GRAPH ALGORITHMS

Definitions (background): 

Graph: nodes/vertices, and edges/arcs as pairs of nodes. {V, E} e12=(v1, v2, l12)

The third term l12, if present, could be a label or the weight of an edge.

Directed graph: edges are ordered pairs of nodes.

Weighted graph: each edge (directed/undirected) has a weight.

Path between a pair of nodes vi, vk: sequence of edges with vi, vk at the two ends.

Simple path: covers no node in it twice.

Loop: a path with the same start and end node.

Path length: number of edges in it.

Path weight: total wt of all edges in it.

Connected graph: there exists a path between every pair of nodes, no node is disconnected.

Complete graph: edge between every pair of nodes [NUMBER OF EDGES?].

Acyclic graph: a graph with no cycles.

Etc.

Graphs are one of the most used models of real-life problems for computer-solutions.

Representations: Adjacency list (a link list or an array of directly connected nodes for each node), and matrix are two representations. 
Matrix is O(N^2) for N nodes but easy to access, while adjacency list is good for sparse graph (sparsely distributed edges, less connected).

Problem size includes both |V| (number of nodes N), and |E| (number of edges, in the worst case O(N2) for complete graph, but not “fair” for a sparse graph). 
Also, with matrix representation |E| is always N2, because one has to go over all the pairs of nodes to check which ones are in E.



Algorithm 1:

For each node v in V do

 
-Steps-
// ((|V|)
Algorithm 2:

For each node v in V do


For each edge in E do

 -Steps-
// ((|V|*|E|)

Algorithm 3:

For each node v in V do


For each edge e adjacent to v do 

 

-Steps-
// (( |E| ) with adjacency list,



// but ((|V|* |V| ) for matrix representation
Algorithm 4:

For each node v in V do


-steps-


For each edge e of v do 

 

-Steps-
// (( |V|+|E| ) or (( max{|V|, |E| })
TOPOLOGICAL SORT

Input:  directed acyclic graph
Output: sequentially order the nodes without violating any arc ordering. 

Note: you may have to check for cycles - depending on the problem definition (input: directed graph).

Example: course pre-requisite graph, find a linear ordering of courses.

An important data: indegree of each node - number of arcs coming in (#courses pre-requisite to "this" course).

A first-pass strategy: Eliminate vertices with indegree zero and their associated (outgoing) arcs (thus, reducing indegrees of the connected nodes) - after assigning an ordering-number (as output of topological-sort ordering) to these nodes, keep doing it for number-of-nodes times. 

If at any stage before finishing the loo,  there does not exist any node with indegree zero, then a cycle exists! [WHY?]

A naïve way of finding vertices with indegree zero is to scan the nodes that are still left in the graph. As the loop runs for N times this leads to ((N2) algorithm.

Input: A directed graph

Output: A sorting on the node without violating directions, or Failure

Algorithm naïve-topo-sort
1
For each node v ϵ V calculate indegree(v);
// ((N)
2
counter = 0;
3
While V≠ empty do   // ((N)
4
  
find a node v ϵ V such that indegree(v)==0; 

// have to scan all nodes here: ((N) 

// total: ((N) x (while loop’s N) = O(N2)
5
  
if there is no such  v   then return(Failure)

  
else

6


ordering-id(v) = ++counter;
7


V = V – v;
8

For each edge (v, w) ϵ E do  //nodes adjacent to v   



//adjacent nodes: ((|E|), total for all nodes O(N or |E|)
9



decrement indegree(w);
10



E = E – (v, w);


end if;


end while;

End algorithm.

Complexity: dominating term O(N2)

A smarter way: notice indegrees become zero for only a subset of nodes in a pass, but all nodes are being checked in the above naïve algorithm. 

Store those nodes (who have become “roots” of the truncated graph) in a box and pass the box to the next iteration. 

An implementation of this idea could be done by using a queue: 

Push those nodes whose indegrees have become zeros (as you change those values),  at the back of a queue. 

