}

8 clauses in the output 3-Sat problem

{a, b, c, d, e} -> {a, b, c, d, e, z1, z2, z3, z4}, 9 variables in the output 3-Sat problem

4. Greedy Algorithm: The edge-cover problem is defined as follows. Given a graph G=(V, E), where V is the set of nodes and E is the set of undirected arcs, find a covering subset U of V such that each edge in E has at least one of the two nodes in U. The problem is to find a covering set such that it has the minimal cardinality of all covering sets. Example, V={a, b, c, d}, E={{a,b}, {a,c}, {a,d}}. Two covering subsets are U1={a}, U2={b,c,d}, and U1 is a minimal covering set of nodes for G.

Write a greedy algorithm for finding such a minimal covering set of nodes for a given graph. Analyze the algorithm’s time complexity.

Modify Topological sort: Sort the nodes by descending values of their degrees, pick up nodes from that order and delete corresponding edges from E until E becomes empty, the resulting picked up nodes constitute the min-covering set. Complexity O(|V||E|), for picking up nodes and checking which edges it belongs to for the purpose of deleting the edge. Sorting: O(|V| log|V|), and degree calculation O(|E|) for scanning over the edges only.

5. There are three columns in a variable-length page and the following articles are to be placed in the columns such that the page length is minimal. Articles have no pre-assigned ordering for placement on the page, and they may not be split across the columns. The list of the lengths of the articles in inches is {3, 5, 1, 7, 10, 6, 2, 3}. Mention which greedy algorithm would you run for the problem? Step through that algorithm over the above list.

This is identical to the multi-processor earliest-finish time scheduling problem, and not any bin-packing problem! Many students mentioned the bin-packing problem but actually ran the multiprocessor scheduling algorithm correctly.

Sort: {10, 7, 6, 5, 3, 3, 2, 1}, and place on three columns/processors according to the algorithm: earliest availability-principle.

Col1: 10, 3

Col2: 7, 3, 2

Col3: 6, 5, 1

Could be,

Col1: 10, 2

Col2: 7, 3, 3

Col3: 6, 5, 1

6. QUSETION FOR THE GRADUATE STUDENTS. Recurrence equation: Consider n two-dimensional infinite planes passing through a point in a 3D space in such a way that no three planes pass through a single line. Presume the planes isolate the space into S(n) number of separate 3D regions. (For example, one infinite plane cut a 3D space into two isolated regions, or S(1) = 2.) We know that when a new (n+1)-th plane is introduced to the space having n such planes, with the same constraint (passing through the same point but not passing through any line intersecting a pair of existing planes), the new plane cuts across exactly 2n number of existing isolated regions, and each of such regions gets split into two new isolated regions. Set up a recurrence equation for S(n) and solve it. [Hint: the geometrical scenario is almost irrelevant.]

2n regions get split creating 2n new regions, when (n+1)-th plain is inserted.

S(n+1) = S(n) + 2n

= S(n-1) + 2(n-1) +2n = S(n-2) + 2(n-2) + 2(n-1) + 2n [Telescope: easiest way]

= . . .

= S(1) + 2.1 + . . . + 2n = S(1) + 2[1 + . . . + n] = 2 + 2[n(n+1)/2]

= 2 + n^2 + n

So, S(n) = 2+ (n-1)^2 +(n-1) = 2 +n^2 –2n +1 +n –1 = 2 +n^2 -n

