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Abstract

We consider the problem of computing thek-sparse approximation to the discrete Fourier transform ofan
n-dimensional signal. We show:

• An O(k log n)-time algorithm for the case where the input signal has at most k non-zero Fourier coeffi-
cients, and

• An O(k log n log(n/k))-time algorithm for general input signals.

Both algorithms achieveo(n log n) time, and thus improve over the Fast Fourier Transform, for any k =
o(n). Further, they are the first known algorithms that satisfy this property. Also, if one assumes that the
Fast Fourier Transform is optimal, the algorithm for the exactly k-sparse case is optimal for anyk = nΩ(1).

We complement our algorithmic results by showing that any algorithm for computing the sparse Fourier
transform of a general signal must use at leastΩ(k log(n/k)/ log log n) signal samples, even if it is allowed
to performadaptivesampling.

http://arxiv.org/abs/1201.2501v1


1 Introduction

The discrete Fourier transform (DFT) is one of the most important and widely used computational tasks. Its
applications are broad and include signal processing, communications, and audio/image/video compression.
Hence, fast algorithms for DFT are highly valuable. Currently, the fastest such algorithm is the Fast Fourier
Transform (FFT), which computes the DFT of ann-dimensional signal inO(n log n) time. The existence
of DFT algorithms faster than FFT is one of the central questions in the theory of algorithms.

A general algorithm for computing the exact DFT must take time at least proportional to its output size,
i.e., Ω(n). In many applications, however, most of the Fourier coefficients of a signal are small or equal
to zero, i.e., the output of the DFT is (approximately)sparse. This is the case for video signals, where a
typical 8x8 block in a video frame has on average 7 non-negligible frequency coefficients (i.e., 89% of the
coefficients are negligible) [CGX96]. Images and audio dataare equally sparse. This sparsity provides the
rationale underlying compression schemes such as MPEG and JPEG. Other sparse signals appear in com-
putational learning theory [KM91, LMN93], analysis of Boolean functions [KKL88, O’D08], multi-scale
analysis [DRZ07], compressed sensing [Don06, CRT06], similarity search in databases [AFS93], spectrum
sensing for wideband channels [LVS11], and datacenter monitoring [MNL10].

For sparse signals, theΩ(n) lower bound for the complexity of DFT no longer applies. If a signal has
a small numberk of non-zero Fourier coefficients – theexactlyk-sparsecase – the output of the Fourier
transform can be represented succinctly using onlyk coefficients. Hence, for such signals, one may hope for
a DFT algorithm whose runtime is sublinear in the signal size, n. Even for a generaln-dimensional signalx
– thegeneral case– one can find an algorithm that computes the bestk-sparse approximationof its Fourier
transform,̂x, in sublinear time. The goal of such an algorithm is to compute an approximation vector̂x′ that
satisfies the followingℓ2/ℓ2 guarantee:

‖x̂− x̂′‖2 ≤ C min
k-sparsey

‖x̂− y‖2, (1)

whereC is some approximation factor and the minimization is overk-sparse signals.
The past two decades have witnessed significant advances in sublinear sparse Fourier algorithms. The

first such algorithm (for the Hadamard transform) appeared in [KM91] (building on [GL89]). Since then,
several sublinear sparse Fourier algorithms for complex inputs were discovered [Man92, GGI+02, AGS03,
GMS05, Iwe10, Aka10, HIKP12]. These algorithms provide1 the guarantee in Equation (1).2

The main value of these algorithms is that they outperform FFT’s runtime for sparse signals. For very
sparse signals, the fastest algorithm is due to [GMS05] and hasO(k logc(n) log(n/k)) runtime, for some3

c > 2. This algorithm outperforms FFT for anyk smaller thanΘ(n/ loga n) for somea > 1. For less
sparse signals, the fastest algorithm is due to [HIKP12], and hasO(

√
nk log3/2 n) runtime. This algorithm

outperforms FFT for anyk smaller thanΘ(n/ log n).
Despite impressive progress on sparse DFT, the state of the art suffers from two main limitations:

1. None of the existing algorithms improves over FFT’s runtime for the whole range of sparse signals, i.e.,
k = o(n).

2. Most of the aforementioned algorithms are quite complex,and suffer from large “big-Oh” constants (the
algorithm of [HIKP12] is an exception, albeit with running time that is polynomial inn).

1The algorithm of [Man92], as stated in the paper, addresses only the exactlyk-sparse case. However, it can be extended to the
general case using relatively standard techniques.

2All of the above algorithms, as well as the algorithms in thispaper, need to make some assumption about the precision of the
input; otherwise, the right-hand-side of the expression inEquation (1) contains an additional additive term. See Preliminaries for
more details.

3The paper does not estimate the exact value ofc. We estimate thatc ≈ 3.
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Results. In this paper, we address these limitations by presenting two new algorithms for the sparse Fourier
transform. Assume that the lengthn of the input signal is a power of 2. We show:

• An O(k log n)-time algorithm for the exactlyk-sparse case, and
• An O(k log n log(n/k))-time algorithm for the general case.

The key property of both algorithms is their ability to achieve o(n log n) time, and thus improve over the
FFT, foranyk = o(n). These algorithms are the first known algorithms that satisfy this property. Moreover,
if one assume that FFT is optimal and hence DFT cannot be solved in less thanO(n log n) time, the algo-
rithm for the exactlyk-sparse case isoptimal4 as long ask = nΩ(1). Under the same assumption, the result
for the general case is at most onelog log n factor away from the optimal runtime for the case of “large”
sparsityk = n/ logO(1) n.

Furthermore, our algorithm for the exactly sparse case (depicted as Algorithm 3.1 on page 5) is quite
simple and has low big-Oh constants. In particular, our preliminary implementation of a variant of this
algorithm is faster than FFTW, a highly efficient implementation of the FFT, forn = 222 andk ≤ 217. In
contrast, for the same signal size, prior algorithms were faster than FFTW only fork ≤ 2000 [HIKP12].5

We complement our algorithmic results by showing that any algorithm that works for the general case
must use at leastΩ(k log(n/k)/ log log n) samples fromx. The lower bound uses techniques from [PW11],
which shows anΩ(k log(n/k)) lower bound for the number ofarbitrary linear measurements needed to
compute thek-sparse approximation of ann-dimensional vector̂x. In comparison to [PW11], our bound is
slightly worse but it holds even foradaptivesampling, where the algorithm selects the samples based on the
values of the previously sampled coordinates.6 Note that our algorithms arenon-adaptive, and thus limited
by the more stringent lower bound of [PW11].

TheΩ(k log(n/k)/ log log n) lower bound for the sample complexity shows that the runningtime of
our algorithm (O(k log n log(n/k) ) is equal to the sample complexity of the problem times (roughly)
log n. One would speculate that this logarithmic discrepancy is due to the need of using FFT to process
the samples. Although we do not have an evidence of the optimality of our general algorithm, the “sample
complexity timeslog n” bound appears to be a natural barrier to further improvements.

Techniques – overview. We start with an overview of the techniques used in prior works. At a high level,
sparse Fourier algorithms work by binning the Fourier coefficients into a small number of bins. Since the
signal is sparse in the frequency domain, each bin is likely7 to have only one large coefficient, which can
then be located (to find its position) and estimated (to find its value). The binning has to be done in sublinear
time, and thus these algorithms bin the Fourier coefficientsusing ann-dimensional filter vectorG that is
concentrated both in time and frequency. That is,G is zero except at a smallnumberof time coordinates,
and its Fourier transform̂G is negligible except at a smallfraction (about1/k) of the frequency coordinates,
representing the filter’s “pass” region. Each bin essentially receives only the frequencies in a narrow range
corresponding to the pass region of the (shifted) filterĜ, and the pass regions corresponding to different
bins are disjoint. In this paper, we use filters introduced in[HIKP12]. Those filters (defined in more detail
in Preliminaries) have the property that the value ofĜ is “large” over a constant fraction of the pass region,

4One also need to assume thatk dividesn. See section 5 for more details.
5Note that both numbers (k ≤ 217 andk ≤ 2000) are for the exactly k-sparse case. The algorithm in [HIKP12], however, can

deal with the general case but the empirical runtimes are higher.
6Note that if we allowarbitrary adaptive linear measurements of a vectorx̂, then itsk-sparse approximation can be computed

using onlyO(k log log(n/k)) samples [IPW11]. Therefore, our lower bound holds only where the measurements, although adap-
tive, are limited to those induced by the Fourier matrix. This is the case when we want to compute a sparse approximation tox̂
from samples ofx.

7One can randomize the positions of the frequencies by sampling the signal in time domain appropriately [GGI+02, GMS05].
See Preliminaries for the description.
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referred to as the “super-pass” region. We say that a coefficient is “isolated” if it falls into a filter’s super-
pass region and no other coefficient falls into filters pass region. Since the super-pass region of our filters is
a constant fraction of the pass region, the probability of isolating a coefficient is constant.

To achieve the stated running times, we need a fast method forlocating and estimating isolated coef-
ficients. Further, our algorithm is iterative, so we also need a fast method for updating the signal so that
identified coefficients are not considered in future iterations. Below, we describe these methods in more
detail.

New techniques – location and estimation. Our location and estimation methods depends on whether
we handle the exactly sparse case or the general case. In the exactly sparse case, we show how to estimate
the position of an isolated Fourier coefficient using only two samples of the filtered signal. Specifically,
we show that the phase difference between the two samples is linear in the index of the coefficient, and
hence we can recover the index by estimating the phases. Thisapproach is inspired by the frequency offset
estimation in orthogonal frequency division multiplexing(OFDM), which is the modulation method used in
modern wireless technologies (see [HT01], Chapter 2).