Algorithm terminates on empty queue is, but having empty Q before covering  all nodes: we got a cycle!    
Algorithm better-topo-sort
1
For each vertex v do  // initialization
2

calculate indegree(v);
// ((|E|) with adj. list
3
   
if indegree(v) = =0 then push(Q, v);

end for;

4
counter = 0;

5
While Q is not empty do



// indegree becomes 0 once & only once for a node

// so, each node goes to Q only once: ((N)
6

v = pop(Q);

7

ordering-id(v) = ++counter;
8

V = V – v;
9

For each edge (v, w) ϵ E do  //nodes adjacent to v   

// two loops together ((max{N, |E|})

// each edge scanned once and only once

10


E = E – (v, w);
11

   
decrement indegree(w);

12

   
if now indegree(w) = =0 then push(Q, w);



end for;


end while;

13
if counter != N then
return(Failure);
// not all nodes are numbered yet, but Q is empty



// cycle detected;

End algorithm.

Complexity: the body of the inner for-loop is executed at most once per edge, even considering the outer while loop, if adjacency list is used. The maximum queue length is N. Complexity is ((|E| + N).

SHORTEST PATH-LENGTH 
Path length = number of edges on a path.

Compute shortest path-length from a given source node to all nodes on the graph.

[Wiess’ FIG 9.10]

Strategy: starting with the source as the "current-nodes," in each of the iteration expand children (adjacent nodes) of "current-nodes." Assign the iteration# as the shortest path length to each expanded node, if the value is not already assigned. Also, assign to each child, its parent node-id in this expansion tree (to retract the shortest path if necessary).

Input: Undirected graph, and source node

Output: Shortest path-length to each node from source

Algorithm naïve-shortest-path
1
d(source) = 0; 
//source to source distance

2
for each other node n, d(n) = infinity;  // ((N)

// let the current distance from source be called    

//curdist
3
for curdist = 0 through N-1 do

4
  
for each vertex v do
// ((N2)
5

      if (v is not yet “visited” && 

6

     d(v) = = curdist) then



      // the first check is needed because a 

//graph may have cycles– to avoid looping



      // the second check is needed for expanding 

//only the nodes at current level curdist 

           // not all the nodes, only adjacent ones
7

      
   for each w adjacent to v do    

// ((N |E|), |E| from the two inner for-loops, 

// N from the outermost loop
8



if d(w) is still infinity then

9


   

d(w) = curdist +1;

10


   

last_on_path(w) = v; // from source
// w’s parent is v




end if;



      
   end for;




end if;

11

      mark v as “visited”;  

// because its children have been just expanded



  end for; 


end for;

End algorithm.

This is a breadth-first traversal, nodes are expanded as increasing distances from the source: 0, then 1, then 2, etc. [DRAW EXPANSION LIST AS A TREE.]

Exercise: HOW TO FIND SHORTEST PATH backward FROM THE PATH-OF-W VALUES? Write an

Algorithm Find-Shortest-Path (vertex w, array path-of[])

Complexity: ((N2 + N |E|) from the for-loops. [Could be ((N3) if |E| ~ O(N2) for a dense graph]

Once again, a better idea is to have the  children  being pushed at the back of a queue.

Input: Undirected graph, and source node

Output: Shortest path-length to each node from source

Algorithm q-based-shortest-path
1
d(s) = 0;   // source
2
enqueue only s in Q;   // ((1), no loop, constant-time 
3
while (Q is not empty) do


// each node goes to Q only once: ((N)
4
     v = dequeue Q;

5
     for each vertex  w  adjacent to  v  do // ((|E|)
6

if  d(w)  is yet unassigned then

7

    d(w) = d(v) + 1;

8

    last_on_path(w) = v;

9

    enqueue w in Q;



end if;


     end for;


end while;

End algorithm.

Complexity: ((|E| + N), by a similar analysis as that of the previous queue-based algorithm.

Queue for Breadth first search (BFS)! What is for Depth first search (DFS)?
BFS -> by Queue;    DFS-> by Stack

BFS: propagates along the constant depth contour,  or wavefront

DIJKSTRA'S ALGORITHM FOR 

SHORTEST PATH ON WEIGHTED GRAPHS

In previous problem weight (or cost) on each path was = 1. Now any positive value (>0) may exist on each edge.

We will ignore negative weight for now, because the problem of finding shortest path may not be well defined when negative edge is allowed (you can loop infinitely and keep reducing the path weight!).

Strategy: from the set of "unfinished" nodes, pick up the node v whose path-weight (from the source) is shortest in the set, mark this node v to be “finished” (shortest path is now found for this node), and update the path-weights to the other unfinished nodes adjacent to the just-finished node v, using the direct edges from this node v.

Initialization: Each node not having an edge with the source node is initialized with distance (shortest from the source) = infinity, and the source is marked as finished.