In order to design an algorithm8 for the general case, we employ a different approach. Specifically,
we use variations of the filter̂G to recover the individual bits of the index of an isolated coefficient. This
approach has been employed in prior work. However, in those papers, the index was recovered bit by bit, and
one neededΩ(log log n) samples per bit to recoverall bits correctly with constant probability. In contrast,
in this paper we recover the index oneblock of bitsat a time, where each block consists ofO(log log n)
bits. This approach is inspired by the fast sparse recovery algorithm of [GLPS10]. Applying this idea in
our context, however, requires new techniques. The reason is that, unlike in [GLPS10], we do not have the
freedom of using arbitrary “linear measurements” of the vector x̂, and we can only use the measurements
induced by the Fourier transform.9 As a result, the extension from “bit recovery” to “block recovery” is the
most technically involved part of the algorithm. See Section 4.1 for further intuition.

New techniques – updating the signal. The aforementioned techniques recover the position and thevalue
of any isolated coefficient. However, during each filtering step, each coefficient becomes isolated only with
constant probability. Therefore, the filtering process needs to be repeated to ensure that each coefficient is
correctly identified. In [HIKP12], the algorithm simply performs the filteringO(log n) times and uses the
median estimator to identify each coefficient with high probability. This, however, would lead to a running
time ofO(k log2 n) in thek-sparse case, since each filtering step takesk log n time.

One could reduce the filtering time by subtracting the identified coefficients from the signal. In this
way, the number of non-zero coefficients would be reduced by aconstant factor after each iteration, so the
cost of the first iteration would dominate the total running time. Unfortunately, subtracting the recovered
coefficients from the signal is a computationally costly operation, corresponding to a so-callednon-uniform
DFT (see [GST08] for details). Its cost would override any potential savings.

In this paper, we introduce a different approach: instead ofsubtracting the identified coefficients from
thesignal, we subtract them directly from thebinsobtained by filtering the signal. The latter operation can
be done in time linear in the number of subtracted coefficients, since each of them “falls” into only one
bin. Hence, the computational costs of each iteration can bedecomposed into two terms, corresponding to
filtering the original signal and subtracting the coefficients. For the exactly sparse case these terms are as
follows:

8We note that although the two-sample approach employed in our algorithm works only for the exactlyk-sparse case, our
preliminary experiments show that using more samples to estimate the phase works surprisingly well even for general signals.

9In particular, the method of [GLPS10] uses measurements corresponding to a random error correcting code.
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• The cost of filtering the original signal isO(B log n), whereB is the number of bins.B is set toO(k′),
wherek′ is the the number of yet-unidentified coefficients. Thus, initially B is equal toO(k), but its value
decreases by a constant factor after each iteration.

• The cost of subtracting the identified coefficients from the bins isO(k).

Since the number of iterations isO(log k), and the cost of filtering is dominated by the first iteration,the
total running time isO(k log n) for the exactly sparse case.

For the general case, the cost of each iterative step is multiplied by the number of filtering steps needed
to compute the location of the coefficients, which isO(log(n/B)). We achieve the stated running time by
carefully decreasing the value ofB ask′ decreases.

2 Preliminaries

This section introduces the notation, assumptions, and definitions used in the rest of this paper.

Notation. For an input signalx ∈ Cn, its Fourier spectrum is denoted byx̂. For any complex numbera,
we useφ(a) to denote thephaseof a. For any complex numbera and a real positive numberb, the expression
a± b denotes any complex numbera′ such that|a− a′| ≤ b. We use[n] to denote the set{1 . . . n}.

Definitions. The paper uses two tools introduced in previous papers: (pseudorandom) spectrum permuta-
tion [GGI+02, GMS05, GST08] and flat filtering windows [HIKP12].

Definition 2.1. We define thepermutationPσ,a,b to be

(Pσ,a,bx)i = xσi+aω
−bi

soP̂σ,a,bx = Pσ−1,b,ax̂. We also defineπσ,b(i) = σ(i− b) mod n, soP̂σ,a,bxπσ,b(i)
= x̂iω

−aπσ,b(i).

Definition 2.2. We say that(G, Ĝ′) = (GB,δ,α, Ĝ′
B,δ,α) ∈ Rn is a flat window functionwith parameters

B, δ, andα if |supp(G)| = O(Bα log(1/δ)) andĜ′ satisfies

• Ĝ′
i = 1 for |i| ≤ (1− α)n/(2B)

• Ĝ′
i = 0 for |i| ≥ n/(2B)

• Ĝ′
i ∈ [0, 1] for all i

•
∥∥∥Ĝ′ − Ĝ

∥∥∥
∞

< δ.

The above notion corresponds to the(1/(2B), (1−α)/(2B), δ, O(B/α log(1/δ))-flat window function
in [HIKP12]. In Section 7 we give efficient constructions of such window functions, whereG can be
computed inO(Bα log(1/δ)) time and for eachi, Ĝ′

i can be computed inO(log(1/δ)) time. Of course, for

i /∈ [(1 − α)n/(2B), n/(2B)], Ĝ′
i ∈ {0, 1} can be computed inO(1) time.

We note that the simplest way of using the window functions isto precompute them once and for all
(i.e., during a preprocessing stage dependent only onn andk, notx) and then lookup their values as needed,
in constant time per value. However, the algorithms presented in this paper use the quick evaluation sub-
routines described in Section 7. Although the resulting algorithms are a little more complex, in this way we
avoid the need for any preprocessing.

We use the following lemma aboutPσ,a,b from [HIKP12]:

Lemma 2.3 (Lemma 3.6 of [HIKP12]). If j 6= 0, n is a power of two, andσ is a uniformly random odd
number in[n], thenPr[σj ∈ [−C,C] (mod n)] ≤ 4C/n.
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Assumptions. Through the paper, we assume thatn, the dimension of all vectors, is an integer power of
2. We also make the following assumptions about the precisionof the vectorŝx:

• For the exactlyk-sparse case, we assume thatx̂i ∈ {−L, . . . , L} for some precision parameterL. To
simplify the bounds, we assume thatL = nO(1); otherwise thelog n term in the running time bound is
replaced bylogL.

• For the general case, we assume that‖x̂‖2 ≤ nO(1) ·mink-sparsey ‖x̂− y‖2. Without this assumption, we
addδ ‖x̂‖2 to the right hand side of Equation (1) and replacelog n by log(n/δ) in the running time.

3 Algorithm for the exactly sparse case

Recall that we assumêxi ∈ {−L . . . L}, whereL ≤ nc for some constantc > 0. We chooseδ =
1/(16n2L). The algorithm (NOISELESSSPARSEFFT) is described as Algorithm 3.1.

We analyze the algorithm “bottom-up”, starting from the lower-level procedures.

Analysis ofNOISELESSSPARSEFFTINNER. For any execution of NOISELESSSPARSEFFTINNER, define
S = supp(x̂ − ẑ). Recall thatπσ,b(i) = σ(i − b) mod n. Definehσ,b(i) = round(πσ,b(i)B/n) and
oσ,b(i) = πσ,b(i)−hσ,b(i)n/B. Note that therefore|oσ,b(i)| ≤ n/(2B). We will refer tohσ,b(i) as the “bin”
that the frequencyi is mapped into, andoσ,b(i) as the “offset”. For anyi ∈ S define two types of events
associated withi andS and defined over the probability space induced byσ:

• “Collision” eventEcoll(i): holds iff hσ,b(i) ∈ hσ,b(S − {i}), and
• “Large offset” eventEoff (i): holds iff |oσ,b(i)| ≥ (1− α)n/(2B).

Claim 3.1. For anyi ∈ S, the eventEcoll(i) holds with probability at most4|S|/B.

Proof. Consider distincti, j ∈ S. By Lemma 2.3,

Pr[|πσ,b(i) − πσ,b(j) mod n| < n/B] ≤ Pr[σ(i− j) mod n ∈ [−n/B, n/B]] ≤ 4/B.

HencePr[hσ,b(i) = hσ,b(j)] < 4/B, soPr[Ecoll(i)] ≤ 4 |S| /B.

Claim 3.2. For anyi ∈ S, the eventEoff (i) holds with probability at mostα.

Proof. Note thatoσ,b(i) ≡ πσ,b(i) (mod n/B). For any oddσ andl ∈ [n/B], we have thatPrb[σ(i−b) ≡ l
(mod n)/B] = B/n. The claim follows.

Lemma 3.3. The output̂u of HASHTOBINS has

ûj =
∑

hσ,b(i)=j

̂(x− z)j
̂(GB,δ,α)−oσ,b(i)

ω−aπσ,b(i) ± δ(‖x‖1 + 2 ‖ẑ‖1).

Let ζ = |{i ∈ supp(ẑ) | Eoff (i)}|. The running time ofHASHTOBINS is O(Bα log(1/δ) + |supp(ẑ)| +
ζ log(1/δ)).

Proof. DefineG = GB,δ,α andG′ = GB,δ,α. We have

ŷ = ̂G · Pσ,a,b(x) = Ĝ ∗ ̂Pσ,a,b(x)

ŷ′ = Ĝ ∗ ̂Pσ,a,b(x− z) + (Ĝ− Ĝ′) ∗ P̂σ,a,bz

= Ĝ′ ∗ ̂Pσ,a,b(x− z)± δ(‖x‖1 + 2 ‖z‖1)
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procedure HASHTOBINS(x, ẑ, Pσ,a,b, B, δ, α)
Computêyjn/B for j ∈ [B], wherey = GB,α,δ · (Pσ,a,b(x))

Computeŷ′jn/B = ŷjn/B − (Ĝ′
B,α,δ ∗ P̂σ,a,bz)jn/B for j ∈ [B]

return û given byûj = ŷ′jn/B.
end procedure
procedure NOISELESSSPARSEFFTINNER(x, k′, ẑ)

LetB = k′/β.
Chooseσ uniformly at random from the set of odd numbers in[n].
Chooseb uniformly at random from[n].
û← HASHTOBINS(x, ẑ, Pσ,0,b, B, δ, α).
û′ ← HASHTOBINS(x, ẑ, Pσ,1,b, B, δ, α).
ŵ ← 0.
ComputeJ = {j : |ûj| > 1/2}.
for j ∈ J do

a← ûj/û
′
j .

i← π−1
σ,b(round(φ(a)n/(2π))).

v ← round(ûj).
ŵi ← v.

end for
return ŵ

end procedure
procedure NOISELESSSPARSEFFT(x, k)

ẑ ← 0
for t ∈ 0, 1, . . . , log k do

kt = k/2t.
ẑ ← ẑ + NOISELESSSPARSEFFTINNER(x, kt, ẑ).
for i ∈ supp(ẑ) do

if |zi| ≥ L then zi = 0
end if

end for
end for
return ẑ

end procedure

Algorithm 3.1: Exactk-sparse recovery

Therefore

ûj = ŷ′jn/B =
∑

|l|<n/(2B)

Ĝ−l
̂(Pσ,a,b(x− z))jn/B+l ± δ(‖x‖1 + 2 ‖z‖1)

=
∑

|πσ,b(i)−jn/B|<n/(2B)

Ĝjn/B−πσ,b(i)
̂(Pσ,a,b(x− z))πσ,b(i)

± δ(‖x‖1 + 2 ‖z‖1)

=
∑

hσ,b(i)=j

Ĝ−oσ,b(i)
̂(x− z)iω

−aπσ,b(i) ± δ(‖x‖1 + 2 ‖z‖1)

We can compute HASHTOBINS via the following method:

6



1. Computey with |supp(y)| = O(Bα log(1/δ)) in O(Bα log(1/δ)) time.
2. Computev ∈ CB given byvi =

∑
j yi+jB.

3. As long asB dividesn, by Claim 3.7 of [HIKP12] we havêyjn/B = v̂j for all j. Hence we can compute
it with aB-dimensional FFT inO(B logB) time.

4. For each coordinatei ∈ supp(ẑ), decrease ̂yhσ,b(i)n/B by Ĝ′
oσ,b(i)ẑiω

−aπσ,b(i). This takesO(|supp(ẑ)|+
ζ log(1/δ)) time, since computinĝG′

oσ,b(i) takesO(log(1/δ)) time if Eoff (i) holds andO(1) otherwise.

Lemma 3.4. Consider anyi ∈ S such that neitherEcoll(i) nor Eoff (i) holds. Letj = hσ,b(i). Then

round(φ(û′j/ûj))n/(2π)) = πσ,b(i),

round(ûj) = x̂i − ẑi,

andj ∈ J .

Proof. We know that‖x‖1 ≤ nL and‖z‖1 ≤ nL. Then by Lemma 3.3 andEcoll(i) not holding,

ûj = ̂(x− z)iĜ−oσ,b(i) ± 3δnL.

BecauseEoff (i) does not hold,̂G−oσ,b(i) = 1± δ, so

ûj = ̂(x− z)i ± 3δnL± 2δL = ̂(x− z)i ± 4δnL. (2)

Similarly,

û′j =
̂(x− z)iω

−πσ,b(i) ± 4δnL

Then because4δnL < 1 ≤
∣∣∣ ̂(x− z)i

∣∣∣,

φ(ûj) = 0± sin−1(4δnL) = 0± 8δnL

andφ(û′j) = −πσ,b(i)± 8δnL. Thusφ(ûj/û′j) = πσ,b(i) ± 16δnL = πσ,b(i)± 1/n. Therefore

round(φ(û′j/ûj)n/(2π)) = πσ,b(i).

Also, by Equation (2), round(ûj) = x̂i − ẑi. Finally, |round(ûj)| = |x̂i − ẑi| ≥ 1, so|ûj| ≥ 1/2. Thus
j ∈ J .

Claims 3.1 and 3.2 and Lemma 3.4 together guarantee that for eachi ∈ S the probability thatP does
not contain the pair(i, (x̂− ẑ)i) is at most4|S|/B+α. We complement this observation with the following
claim.

Claim 3.5. For anyj ∈ J we havej ∈ hσ,b(S). Therefore,|J | = |P | ≤ |S|.

Proof. Consider anyj /∈ hσ,b(S). From the analysis in the proof of Lemma 3.4 it follows that|ûj | ≤
4δnL < 1/2.

Lemma 3.6. Consider an execution ofNOISELESSSPARSEFFTINNER, and letS = supp(x̂ − ẑ). If
|S| ≤ k′, then

E[‖x̂ − ẑ − ŵ‖0] ≤ 8(β + α)|S|.

7



Proof. Let e denote the number of coordinatesi ∈ S for which eitherEcoll(i) or Eoff (i) holds. Each such
coordinate might not appear inP with the correct value, leading to an incorrect value ofŵi. In fact, it might
result in an arbitrary pair(i′, v′) being added toP , which in turn could lead to an incorrect value ofŵi′ . By
Claim 3.5 these are the only ways thatŵ can be assigned an incorrect value. Thus we have

‖x̂− ẑ − ŵ‖0 ≤ 2e

SinceE[e] ≤ (4|S|/B + α)|S| ≤ (4β + α)|S|, the lemma follows.

Analysis ofNOISELESSSPARSEFFT Consider thetth iteration of the procedure, and defineSt = supp(x̂−
ẑ) whereẑ denotes the value of the variable at the beginning of loop. Note that|S0| = | supp(x̂)| ≤ k.

We also define an indicator variableIt which is equal to0 iff |St|/|St−1| ≤ 1/8. If It = 1 we say the the
tth iteration was notsuccessful. Letγ = 8 · 8(β+α). From Lemma 3.6 it follows thatPr[It = 1 | |St−1| ≤
k/2t−1] ≤ γ. From Claim 3.5 it follows that even if thetth iteration is not successful, then|St|/|St−1| ≤ 2.

For anyt ≥ 1, define an eventE(t) that occurs iff
∑t

i=1 Ii ≥ t/2. Observe that if none of the events
E(1) . . . E(t) holds then|St| ≤ k/2t.

Lemma 3.7. LetE = E(1)∪. . .∪E(λ) for λ = 1+log k. Assume that(2eγ)1/2 < 1/4. ThenPr[E] ≤ 1/3.

Proof. Let t′ = ⌈t/2⌉. We have

Pr[E(t)] ≤
(
t

t′

)
γt

′ ≤ (te/t′)t
′

γt
′ ≤ (2eγ)t/2

Therefore

Pr[E] ≤
∑

t

Pr[E(t)] ≤ (2eγ)1/2

1− (2eγ)1/2
≤ 1/4 · 4/3 = 1/3

Theorem 3.8. The algorithmNOISELESSSPARSEFFT runs in expectedO(k log n) time and returns the
correct vector̂x with probability at least2/3.

Proof. The correctness follows from Lemma 3.7. The running time is dominated byO(log k) executions of
HASHTOBINS. Since

E[|{i ∈ supp(z) | Eoff (i)}|] = α |supp(z)| ,
the expected running time of each execution of HASHTOBINS isO(Bα log n+k+αk log(1/δ)) = O(Bα log n+

k+αk log n). Settingα = Θ(2−i/2) andβ = Θ(1), the expected running time in roundi isO(2−i/2k log n+
k + 2−i/2k log n). Therefore the total expected running time isO(k log n).

4 Algorithm for the general case

This section shows how to achieve Equation (1) forC = 1 + ǫ. Pseudocode is in Algorithm 4.1 and 4.2.

4.1 Intuition

Let S denote the “heavy”O(k/ǫ) coordinates of̂x. The overarching algorithm SPARSEFFT works by first
finding a setL containing most ofS, then estimatinĝxL to getẑ. It then repeats on̂x− z. We will show that
each “heavy” coordinate has a large constant probability ofboth being inL and being estimated well. As
a result,x̂− z is probablyk/4-sparse, so we can run the next iteration withk → k/4. The later iterations
will then run faster, so the total running time is dominated by the time in the first iteration.
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Location As in the noiseless case, to locate the heavy coordinates we consider the bins computed by
HASHTOBINS with Pσ,a,b. We have that each heavy coordinatei is probably alone in its bin, and would
like to find its locationτ = πσ,b(i). In the noiseless case, we showed that the difference in phase in the bin
usingPσ,0,b and usingPσ,1,b is 2π τ

n plus a negligibleO(δ) term. With noise this may not be true; however,
we can say that the difference in phase between usingPσ,a,b andPσ,a+β,b, as a distribution over uniformly
randoma, is 2π βτ

n + ν with (for example)E[ν2] = 1/100 (with all operations on phases modulo2π). So
our task is to findτ within a regionQ of sizen/k usingO(log(n/k)) “measurements” of this form.