Input: Weighted graph, a “source” node s [can not handle neg cycle]
Output: Shortest distance to all nodes from the source s
Algorithm Dijkstra
1
s.distance = 0; 
// shortest distance from s
2
mark s as “finished”;   //shortest distance to s from s found

3
For each node w do 

4 
   if (s, w)  ϵ E then w.distance= Dsw else w.distance = inf; 
// O(N)
5 
While there exists a node not marked as finished do 


   // ((|N|), each node is picked once & only once
6

v = node from unfinished  list with 

the smallest v.distance;  

    // loop on unfinished nodes O(N): total O(N2)
7

mark v as “finished”;  // why?
8

For each edge (v, w)  ϵ E do  //adjacent to v: ((|E|)
9

   if (w is not “finished” &



     (v.distance + Dvw < w.distance) ) then 

10

      
w.distance = v.distance + Dvw;

 
// Dvw is the edge-weight from 

   // current node v to w

11

      
w.previous = v;  

// v is parent of w on the shortest path
    end if;



end for;


end while;

End algorithm
	[image: image1.emf]


An example run:
[GRAPH ON  p 324, Weiss]

v1 (0)

v2 (inf)

v3 (inf)
v4 (inf)
v5 (inf)

v6 (inf)
v7 (inf)

*v1 (0)
v2 (2, v1)

v3 (inf)
v4 (1, v1)
v5 (inf)

v6 (inf)
v7 (inf)

*v1 (0)
v2 (2, v1)

v3 (1+2, v4)
*v4 (1, v1)
v5 (1+2, v4)
       v6 (1+8, v4)
v7 (1+4, v4)

*v1 (0)
*v2 (2, v1)

v3 (3, v4)
*v4 (1, v1)
v5 (3, v4)
       v6 (9, v4)
v7 (5, v4)
// tried, but no improvement via v2

*v1 (0)
*v2 (2, v1)

*v3 (3, v4)
*v4 (1, v1)
v5 (3, v4)
       v6 (3+5, v3)
v7 (5, v4)

*v1 (0)
*v2 (2, v1)

*v3 (3, v4)
*v4 (1, v1)
*v5 (3, v4)
       v6 (8, v3)
v7 (5, v4)
// no improvement via v5

*v1 (0)
*v2 (2, v1)

*v3 (3, v4)
*v4 (1, v1)
*v5 (3, v4)
       v6 (5+1, v7)
*v7 (5, v4)

// end run, runs for N-1=8-1=7 iterations after initialization

Complexity: 

(1) the while loop runs N-1 times: [((N)], find-minimum-distance-node v runs another ((N) within it, thus the complexity is ((N2); 

Can you reduce this complexity by a Queue?
(2) for-loop, as usual for adjacency list graph data structure, runs for |E| times including the outside while loop. 

Grand total: ((|E| + N2) = ((N2), as |E| is always ( N2.

Findmin complexity could be reduced to ((NlogN) from ((N2), by using a heap data-structure, but as the distance values get changed the heap needs to be kept reorganized, thus, increasing the for-loop's complexity to ((|E|log N). Grand total: ((|E|logN + NlogN) = ((|E|logN), as |E| is always ( N in a connected graph.

Algorithm Dijkstra (heap-based)


s.distance = 0;


(all-other-nodes).distance = inf; // O(N)

mark s as “finished”;   


build min-heap for all nodes 

       by using their distances from s;  // O(N)
while there is a node marked as unfinished do //O(N)
v = delete-min on heap  //O(logN) each iter: O(NlogN)



mark v as “finished”;



for each node w adjacent to v do//((|E|)



if w is not “finished” then

    if  (v.distance + Dvw < 

w.distance)  then 

      
w.distance = v.distance + Dcw;

 
// Dvw is the direct-distance from 

   // cur-node v to w
      
modify heap for updated w.distance; 
// O(|E|) total times O(log|E|): O(|E|logN)
w.previous = v;  

// parent on the shortest path
end if (both);



end for;


end while;

End algorithm.

Proof of correctness (Why Dijkstra’s algorithm works)
(Induction base is trivial, written later.)
By induction: Suppose it works up to the k-th iteration. This means that for k nodes the corresponding shortest paths from source have been already identified (say, set F). Rest of the nodes have their distances possibly reduced, but shortest distances from source are not found for them yet (say, set U).

Picking up the shortest-current-distance node (say, p) from the set U makes p to be the one for which the shortest distance is just found, and so, p should move into F. If this were not true, then path via some other node in U could improve its path. But all of them have a longer (or equal) path than that for p currently, how could they improve it for someone else. And, all the nodes in F already had their chance to improve the path for p in the previous iterations; so, no further improvement is possible via any one of them. That implies, the shortest path for p has been found.

Next, why do we use p, to improve paths for the nodes in the set U-{p}? All other nodes in F had had their chance to improve paths for the nodes in U, so they cannot be useful anymore. And shortest paths for nodes in U-{p} have not been found yet, so how can they find shortest paths for others. Even though one of them (say, u(p)  may improve paths for other nodes in the set U, that path may have to be changed later when path to such a node(u) gets improved further. Hence, p is the only candidate, which should improve path for others in the next iteration.

Thus, in the next iteration we have k+1 nodes (including node p) for which shortest paths have been found (from the k-node stage), and in the next iteration we are ready to declare our (k+2)-th node to be included in the set F. This will conclude this inductive proof, when we find an induction base-case.

Induction base: Shortest distance for the source itself must have been found – no other node can improve it, if all edges have positive weights.
Exercise: Prove the unweighted shortest path q-based algorithm’s correctness.

Graphs with negative-cost allowed on any edge

Example on a project management-related graph: Positive edge may mean profit, negative edge may mean expenditure /loss.

A wrong idea: One can falsely think of “normalizing” edges by adding a constant (say, the min negative value plus 1) to all edges. But that is wrong because that constant gets multiplied k-times in a path of length k, and creates undue imbalance for path-weight values.

a-(1)->b-(1)->c-(1)->d  is shorter than a-(4)->d, but add 2 to all as a normalizer (note additional 2 does not exist in reality/input)! The result will not be the same.

Dijkstra does not work anymore; marking finished/unfinished is useless when there is negative cost on an arc. So, let a node update others if its “distance” is updated anytime, and the algorithm “relaxes” until no more update takes place.

Algorithm Dijkstra-negative

1
Initialize Q with the source node;

2
While Q not empty do

3

v = pop(Q);

4

For each w  adjacent node to  v do

5


If  (v.distance + Dvw < w.distance) then
(6)

6



w.distance = v.distance +Dvw;

7



w.parent = v;

8



if w is not already in Q do   

     // if it is already there in Q 

     // do not duplicate
9




enqueue w to Q;



end if


end for

end while

End Algorithm.

Note, shortest-path is not defined when there is a negative cycle. Negative cost on an edge or a path is all right, but negative cycle is not allowed.

Cost reduces on looping around cycles, and suppose we allow that. But how many looping do we allow? No node should get a chance to update others more than N+1 times! Because, there cannot be a simple (loop free) path of length more than N.
Line 6 is guaranteed to happen once for any node in Dijkstra, 

but should be terminated if a node a gets N+1 times in the queue, meaning that the graph has a negative-cost cycle involving the node a. 
Otherwise, the algorithm might be in an infinite loop (over the cycle with negative path-weight).

Complexity is O(N*|E|), because each node may be updated by each edge at most one time (if there is no negative cycle).
Dijkstra for acyclic-graph

Traverse nodes in topo-sort order, starting from the given source node downwards. No edge exists in the backward direction; so distances for those nodes from source remains infinity.

The algorithm can be combined with the topo-sort algorithm. This prevents even the necessity of a heap management:  next node in topo-sort has to be a node with the next min-distance (for which the shortest-path is just found, the one to-be-moved from set U to set F). 

So, finding min-distance node (cause for ((N2) or use of heap) will be replaced by picking up next node from those with indegree 0.

Thus, the complexity is ((|E| + N).

A real-life example of the problem is in doing the critical-path analysis in the project management area. The problem there is to find longest path, but then positive cycles can increase path-distances. But the problem with CPA is on directed acyclic graph, so traversal according to topological-sort will be all right. 

[Fig 9.34, 9.35 together, in Weiss]

First calculate earliest completion time EC of each node starting from source, where EC1 = 0. For every adjacent node w to all nodes v (starting with 1),

ECw = max vw (ECv + cvw), max runs over v for each w.

[Fig 9.36, Weiss]

Once this is calculated, compute latest completion time (without affecting the shortest finish time = EClast) starting from the last node n backwards.

LCn = ECn, and LCv = min vw (LCw - cvw), minimum runs over w here for each v.