One method for doing so would be to simply do measurements with randomβ ∈ [n]. Then each

measurement lies withinπ/4 of 2π βτ
n with at least1 − E[ν2]

π2/16
> 3/4 probability. On the other hand, for

j 6= τ , 2π βτ
n − 2π βj

n is roughly uniformly distributed around the circle. As a result, each measurement is

probably more thanπ/4 away from2π βj
n . HenceO(log(n/k)) repetitions suffice to distinguish among the

n/k possibilities forτ . However, while the number of measurements is small, it is not clear how to decode
in polylog rather thanΘ(n/k) time.

To solve this, we instead do at-ary search on the location fort = O(log n). At each ofO(logt(n/k))
levels, we split our current candidate regionQ into t consecutive subregionsQ1, . . . , Qt, each of sizew.
Now, rather than choosingβ ∈ [n], we chooseβ ∈ [ n

16w ,
n
8w ]. As a result,{2π βj

n | j ∈ Qq} all lie within a

region of sizeπ/4. On the other hand, if|j − τ | > 16w, then2π βτ
n − 2π βj

n will still be roughly uniformly
distributed about the circle. As a result, we can check a single candidate elementeq from each region: if
eq is in the same region asτ , each measurement usually agrees in phase; but ifeq is more than16 regions
away, each measurement usually disagrees in phase. Hence withO(log t) measurements, we can locateτ to
within O(1) regions with failure probability1/t2. The decoding time isO(t log t).

This primitive LOCATEINNER lets us narrow down the candidate region forτ to a subregion that is a
t′ = Ω(t) factor smaller. By repeatinglogt′(n/k) times, we can findτ precisely. The number of mea-
surements is thenO(log t logt(n/k)) = O(log(n/k)) and the decoding time isO(t log t logt(n/k)) =
O(log(n/k) log n). Furthermore, the “measurements” (which are actually calls to HASHTOBINS) are non-
adaptive, so we can perform them in parallel for allO(k/ǫ) bins, withO(log(1/δ)) = O(log n) average
time per bins per measurement.

Estimation By contrast, ESTIMATEVALUES is quite straightforward. Each measurement usingPσ,a,b

gives an estimate of eacĥxi that is “good” with constant probability. However, we actually need eacĥxi
to be “good” with1 − O(ǫ) probability, since the number of candidates|L| ≈ k/ǫ. Therefore we repeat
O(log 1

ǫ ) times and taking the median for each coordinate.
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procedure SPARSEFFT(x, k, ǫ)
ẑ(1) ← 0
for r ∈ [R] do

ChooseBr, kr, αr as in Theorem 4.9.
Lr ← LOCATESIGNAL (x, ẑ(r), Br)
ẑ(r+1) ← ẑ(r) + ESTIMATEVALUES(x, ẑ(r), kr, Lr, Br).

end for
return ẑ(R+1)

end procedure
procedure ESTIMATEVALUES(x, ẑ, k′, L, B)

for r ∈ [Rest] do
Choosear, br ∈ [n] uniformly at random.
Chooseσr uniformly at random from the set of odd numbers in[n].
û(r) ← HASHTOBINS(x, ẑ, Pσ,ar ,b, B, δ).

end for
ŵ ← 0
for i ∈ L do

ŵi ← medianr û
(r)
hσ,b(i)

ωari.
end for
J ← argmax|J |=k′ ‖ŵJ‖2.
return ŵJ

end procedure

Algorithm 4.1: k-sparse recovery for general signals, part 1/2

4.2 Formal definitions

As in the noiseless case, we defineπσ,b(i) = σ(i − b) mod n, hσ,b(i) = round(πσ,b(i)B/n) andoσ,b(i) =
πσ,b(i) − hσ,b(i)n/B. We sayhσ,b(i) is the “bin” that frequencyi is mapped into, andoσ as the “offset”.
We defineh−1

σ,b(j) = {i ∈ [n] | hσ,b(i) = j}.
Define

Err(x, k) = min
k-sparsey

‖x− y‖2 .

In each iteration of SPARSEFFT, definêx′ = x̂− ẑ, and let

ρ2 = Err2(x̂′, k) + δ2n3(
∥∥x′

∥∥2
2
+ ‖x‖22)

µ2 = ǫρ2/k

S = {i ∈ [n] | |x̂′i|2 ≥ µ2}

Then|S| ≤ (1 + 1/ǫ)k = O(k/ǫ) and
∥∥∥x̂′ − x̂′S

∥∥∥
2

2
≤ (1 + ǫ)ρ2. We will show that eachi ∈ S is found by

LOCATESIGNAL with probability1−O(α), whenB = Ω( k
αǫ).

For anyi ∈ S define three types of events associated withi andS and defined over the probability space
induced byσ anda:

• “Collision” eventEcoll(i): holds iff hσ,b(i) ∈ hσ,b(S − {i});
• “Large offset” eventEoff (i): holds iff |oσ(i)| ≥ (1− α)n/(2B); and

• “Large noise” eventEnoise(i): holds iff
∥∥∥x̂′h−1

σ,b
(hσ,b(i))\S

∥∥∥
2

2
≥ ρ2/(αB).
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procedure LOCATESIGNAL (x, ẑ, B)
Choose uniformly at randomb ∈ [n] andσ relatively prime ton.

Initialize l
(1)
i = (i− 1)n/B for i ∈ [B].

Letw0 = n/B, t′ = log n, t = 3t′,Dmax = logt′(w0 + 1).
for D ∈ [Dmax] do

l(D+1) ← LOCATEINNER(x, ẑ, B, δ, α, σ, β, l(D) , w0/(t
′)D−1, t, Rloc)

end for
L← {π−1

σ,b(l
(Dmax+1)
j ) | j ∈ [B]}

return L
end procedure

⊲ δ, α parameters forG, G′

⊲ (l1, l1 + w), . . . , (lB , lB + w) the plausible regions.
⊲ B ≈ k/ǫ the number of bins

⊲ t ≈ log n the number of regions to split into.
⊲ Rloc ≈ log t = log log n the number of rounds to run

⊲ Running time:RlocB log(1/δ) +RlocBt+Rloc |supp(ẑ)|
procedure LOCATEINNER(x, ẑ, B, δ, α, σ, b, l, w, t, Rloc)

Let s = Θ(α1/3).
Let vj,q = 0 for (j, q) ∈ [B]× [t].
for r ∈ [Rloc] do

Choosea ∈ [n] uniformly at random.
Chooseβ ∈ {snt4w , . . . , snt2w } uniformly at random.
û← HASHTOBINS(x, ẑ, Pσ,a,b, B, δ, α).
û′ ← HASHTOBINS(x, ẑ, Pσ,a+β,b, B, δ, α).
for j ∈ [B] do

cj ← φ(ûj/û
′
j)

for q ∈ [t] do
mj,q ← lj +

q−1/2
t w

θj,q ← 2πβmj,q

n mod 2π
if min(|θj,q − cj| , 2π − |θj,q − cj |) < sπ then

vj,q ← vj,q + 1
end if

end for
end for

end for
for j ∈ [B] do

Q∗ ← {q : vj,q > Rloc/2}
if Q∗ 6= ∅ then

l′j ← minq∈Q∗ lj +
q−1
t w

else
l′j ←⊥

end if
end for
return l′

end procedure

Algorithm 4.2: k-sparse recovery for general signals, part 2/2

11



By Claims 3.1 and 3.2,Pr[Ecoll(i)] ≤ 2 |S| /B = O(α) andPr[Eoff (i)] ≤ 2α for anyi ∈ S.

Claim 4.1. For anyi ∈ S, Pr[Enoise(i)] ≤ 8α.

Proof. For eachj 6= i, Pr[hσ,b(j) = hσ,b(i)] ≤ Pr[|σj − σi| < n/B] ≤ 4/B by Lemma 3.6 of [HIKP12].
Then

E[
∥∥∥x̂′h−1

σ,b
(hσ,b(i))\S

∥∥∥
2

2
] ≤ 4

∥∥∥x̂′[n]\S
∥∥∥
2

2
/B ≤ 4(1 + ǫ)ρ2/B

The result follows by Chebyshev’s inequality.

We will show that ifEcoll(i), Eoff (i), andEnoise(i) all hold then SPARSEFFTINNER recoverŝx′i with
constant probability.

Lemma 4.2. Leta ∈ [n] uniformly at random and the other parameters be arbitrary in

û = HASHTOBINS(x, ẑ, Pσ,a,b, B, δ, α)j .

Then for anyi ∈ [n] with j = hσ,b(i) and notEoff (i),

E[
∣∣∣ûj − ̂(x− z)i

∣∣∣
2
] ≤ 2(1 + δ)2

∥∥∥ ̂(x− z)h−1

σ,b
(j)\{i}

∥∥∥
2

2
+O(nδ2)(‖x‖22 +

∥∥∥x̂− z
∥∥∥
2

2
)

Proof. LetG = GB,δ,α. LetT = h−1
σ,b(j) \ {i}. By Lemma 3.3,

ûj − ̂(x− z)i =
∑

i′∈T

Ĝ−oσ(i)
̂(x− z)i′ω

−aπσ,b(i
′) ±O(

√
nδ)(‖x‖2 +

∥∥∥x̂− z
∥∥∥
2
)

∣∣∣ûj − ̂(x− z)i

∣∣∣ ≤ (1 + δ)

∣∣∣∣∣
∑

i′∈T

̂(x− z)i′ω
−aπσ,b(i

′)

∣∣∣∣∣+O(
√
nδ)(‖x‖2 +

∥∥∥x̂− z
∥∥∥
2
)

∣∣∣ûj − ̂(x− z)i

∣∣∣
2
≤ 2(1 + δ)2

∣∣∣∣∣
∑

i′∈T

̂(x− z)i′ω
−aπσ,b(i

′)

∣∣∣∣∣

2

+O(nδ2)(‖x‖2 +
∥∥∥x̂− z

∥∥∥
2
)2

E[
∣∣∣ûj − ̂(x− z)i

∣∣∣
2
] ≤ 2(1 + δ)2

∥∥∥ ̂(x− z)T

∥∥∥
2

2
+O(nδ2)(‖x‖22 +

∥∥∥x̂− z
∥∥∥
2

2
)

where the last inequality is Parseval’s theorem.

4.3 Properties of LOCATE SIGNAL

Lemma 4.3. LetT ⊂ [m] consist oft consecutive integers, and supposeσ ∈ T uniformly at random. Then
for anyi ∈ [n] and setS ⊂ [n] of l consecutive integers,

Pr[σi mod n ∈ S] ≤ ⌈im/n⌉ (1 + ⌊l/i⌋)/t ≤ 1

t
+

im

nt
+

lm

nt
+

l

it

Proof. Note that any interval of lengthl can cover at most1+ ⌊l/i⌋ elements of any arithmetic sequence of
common differencei. Then{σi | σ ∈ T} ⊂ [im] is such a sequence, and there are at most⌈im/n⌉ intervals
an+ S overlapping this sequence. Hence at most⌈im/n⌉ (1 + ⌊l/i⌋) of theσ ∈ [m] haveσi mod n ∈ S.
Hence

Pr[σi mod n ∈ S] ≤ ⌈im/n⌉ (1 + ⌊l/i⌋)/t.
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Lemma 4.4. Suppose none ofEcoll(i), Eoff (i), andEnoise(i) hold, and letj = hσ,b(i). Consider any
run of LOCATEINNER with πσ,b(i) ∈ [lj , lj + w] . Thenπσ,b(i) ∈ [l′j , l

′
j + 3w/t] with probability at least

1− tfΩ(Rloc), as long as

B =
Ck

αfǫ
.

for C larger than some fixed constant.

Proof. Let τ = πσ,b(i). Let g = Θ(f1/3), andC ′ = Bαǫ
k = Θ(1/g3).

To get the result, we divide[lj , lj +w] into t “regions”,Qq = [lj +
q−1
t w, lj +

q
tw] for q ∈ [t]. We will

first show that in each roundr, cj is close to2πβτ/n with large constant probability. This will imply that
Qq gets a “vote,” meaningvj,q increases, with large constant probability for theq′ with τ ∈ Qq′ . It will also
imply thatvj,q increases with only a small constant probability when|q − q′| ≥ 2. ThenRloc rounds will
suffice to separate the two with “high” probability, allowing the recovery ofq′ to within 2, or the recovery
of τ to within 3 regions or the recovery ofτ within 3w/t.

DefineT = h−1
σ,b(hσ,b(i)) \ {i}, so

∥∥∥x̂′T
∥∥∥
2

2
≤ ρ2

αB . In any roundr, defineû = û(r) anda = ar. We have

by Lemma 4.2 that

E[
∣∣∣ûj − ω−aτ x̂′i

∣∣∣
2
] ≤ 2(1 + δ)2

∥∥∥x̂′T
∥∥∥
2

2
+O(nδ2)(‖x‖22 +

∥∥∥x̂′
∥∥∥
2

2
)

< 3
ρ2

αB
≤ 3k

Bαǫ
|x̂′i|2

=
3

C ′
|x̂′i|2.

Thus with probability1− p, we have

∣∣∣ûj − ω−aτ x̂′i

∣∣∣ ≤
√

3

C ′p

∣∣∣x̂′i
∣∣∣

d(φ(ûj), φ(x̂′i)−
2πaτ

n
) ≤ sin−1(

√
3

C ′p
)

whered(x, y) = minγ∈Z |x− y + 2πγ| is the “circular distance” betweenx andy. The analogous fact

holds forφ(û′j) relative toφ(x̂′i)− 2π(a+β)τ
n . Therefore

d(φ(ûj/û′j),
2πβτ

n
)

=d(φ(ûj)− φ(û′j), (φ(x̂′i)−
2πaτ

n
)− (φ(x̂′i)−

2π(a+ β)τ

n
))

≤d(φ(ûj), φ(x̂′i)−
2πaτ

n
) + d(φ(û′j), φ(x̂′i)−

2π(a + β)τ

n
)

<2 sin−1(

√
3

C ′p
)

by the triangle inequality. Thus for anys = Θ(g) andp = Θ(g), we can setC ′ = 3
p sin2(sπ/4)

= O(1/g3)

so that

d(cj ,
2πβτ

n
) < sπ/2 (3)

with probability at least1− 2p.
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Equation (3) shows thatcj is a good estimate fori with good probability. We will now show that this
means the approprate “region”Qq′ gets a “vote” with “large” probability.

For theq′ with τ ∈ [lj +
q′−1
t w, lj +

q′

t w], we have thatmj,q′ = lj +
q′−1/2

t w satisfies

∣∣τ −mj,q′
∣∣ ≤ w

2t

and hence by Equation 3 and the triangle inequality,

d(cj , θj,q′) ≤ d(
2πβτ

n
, cj) + d(

2πβτ

n
,
2πβmj,q′

n
)

<
sπ

2
+

2πβw

2tn

≤ sπ

2
+

sπ

2
= sπ

Thus,vj,q′ will increase in each round with probability at least1− 2p.

Now, considerq with |q − q′| > 2. Then|τ −mj,q| > (2·2+1)w
2t , and (from the definition ofβ) we have

β |τ −mj,q| >
2(2 + 1)sn

8
= 3sn/4. (4)

We now consider two cases. First, assume that|τ −mj,q| ≤ w
st . In this case, from the definition ofβ it

follows that
β |τ −mj,q| ≤ n/2.

Together with Equation (4) this implies

Pr[β(τ −mj,q) mod n ∈ [−3sn/4, 3sn/4]] = 0.

On the other hand, assume that|τ −mj,q| > w
st . In this case, we use Lemma 4.3 with parameters

l = 3sn/2, m = snt
2w , t = snt

4w , i = (τ −mj,q) andn to conclude that

Pr[β(τ −mj,q) mod n ∈ [−3sn/4, 3sn/4]] ≤ 4w

snt
+ 2
|τ −mj,q|

n
+ 3s+

3sn

2

st

w

4w

snt

≤ 4w

snt
+

w

n
+ 9s

<
5

sB
+ 9s < 10s

where we used that|i| ≤ w/2 ≤ n/(2B), the assumptionwst < |i|, t ≥ 1, s < 1, and thats2 > 5/B
(becauses = Ω(g) andB = ω(1/g3)). Thus in any case, with probability at least1− 10s we have

d(0,
2πβ(mj,q − τ)

n
) >

3

2
sπ

for anyq with |q − q′| > 2. Therefore we have

d(cj , θj,q) ≥ d(0,
2πβ(mj,q − τ)

n
)− d(cj ,

2πβτ

n
) > sπ

with probability at least1− 10s − 2p, andvj,q is not incremented.

14



To summarize: in each round,vj,q′ is incremented with probability at least1−2p andvj,q is incremented
with probability at most10s + 2p for |q − q′| > 2. The probabilities corresponding to different rounds are
independent.

Sets = f ′/20 andp = f ′/4. Thenvj,q′ is incremented with probability at least1 − f ′ andvj,q is
incremented with probability less thanf ′. Then afterRloc rounds, by the Chernoff bound, for|q − q′| > 2

Pr[vj,q > Rloc/2] ≤
(

Rloc

Rloc/2

)
gRloc/2 ≤ (4g)Rloc/2 = fΩ(Rloc)

for g = f1/3/4. Similarly,
Pr[vj,q′ < Rloc/2] ≤ fΩ(Rloc).

Hence with probability at least1 − tfΩ(Rloc) we haveq′ ∈ Q∗ and|q − q′| ≤ 2 for all q ∈ Q∗. But then
τ − l′j ∈ [0, 3w/t] as desired.

BecauseE[|{i ∈ supp(ẑ) | Eoff (i)}|] = α |supp(ẑ)|, the expected running time isO(RlocBt+Rloc
B
α log(1/δ)+

Rloc |supp(ẑ)| (1 + α log(1/δ))).

Lemma 4.5. SupposeB = Ck
α2ǫ

for C larger than some fixed constant. Then for anyi ∈ S, the procedure
LOCATESIGNAL returns a setL such thati ∈ L with probability at least1−O(α). Moreover the procedure
runs in expected time

O((
B

α
log(1/δ) + |supp(ẑ)| (1 + α log(1/δ))) log(n/B)).

Proof. Suppose none ofEcoll(i), Eoff (i), andEnoise(i) hold, as happens with probability1−O(α).
Sett = O(log n), t′ = t/3 andRloc = O(log1/α(t/α)). Let w0 = n/B andwD = w0/(t

′)D−1, so

wDmax+1 < 1 for Dmax = logt′(w0+1). In each roundD, Lemma 4.4 implies that ifτ ∈ [l
(D)
j , l

(D)
j +wD]

thenπσ,b(i) ∈ [l
(D+1)
j , l

(D+1)
j +wD+1] with probability at least1−αΩ(Rloc) = 1−α/t. By a union bound,

with probability at least1− α we haveπσ,b(i) ∈ [l
(Dmax+1)
j , l

(Dmax+1)
j + wDmax+1] = {l(Dmax+1)

j }. Thus

i = π−1
σ,b(l

(Dmax+1)
j ) ∈ L.