[Fig 9.37]

Slack time for each edge is Slack vw = LCw - ECv - cvw, by which an activity could be delayed without affecting shortest finish time. Slack is zero on every node on the critical path [WHY?].

Traversal is in topo-sort order. So, the complexity is the same as that of topo-sort.

All-pairs shortest path algorithm

One can run Dijkstra’s algorithm for each node with total complexity N times ((N^2) (without heap) = ((N^3). However, Floyd’s algorithm runs with the same ((N^3) but is faster for dense graphs. (Read in Dynamic Programming section of AlgType module).

Greedy Strategy 

Dijkstra’s algorithm works with greedy strategy: pick up the best of something to work with at every stage. Doesn’t care the global implication: what is best now - may proved to be a bad choice in the future. In case of single-source-shortest-path Dijkstra’s algorithm is provably correct and the strategy has worked. However, greedy strategy is not always so lucky.

Maximum Flow Problem

A weighted diagraph, weights mean capacity of flow (traffic, fluid, etc.) on an edge. Given also are source and sink nodes. Find out the maximum flow possible from source to sink including all paths between them, with a constraint: for any node the total inflow should be equal to the outflow from it.

A strategy: find a path from the source to the sink, subtract the minimum weight on any edge on the path from the weights of all edges on that path, eliminate any edge with zero weight, repeat these steps until no more path from source to sink exists. On every iteration, keep track of the path, on a separate graph, with the weight that is being subtracted on each of its edges (max flow). Calculate max-flow between the source and the sink from this second graph.

[Fig 9.41, 9.42, 9.43 together]

Above algorithm depends heavily on the order of picking up of paths, and thus may not provide correct solution if a wrong path is selected first.

[Fig 9.44]

A correct algorithm would involve using a greedy strategy (work with the best-flow path in each iteration), but that also may lead to non-optimal solution.

A greedy algorithm with the creation of a reverse edge with the value that is subtracted (in addition to doing the actual subtracting from the existing edge). This creates a possibility of virtually backtracking of flows if that becomes necessary. This strategy is guaranteed to find the maximum flow. The proof is difficult.

Minimum Spanning Tree Problem

Spanning tree of a graph is a subgraph of the graph, which (1) covers all the nodes in the graph and (2) is a tree. 

For a weighted graph each of its spanning trees has an aggregate weight of all its edges. 

Minimum spanning tree is a spanning tree with the least aggregate weight. 

[Fig 9.48]

Problem: given a weighted graph find a minimum spanning tree.

Solutions: Prim’s algorithm, and Kruskal’s algorithm.

Prim’s Algorithm

Strategy: Two sets of nodes from the graph: in the current tree (T), not-yet-in the current tree (U). 

Start with any node and put it in T. 

At every stage pick up a node u from U such that it has the minimum distance-edge from any node in T. 

Take it off from U, put it in T, and update min distances (direct arc from u or any node in T, not the shortest path from a source, there is no “source” now as in Dijkstra) of all nodes in U from this node u. 

Exactly the same algorithm as Dijkstra except the updating of the distances (to all nodes w in U adjacent to u) is no longer on paths, rather it is for shortest connection to T, dw = min(dw, Duw) . Complexity is also the same as in Dijkstra.

[Weiss: Fig 9.49]

[Exercise: Write Prim’s algorithm by modifying Dijkstra’s algorithm]

Kruskal’s algoritm

Strategy: Pick up the next available shortest edge and put it on T if it does not form a cycle. Grows as a forest rather than as a tree, eventually ends up as a min-spanning tree (T) of the graph, if the latter is a connected one. Since forests are merged gradually the disjoint-set data structure (for faster union-find operation) can be used for efficiency, otherwise one may sort the edges first and pick them up in that order: O(|E|log|E|) = O(|E|logN). Set union will cost additional O(NlogN).

[Weiss: Fig 9.57]

Algorithm Kruskal


Input: graph G = (V, E).

1.
E1 = sort edges in G;  // or better use a heap

2.
repeat for N-1 edges  // any Spanning Tree has 

//exactly N-1 edges, |V|=N

3.

pick up next shortest edge e from the ordered E1;

4.

E1 = E1 – {e};

5.

if  (T U {e}) does not have a cycle then  

// by set matching algorithm (Union-find)

6.


T = T U {e};  


end repeat;

7.
return graph (V, T);

End algorithm.

Observation: pick up an edge d in E but not in T, add it to T, you will have a cycle, say, c. Eliminate an edge other than d from c, you have a different spanning tree of G. Every spanning tree is “connected” to other by repetition of this operation. 

Proof sketch of Kruskal: 

Suppose (V, T) is not an MST, but by adding e1 (not in T) to T and then eliminating e2 (in T) from the respective cycle we get an MST (V, T1). 

Then, cost(T1) < cost(T), by assumption. 

But, cost(T1) = cost(T) + cost(e1) – cost(e2). 

So, cost(T) + cost(e1) – cost(e2) < cost(T), 

i.e., cost(e1) – cost(e2) < 0, 

or, cost(e1) < cost(e2). 

But, then e1 should have been picked up before e2 by the greedy strategy in Kruskal (without forming a cycle, because e2 were not picked up yet). 

But note that we added e1 to T and subtracted e2 from T, so e2 must have been picked up before e1, implying cost(e2)<cost(e1).

Contradiction. 

Thus, cost(T1)<cost(T) is not possible for any T1 other than T itself. 

Hence, (V, T) is an MST.

End proof.
Depth-first search on graphs and its use in some algorithms

Recursion stack implements depth-first traversal. So typically dfs are implemented as recursive algorithm.

Graph-traversal needs additional check: in case a node is already traversed - since there can be loops (which are not there in a tree by definition).

Input: graph (V, E)
Output: a DFS spanning forest

Algorithm dfs(v)

1.
mark node v as visited;

2.
operate on v (e.g., print);

3.
for each node w adjacent to node v do

4.

if w is not marked as visited then

5.


dfs(w);  // an iterative version of this 

    //will maintain its own stack


end for;

End algorithm.

Starter algorithm


on a given graph call dfs(any/given node);

End starter.

Example: with an undirected graph on Weiss: Fig 9.60, p357.

This algorithm will not be complete for not-connected graph, or if directed but not strongly-connected graph.

One needs to restart it again and again until all nodes are marked. So the starter algorithm looks like:

repeat until all nodes are marked


pick up next unmarked node s;


dfs(s);

end repeat;
Checking and finding unmarked node might be unduly expensive.

DFS produces a spanning-tree (or forest, for a unconnected graph, directed graphs are often so) of the graph: dfs-spanning-tree. This is utilized in solving the following problems.

Algorithm Iterative-DFS

1. let start node be v;

2. initialize stack S with Push(S, v); 

3. while stack S not empty do

4.
node r = Pop(S);

5.
mark r visited;

6.
for each node w adjacent to r do

7.

if w is not marked Push(S, w)


end for;

end while;

End Algorithm
Complexity O(|E|) from the two loops.
Finding articulation points or detecting a biconnected graph

Biconnected graph: undirected connected graph where removal of no vertex disconnects the rest of the graph.

Articulation points: vertex like the ones mentioned above. So, biconnected graphs are graphs without articulation points.







Articulation Points?

Example: (Weiss 2nd ed) p359-361.

Strategy: 

Draw a dfs-spanning tree for the given graph starting from any of its nodes.

Number them according to the pre-order of their traversal (num(v)).

For each vertex v, find the lowest vertex# where one can go to,  from v by the dfs-spanning tree’s directed edges & possibly by a single left-out edge (back-edge on dfs-tree):
Do post-order traversal of the DFS-Span.Tree & assign low of v: 

low(v) =min{num(v),  for all children  w, low(w),  num(w) for each node  w with a back arc from v}
If for any vertex v there is a child w such that num(v) ( low(w), then v is an articulation point, unless v is the root in the dfs-ST (this condition is always true for the root!).

If v is the root of the dfs-ST, and has two or more children in this dfs-spanning-tree, then it is an articulation point.

Starting from any node will get you the same result.









Exercise: Try starting from a different node, say, C.
Euler circuit

Problems: (1) Follow the edges of a graph (undirected) without lifting the pen to cover all edges once & only once, 
(2) problem 1, and have the start and end points both be the same node.

Example: Figure 9.68, page 363-365.

Necessary and sufficient conditions for existence of a solutions:

For problem 2. Graph must be connected and every vertex must have even number of edges (for the pen to come in and then go out).

For problem 1. Relax the previous condition by allowing exactly two nodes to have odd number of edges, which must be the start and the end nodes.

Checking the conditions take linear time (one pass over each node ((N)).