SinceRlocDmax = O(log1/α(t/α) logt(n/B)) = O(log(n/B)), the running time is

O(Dmax(Rloc
B

α
log(1/δ)+Rloc |supp(ẑ)| (1+α log(1/δ)))) = O((

B

α
log(1/δ)+|supp(ẑ)| (1+α log(1/δ))) log(n/B)).

4.4 Properties of ESTIMATE VALUES

Lemma 4.6. For anyi ∈ L,

Pr[
∣∣∣ŵi − x̂′i

∣∣∣
2
> µ2] < e−Ω(Rest)

if B > Ck
αǫ for some constantC.

Proof. Defineer = û
(r)
j ωari − x̂′i in each roundr, andTr = {i′ minhσr ,br(i

′) = hσr ,br(i), i
′ 6= i}, and

ν
(r)
i =

∑

Tr

x̂′i′ω
−ari′ .
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Suppose none ofE(r)
coll(i), E

(r)
off (i), andE(r)

noise(i) hold, as happens with probability1 − O(α). Then by
Lemma 4.2,

Ear [|er|2] ≤ 2(1 + δ)2
∥∥∥x̂′Tr

∥∥∥
2

2
+O(nδ2)(‖x‖22 +

∥∥x′
∥∥2
2
).

Hence byE(r)
off andE(r)

noise not holding,

Ear [|er|2] ≤ 2(1 + δ)2
ρ2

αB
+O(ρ2/n2)

≤ 3

αB
ρ2 =

3k

αǫB
µ2 <

3

C
µ2

Hence with3/4 −O(α) > 5/8 probability in total,

|er|2 <
12

C
µ2 < µ2

for sufficiently largeC. Thus |medianr er|2 < µ2 with probability at least1 − e−Ω(Rest). Sinceŵi =
x̂′i +median er, the result follows.

Lemma 4.7. LetRest = O(log B
γfk ). Then ifk′ = (1 + f)k ≤ 2k, we have

Err2(x̂′L − ŵJ , fk) ≤ Err2(x̂′L, k) +O(ǫ)ρ2

with probability1− γ.

Proof. By Lemma 4.6, each indexi ∈ L has

Pr[
∣∣∣ŵi − x̂′i

∣∣∣
2
> µ2] <

γfk

B
.

LetU = {i |
∣∣∣ŵi − x̂′i

∣∣∣
2
> µ2}. With probability1− γ, |U | ≤ fk; assume this happens. Then

∥∥∥(x̂′ − ŵ)L\U

∥∥∥
2

∞
≤ µ2. (5)

Let T contain the top2k coordinates of̂wL\U . By the analysis of Count-Sketch (most specifically, Theo-
rem 3.1 of [PW11]), theℓ∞ guarantee means that

∥∥∥x̂′L\U − ŵT

∥∥∥
2

2
≤ Err2(x̂′L\U , k) + 3kµ2. (6)

BecauseJ is the top(2 + f)k coordinates of̂w, T ⊂ J and|J \ T | ≤ fk. Thus

Err2(x̂′L − ŵJ , fk) ≤
∥∥∥x̂′L\U − ŵJ\U

∥∥∥
2

2

≤
∥∥∥x̂′L\U − ŵT

∥∥∥
2

2
+

∥∥∥(x̂′ − ŵ)J\(U∪T )

∥∥∥
2

2

≤
∥∥∥x̂′L\U − ŵT

∥∥∥
2

2
+ |J \ T |

∥∥∥(x̂′ − ŵ)J\U

∥∥∥
2

∞

≤ Err2(x̂′L\U , k) + 3kµ2 + fkµ2

≤ Err2(x̂′L\U , k) + 4ǫρ2

where we used Equations (5) and (6).
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4.5 Properties of SPARSEFFT

Definev̂(r) = x̂− ẑ(r). We will show that̂v(r) gets sparser asr increases, with only a mild increase in the
error.

Lemma 4.8. Consider any one loopr of SPARSEFFT, running with parametersB = Ck
α2ǫ

for some param-
etersC, f , andα, withC larger than some fixed constant. Then

Err2(v̂(r+1), 2fk) ≤ (1 +O(ǫ)) Err2(v̂(r), k) +O(ǫδ2n3(‖x‖22 +
∥∥∥v̂(r)

∥∥∥
2

2
))

with probability1−O(α/f), and the running time is

O((| supp(ẑ(r))|(1 + α log(1/δ)) +
B

α
log(1/δ))(log

1

αǫ
+ log(n/B))).

Proof. We useRest = O(log B
αk ) = O(log 1

αǫ) rounds inside ESTIMATEVALUES.
The running time for LOCATESIGNAL is

O((
B

α
log(1/δ) + | supp(ẑ(r))|(1 + α log(1/δ))) log(n/B)),

and for ESTIMATEVALUES is

O(log
1

αǫ
(
B

α
log(1/δ) + | supp(ẑ(r))|(1 + α log(1/δ))))

for a total running time as given.

Let µ2 = ǫ
k Err

2(v̂(r), k), andS = {i ∈ [n] |
∣∣∣v̂(r)i

∣∣∣
2
> µ2}.

By Lemma 4.5, eachi ∈ S lies in Lr with probability at least1 − O(α). Hence|S \ L| < fk with
probability at least1−O(α/f). LetT ⊂ L contain the largestk coordinates of̂v(r). Then

Err2(v̂
(r)
[n]\L, fk) ≤

∥∥∥v̂(r)[n]\(L∪S)

∥∥∥
2

2
≤

∥∥∥v̂(r)[n]\(L∪T )

∥∥∥
2

2
+ |T \ S|

∥∥∥v̂(r)[n]\S

∥∥∥
2

∞
≤ Err2(v̂

(r)
[n]\L, k) + kµ2. (7)

Let ŵ = ẑ(r+1)− ẑ(r) = v̂(r)− v̂(r+1) by the vector recovered by ESTIMATEVALUES. Thensupp(ŵ) ⊂ L,
so

Err2(v̂(r+1), 2fk) = Err2(v̂(r) − ŵ, 2fk)

≤ Err2(v̂
(r)
[n]\L, fk) + Err2(v̂

(r)
L − ŵ, fk)

≤ Err2(v̂
(r)
[n]\L, fk) + Err2(v̂

(r)
L , k) +O(kµ2)

by Lemma 4.7. But by Equation (7), this gives

Err2(v̂(r+1), 2fk) ≤ Err2(v̂
(r)
[n]\L, k) + Err2(v̂

(r)
L , k) +O(kµ2)

≤ Err2(v̂(r), k) +O(kµ2)

= Err2(v̂(r), k) +O(ǫρ2).

The result follows from the definition ofρ2.

Given the above, this next proof largely follows the argument of [IPW11], Theorem 3.7.
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Theorem 4.9. SPARSEFFT recoverŝz(R+1) with
∥∥∥x̂− ẑ(R+1)

∥∥∥
2
≤ (1 + ǫ) Err(x̂, k) + δ ‖x̂‖2

in O(kǫ log(n/k) log(n/δ)) time.

Proof. Definefr = O(1/r2) so
∑

fr < 1/4. ChooseR so
∏

r≤R fr < 1/k ≤ ∏
r<R fr. ThenR =

O(log k/ log log k), since
∏

r≤R fr < f
R/2
R/2 = (2/R)R.

Setǫr = frǫ, αr = Θ(f2
r ), kr = k

∏
i<r fi, Br = O(kǫαrfr). ThenBr = ω( kr

α2
rǫr

), so for sufficiently
large constant the constraint of Lemma 4.8 is satisfied. For appropriate constants, Lemma 4.8 says that in
each roundr,

Err2(v̂(r+1), kr+1) = Err2(v̂(r+1), frkr) ≤ (1 + frǫ) Err
2(v̂(r), kr) +O(frǫδ

2n3(‖x‖22 +
∥∥∥v̂(r)

∥∥∥
2

2
)) (8)

with probability at least1−fr. Now, the changêw = v̂(r)− v̂(r+1) in roundr is a median of HASHTOBINS

resultsû. Hence by Lemma 3.3,

‖ŵ‖1 ≤ 2max ‖û‖1 ≤ 2((1 + δ)
∥∥∥v̂(r)

∥∥∥
1
+ δn(‖x‖1 + 2

∥∥∥x̂− v̂(r)
∥∥∥
1
))

∥∥∥v̂(r+1)
∥∥∥
1
≤ 3

∥∥∥v̂(r)
∥∥∥
1
+O(δn)(

√
n ‖x̂‖2 +

∥∥∥v̂(r)
∥∥∥
2
)

≤ 3
∥∥∥v̂(r)

∥∥∥
1
+O(δn

√
n)(‖x̂‖1 +

∥∥∥v̂(r)
∥∥∥
1
)

We shall show by induction that
∥∥v̂(r)

∥∥
1
≤ 4r−1 ‖x̂‖1. It is true forr = 1, and then sincer ≤ R < log k,

∥∥∥v̂(r+1)
∥∥∥
1
≤ 3

∥∥∥v̂(r)
∥∥∥
1
+O(δn

√
n)(‖x̂‖1 + 4r−1 ‖x̂‖1)

≤ 3
∥∥∥v̂(r)

∥∥∥
1
+O(δn

√
nk ‖x̂‖1) ≤ 4

∥∥∥v̂(r)
∥∥∥
1
.