Algorithm for drawing Euler circuit for problem 2 (i.e., ordering the nodes as they are traversed), knowing that there exists one:

Step 1: Beginning from the start node traverse nodes DFS-manner, eliminate edges as they are traversed (because each edge can be used only once), until stuck at a node because no more edge is left at this node

Step 2: If all edges are not yet covered, pick up the first unfinished node X in the last path that has un-traversed edges left, and starting from X traverse nodes DFS-manner, eliminate edges as they are traversed, until X is reached back and is finished. Insert this new path in the previous path replacing X in the latter.

Step 3: Keep doing step 2 until all edges are covered.

End algorithm-sketch.

Example run of the algorithm: page 333-334, Figures 9.70-73.

Complexity: O(N + |E|), because all edges are covered only once, (but note that some nodes may be covered multiple times).

Detecting “Hamiltonian circuit” over nodes is not easy!

DFS on directed graph

Could create forest of traversed trees

Until no unmarked nodes remain do


pick up a unmarked node v;


mark v as visited;


for each adjacent node w to v do



if w is not visited




traverse w recursively;


end for;

end until-loop.

Finding Strongly-connected components in a Directed graph

Strongly-connected component: a subgraph in which there is a path between every pair of nodes
Note: The whole graph could be strongly connected.

Note: Only a single node could form its own SCC.

SCC creates partition of nodes in a graph: every node is in a SCC, & no node is outside all SCC’s.

A sub-graph of a SCC could be an SCC itself, although not necessarily.

We are interested in finding the set of all SCC’s in a directed graph

Strategy for finding SCC’s of a graph G:

1. Traverse G using DFS to create spanning forest of the graph;

2. Number the nodes in the post-order traversal of the spanning-forest;

3. Create Gr by reversing the directions of arcs in G;

4. Traverse using DFS the nodes of Gr in a decreasing order of the numbers, 

5. DFS spanning-forest from this second traversal creates the set of SCC’s for G.

Intuition: First dfs-spanning-trees create a partition for forward paths (v to w); The second dfs always starts from the roots (v) of the first dfs-trees and so, the second dfs-trees also guarantee reverse paths (w to v); v to w double-directed-paths guarantee SCC over each of the second dfs-trees.
To prove: 

Theorem 1: Each Spanning Tree ST(Gr) is a strongly connected component of G.

Theorem 2 (equivalent): for every pair of nodes (v, w) in any Spanning Tree ST(Gr) there exists a path v->w and a path w->v.

Theorem 3 (equivalent): above can be proved if we prove for any pair of nodes (v, w) in ST(Gr) with the root r, there exists a path from v -> r and from r -> w in G.

Theorem 4 (equivalent): above can be proved if we prove that for any node v in ST(Gr) with the root r, there exists a path r->v and a path v->r in G. 

Lemma 1: every spanning tree ST(Gr) is a sub-tree of a spanning tree ST(G).

Proof: by observation that back-arcs between the spanning trees ST(G) are in “forward” direction only. So when directions of the graph is reversed in Gr, and you start DFS traversal from Right to Left (in reverse post-order traversal numbering of ST(G)), there is no way you can get to the next tree from the current one (tree) – they are disconnected with Gr’s directed arcs. So, each ST(Gr) is a sub-tree of the corresponding ST(G).  QED.
Lemma 2: root r of every ST(Gr) has a higher post-traversal index (in ST(G)) than any node n of that ST(Gr). 
Proof: Trivial. Traversal on Gr was done in that order. QED.

Lemma 3:  for any node v in an ST(Gr) whose root is r, there exist a path v->r in G. 
Proof: Trivial. Since there exists a path in r->v in Gr, there exist a path v->r in G.
Lemma 4:  for any node v in an ST(Gr) whose root is r, there exist a path r->v in G. 

Proof: Both r and v belongs to the same ST(G) by lemma 1. And, post-ord-index(r)>post-ord-index(v) by lemma 2. Thus, all the work of processing r was completed after the work of processing v during DF-traversal of G. Since there is a path from v->r in G by lemma 3, v must be descendant of r in ST(G) – otherwise v would finish after r. In other words, there exists a path r->v as indicated in ST(G) they both belong to. QED. [Example from book: path exists F->B in G as suggested in ST(Gr), yet order(B)=6 >order(F)=5. So, there must be a path B->F in ST(G).] 
Lemma 3 and 4 prove version (4) of the Theorem as above.

QED.
Example: Weiss, Fig 9.74-77, pp 366-368
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Exercise: solve the problem in the example by creating a different dfs-spanning-tree than that in the book. 
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