Therefore
∥∥v̂(r)

∥∥2
2
≤ 4r ‖x̂‖1 ≤ k ‖x̂‖1 ≤ n

√
n ‖x̂‖2. Plugging into Equation (8),

Err2(v̂(r+1), kr+1) ≤ (1 + frǫ) Err
2(v̂(r), kr) +O(frǫδ

2n4.5 ‖x‖22)

with probability at least1− fr. The error accumulates, so in roundr we have

Err2(v̂(r), kr
∏

i<r

fi) ≤ Err2(x̂, k)
∏

i<r

(1 + fiǫ) +
∑

i<r

O(frǫδ
2n4.5 ‖x‖22)

∏

i<j<r

(1 + fjǫ)

with probability at least1−∑
i<r fi > 3/4. Hence in the end, sincek

∏
i<r fi < 1,

∥∥∥v̂(R+1)
∥∥∥
2

2
= Err2(v̂(R+1), 1− o(1)) ≤ Err2(x̂, k)

∏

i≤R

(1 + fiǫ) +O(Rǫδ2n4.5 ‖x‖22)
∏

i<R

(1 + fiǫ)

with probability at least3/4. We also have
∏

i

(1 + fiǫ) ≤ eǫ
∑

i fi ≤ e

making ∏

i

(1 + fiǫ) ≤ 1 + e
∑

i

fiǫ < 1 + 2ǫ.

18



Thus we get the approximation factor

∥∥∥x̂− ẑ(R+1)
∥∥∥
2

2
≤ (1 + 2ǫ) Err2(x̂, k) +O((log k)δ2n4.5 ‖x‖22)

with at least3/4 probability. Rescalingδ by poly(n) and taking the square root gives the desired
∥∥∥x̂− ẑ(R+1)

∥∥∥
2
≤ (1 + ǫ) Err(x̂, k) + δ ‖x‖2 .

Now we analyze the running time. The updateẑ(r+1) − ẑ(r) in roundr has support size2kr, so in roundr

| supp(ẑ(r))| ≤
∑

i<r

2kr = O(k).

Thus the expected running time in roundr is (recalling that we replacedδ by δ/nO(1))

O((
∣∣∣supp(ẑ(r))

∣∣∣ (1 + αr log(n/δ)) +
Br

αr
log(n/δ))(log

1

αrǫr
+ log(n/Br)))

=O((k +
k

r4
log(n/δ) +

k

ǫr2
log(n/δ))(log r + log

1

ǫ
+ log(nǫ/k) + log r))

=O((k +
k

ǫr2
log(n/δ))(log r + log(n/k)))

We split the terms multiplyingk and k
ǫr2

log(n/δ), and sum overr. First,

R∑

r=1

(log r + log(n/k)) ≤O(R logR+R log(n/k))

≤O(log k + log k log(n/k))

=O(log k log(n/k)).

Next,

R∑

r=1

1

r2
(log r + log(n/k)) = O(log(n/k))

Thus the total running time is

O(k log k log(n/k) +
k

ǫ
log(n/δ) log(n/k)) = O(

k

ǫ
log(n/δ) log(n/k)).

5 Reducing the full k-dimensional DFT to the exactk-sparse case inn di-
mensions

In this section we show the following lemma. Assume thatk dividesn.

Lemma 5.1. Suppose that there is an algorithmA that given a vectory such thatŷ is k-sparse, computes
ŷ in time T (k). Then there is an algorithmA′ that given ak-dimensional vectorx computeŝx in time
O(T (k))).
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Proof. Given ak-dimensional vectorx, we defineyi = xi mod k, for i = 0 . . . n− 1. WheneverA requests
a sampleyi, we compute it fromx in constant time. Moreover, we have thatŷi = x̂i/(n/k) if i divides
(n/k), andŷi = 0 otherwise. Thuŝy is k-sparse. Sincêx can be immediately recovered from̂y, the lemma
follows.

Corollary 5.2. Assume that then-dimensional DFT cannot be computed ino(n log n) time. Then any
algorithm for thek-sparse DFT (for vectors of arbitrary dimension) must run inΩ(k log k) time.

6 Lower Bound

In this section, we show any algorithm satisfying (1) must accessΩ(k log(n/k)/ log log n) samples ofx.
We translate this problem into the language of compressive sensing:

Theorem 6.1. LetF ∈ Cn×n be orthonormal and satisfy|Fi,j | = 1/
√
n for all i, j. Suppose an algorithm

takesm adaptive samples ofFx and computesx∗ with

‖x− x∗‖2 ≤ 2 min
k-sparsex′

∥∥x− x′
∥∥
2

for anyx, with probability at least3/4. Thenm = Ω(k log(n/k)/ log log n).

Corollary 6.2. Any algorithm computing the approximate Fourier transformmust accessΩ(k log(n/k)/ log log n)
samples from the time domain.

If the samples were chosen non-adaptively, we would immediately havem = Ω(k log(n/k)) by [PW11].
However, an algorithm could choose samples based on the values of previous samples. In the sparse recovery
framework allowing general linear measurements, this adaptivity can decrease the number of measurements
to O(k log log(n/k)) [IPW11]; in this section, we show that adaptivity is much less effective in our setting
where adaptivity only allows the choice of Fourier coefficients.

We follow the framework of Section 4 of [PW11]. LetF ⊂ {S ⊂ [n] | |S| = k} be a family ofk-sparse
supports such that:

• |S ⊕ S′| ≥ k for S 6= S′ ∈ F , where⊕ denotes the exclusive difference between two sets,

• PrS∈F [i ∈ S] = k/n for all i ∈ [n], and

• log |F| = Ω(k log(n/k)).

This is possible; for example, a random linear code on[n/k]k with relative distance1/2 has these proper-
ties.10

For eachS ∈ F , let XS = {x ∈ {0,±1}n | supp(xS) = S}. Let x ∈ XS uniformly at random. The
variablesxi, i ∈ S, are i.i.d. subgaussian random random variables with parameterσ2 = 1, so for any row
Fj of F , Fjx is subgaussian with parameterσ2 = k/n. Therefore

Pr
x∈XS

[|Fjx| > t
√

k/n] < 2e−t2/2

hence there exists anxS ∈ XS with

∥∥FxS
∥∥
∞

< O(

√
k log n

n
). (9)

LetX = {xS | S ∈ F} be the set of all suchxS.
Letw ∼ N(0, α k

nIn) be i.i.d. normal with varianceαk/n in each coordinate.
Consider the following process:

10This assumesn/k is a prime larger than 2. Ifn/k is not prime, we can choosen′
∈ [n/2, n] to be a prime multiple ofk, and

restrict to the firstn′ coordinates. This works unlessn/k < 3, in which case the bound ofΘ(k log(n/k)) = Θ(k) is trivial.
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Procedure First, Alice choosesS ∈ F uniformly at random, thenx ∈ X subject tosupp(x) = S, then
w ∼ N(0, α k

nIn) for α = Θ(1). For j ∈ [m], Bob choosesij ∈ [n] and observesyj = Fij (x + w). He
then computes the resultx′ ≈ x of sparse recovery, rounds toX by x̂ = argminx∗∈X ‖x∗ − x′‖2, and sets
S′ = supp(x̂). This gives a Markov chainS → x→ y → x′ → x̂→ S′.

We will show that deterministic sparse recovery algorithmsrequire largem to succeed on this input
distributionx+w with 3/4 probability. As a result, randomized sparse recovery algorithms require largem
to succeed with3/4 probability.

Our strategy is to give upper and lower bounds onI(S;S′), the mutual information betweenS andS′.

Lemma 6.3(Analog of Lemma 4.3 of [PW11] forǫ = O(1)). There exists a constantα′ > 0 such that if
α < α′, thenI(S;S′) = Ω(k log(n/k)) .

Proof. Assuming the sparse recovery succeeds (as happens with 3/4 probability), we have‖x′ − (x+ w)‖2 ≤
2 ‖w‖2, which implies‖x′ − x‖2 ≤ 3 ‖w‖2. Therefore

‖x̂− x‖2 ≤
∥∥x̂− x′

∥∥
2
+

∥∥x′ − x
∥∥
2

≤ 2
∥∥x′ − x

∥∥
2

≤ 6 ‖w‖2 .

We also know‖x′ − x′′‖2 ≥
√
k for all distinctx′, x′′ ∈ X by construction. With probability at least3/4

we have‖w‖2 ≤
√
4αk <

√
k/6 for sufficiently smallα. But then‖x̂− x‖2 <

√
k, sox̂ = x andS = S′.

ThusPr[S 6= S′] ≤ 1/2.
Fano’s inequality statesH(S | S′) ≤ 1 + Pr[S 6= S′] log |F|. Thus

I(S;S′) = H(S)−H(S | S′) ≥ −1 + 1

2
log |F| = Ω(k log(n/k))

as desired.

We next show an analog of their upper bound (Lemma 4.1 of [PW11]) on I(S;S′) for adaptive measure-
ments of boundedℓ∞ norm. The proof follows the lines of [PW11], but is more careful about dependencies
and needs theℓ∞ bound onFx.

Lemma 6.4.
I(S;S′) ≤ O(m log(1 +

1

α
log n)).

Proof. Let Aj = Fij for j ∈ [m], and letw′
j = Fijw. Thew′

j are independent normal variables with

varianceα k
n .

Let yj = Ajx + w′
j. We knowI(S;S′) ≤ I(x; y) becauseS → x → y → S′ is a Markov chain.

Because the variablesAj are deterministic giveny1, . . . , yj−1, we have by the chain rule for information
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that

I(S;S′) ≤ I(x; y)

= I(x; y1) +

m∑

j=2

I(x; yj | y1, . . . , yj−1)

≤ I(A1x; y1) +

m∑

j=2

I(Ajx; yj | y1, . . . , yj−1)

= I(A1x;A1x+ w′
1) +

m∑

j=2

I(Ajx;Ajx+ w′
j | y1, . . . , yj−1)

= H(A1x+ w′
1)−H(A1x+ w′

1 | A1x) +

m∑

j=2

H(Ajx+w′
j | y1, . . . yj−1

)−H(Ajx+w′
j | Ajx, y1, . . . yj−1

)

= H(A1x+ w′
1)−H(w′

1 | A1x) +
m∑

j=2

H(Ajx+ w′
j | y1, . . . , yj−1)−H(w′

j | Ajx, y1, . . . , yj−1)

= H(A1x+ w′
1 | A1)−H(w′

1 | A1x,A1) +

m∑

j=2

H(Ajx+ w′
j | y1, . . . , yj−1, Aj)−H(w′

j | Ajx,Aj)

≤ H(A1x+ w′
1 | A1)−H(w′

1 | A1x,A1) +

m∑

j=2

H(Ajx+ w′
j | Aj)−H(w′

j | Ajx,Aj)

= H(A1x+ w′
1 | A1)−H(A1x+ w′

1 | A1x,A1) +
m∑

j=2

H(Ajx+ w′
j | Aj)−H(Ajx+w′

j | Ajx,Aj)

=
∑

j

I(Ajx;Ajx+w′
j | Aj).

Thus it suffices to showI(Ajx;Ajx+ w′
j | Aj) = O(log(1 + 1

α log n)) for all j. We have

I(Ajx;Ajx+ w′
j | Aj) = EAj

[I(Ajx;Ajx+ w′
j)]

Note thatAj is a row ofF andw′
j ∼ N(0, αkn ) independently. Hence it suffices to show that for any rowv

of F , for u ∼ N(0, αkn ) we have

I(vx; vx+ u) = O(log(1 +
1

α
log n)).

But we know|vx| ≤ O(
√

k logn
n ) by Equation (9). By the Shannon-Hartley theorem on channel capacity of

Gaussian channels under a power constraint,

I(vx; vx + u) ≤ 1

2
log(1 +

E[(vx)2]

E[u2]
)

=
1

2
log(1 +

n

αk
O(

k log n

n
))

= O(log(1 +
1

α
log n))

as desired.

Theorem 6.1 follows from Lemma 6.3 and Lemma 6.4, withα = Θ(1).
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7 Efficient Constructions of Window Functions

Claim 7.1. Let cdf denote the standard Gaussian cumulative distribution function. Then:

1. cdf(t) = 1− cdf(−t).

2. cdf(t) ≤ e−t2/2 for t < 0.

3. cdf(t) < δ for t < −
√
2 log(1/δ).

4.
∫ t
x=−∞ cdf(x)dx < δ for t < −

√
4π log(1/δ).

5. For anyδ, there exists a functioñcdfδ(t) computable inO(log(1/δ)) time such that
∥∥∥cdf −c̃dfδ

∥∥∥
∞

< δ.

Proof.

1. Follows from the symmetry of Gaussian distribution.

2. Follows from a standard moment generating function boundon Gaussian random variables.

3. Follows from (2).

4. Property (2) implies thatcdf(t) is at most
√
2π larger than the Gaussian pdf. Then apply (3).

5. By (1) and (3),cdf(t) can be computed as±δ or 1 ± δ unless|t| <
√

2(log(1/δ)). But then an efficient
expansion around0 only requiresO(log(1/δ)) terms to achieve precision±δ.

For example, we can truncate the representation [Mar04]

cdf(t) =
1

2
+

e−t2/2

√
2π

(
t+

t3

3
+

t5

3 · 5 +
t7

3 · 5 · 7 + · · ·
)

atO(log(1/δ)) terms.

Claim 7.2. Define the continuous Fourier transform off(t) by

f̂(s) =

∫ ∞

−∞
e−2πistf(t)dt.

For t ∈ [n], define

gt =

∞∑

j=−∞

f(t+ nj)

and

g′t =

∞∑

j=−∞

f̂(t/n+ j).

Thenĝ = g′, whereĝ is then-dimensional DFT ofg.
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Proof. Let ∆1(t) denote the Dirac comb of period1: ∆1(t) is a Dirac delta function whent is an integer
zero elsewhere. Then̂∆1 = ∆1. For anyt ∈ [n], we have

ĝt =

n∑

s=1

∞∑

j=−∞

f(s+ nj)e−2πits/n

=
n∑

s=1

∞∑

j=−∞

f(s+ nj)e−2πit(s+nj)/n

=

∞∑

s=−∞

f(s)e−2πits/n

=

∫ ∞

−∞
f(s)∆1(s)e

−2πits/nds

= ̂(f ·∆1)(t/n)

= (f̂ ∗∆1)(t/n)

=
∞∑

j=−∞

f̂(t/n+ j)

= g′t.

Lemma 7.3. There exist flat window functionsG and Ĝ′ with parametersb, δ, andα such thatG can be
computed inO(Bα log(1/δ)) time, and for eachi Ĝ′

i can be evaluated inO(log(1/δ)) time.

Proof. We will show this for a function̂G′ that is (approximately) a Gaussian convolved with a box-car
filter. First we construct analogous window functions for the continuous Fourier transform. We then show
that discretizing these functions gives the desired result.

LetD be a Gaussian with standard deviationσ to be determined later, sôD is a Gaussian with standard
deviation1/σ. Let F̂ be a box-car filter of length2C for some parameterC; that is, letF̂ (t) = 1 for |t| < C

andF (t) = 0 otherwise, soF (t) = sinc(t/C). LetG∗ = D · F , soĜ∗ = D̂ ∗ F̂ .
Then|G∗(t)| ≤ |D(t)| < δ for t > σ

√
2 log(1/δ). Furthermore,G∗ is computable inO(1) time.

Its Fourier transform iŝG∗(t) = cdf(σ(t + C)) − cdf(σ(t − C)). By Claim 7.1 we have for|t| >
C +

√
2 log(1/δ)/σ thatĜ∗(t) = ±δ. We also have, for|t| < C −

√
2 log(1/δ)/σ, thatĜ∗(t) = 1± 2δ.

Now, for i ∈ [n] let Hi =
∑∞

j=∞G∗(i + nj). By Claim 7.2 it has DFTĤi =
∑∞

j=∞ Ĝ∗(i/n + j).

Furthermore,
∑

|i|>σ
√

2 log(1/δ)
|G∗(i)| ≤ 2 cdf(−

√
2 log(1/δ)) ≤ 2δ.

Similarly, from Claim 7.1, property (4), we have that if1/2 > C+
√

4π log(1/δ)/σ then
∑

|i|>n/2

∣∣∣Ĝ∗(i/n)
∣∣∣ ≤

4δ. Then for any|i| ≤ n/2, Ĥi = Ĝ∗(i/n)± 4δ.
Let

Gi =
∑

|j|<σ
√

2 log(1/δ)

j≡i (mod n)

G∗(j)

for |i| < σ
√

2 log(1/δ) andGi = 0 otherwise. Then‖G−H‖1 ≤ 2δ. Let

Ĝ′
i =





1 |i| ≤ n(C −
√

2 log(1/δ)/σ)

0 |i| ≥ n(C +
√

2 log(1/δ)/σ)

c̃dfδ(σ(i+ C)/n)− c̃dfδ(σ(i − C)/n) otherwise
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where c̃dfδ(t) computescdf(t) to precision±δ in O(log(1/δ)) time, as per Claim 7.1. Then̂G′
i =

Ĝ∗(i/n)± 2δ = Ĥi ± 6δ. Hence
∥∥∥Ĝ− Ĝ′

∥∥∥
∞
≤

∥∥∥Ĝ′ − Ĥ
∥∥∥
∞
+
∥∥∥Ĝ− Ĥ

∥∥∥
∞
≤

∥∥∥Ĝ′ − Ĥ
∥∥∥
∞
+
∥∥∥Ĝ− Ĥ

∥∥∥
2
=

∥∥∥Ĝ′ − Ĥ
∥∥∥
∞
+‖G−H‖2 ≤ 6δ+2δ = 8δ

Replacingδ by δ/8 and plugging inσ = 4B
α

√
2 log(1/δ) andC = (1− α/2)/(2B), we have that:

• |Gi| = 0 for |i| ≥ Ω(Bα log(1/δ))

• Ĝ′
i = 1 for |i| ≤ (1− α)n/(2B)

• Ĝ′
i = 0 for |i| ≥ n/(2B)

• Ĝ′
i ∈ [0, 1] for all i.

•
∥∥∥Ĝ′ − Ĝ

∥∥∥
∞

< δ.

• We can computeG over its entire support inO(Bα log(n/δ)) total time.

• For anyi, Ĝ′
i can be computed inO(log(1/δ)) time for |i| ∈ [(1 − α)n/(2B), n/(2B)] andO(1) time

otherwise.

We needed that1/2 ≥ (1 − α/2)/(2B) +
√
2πα/(4B), which holds forB ≥ 2. TheB = 1 case is trivial,

using the constant function̂G′
i = 1.
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