INTRODUCTION

Why write algorithms:

(1) To get it out of the head, human memory is unreliable!

(2) To communicate with the programmer and other algorithm developers.

(3) To prove its correctness, to analyze, to improve its efficiency, …

ALGORITHM:

What is a computer program?

(1) Steps for solving some problem, and

(2) the steps written (implemented) in a language to be understood by a compiler program (and eventually by a CPU).

	Problem
	Algorithm
	Program

	Calculate

(i=in i2
	for i = 1 through n do

 accumulate i2 in x; return x.
	public static int sum(int n) {

 int partialSum = 0;
 for (int i=1; i<=n; i++)

 partialSum += i*i;

return partialSum; }

The first step in solving a computational problem is developing an algorithm.

It could be written in a loose fashion or in a rigorous way. Its primary purpose is to communicate the problem solving steps unambiguously.

It must be provably correct and should terminate.

So, specification = problem definition;

algorithm = solution of the problem;

program = translation of the algorithm in a computer language.

COURSE OBJECTIVE:

Algorithm development is almost a black art, very much like solving puzzles.

There is no way to “teach” algorithm development. So, in this course we will

(1) expose you to some important algorithms, e.g., topological-sort,

(2) different styles of developing algorithms, e.g. dynamic programming, and

(3) how to compare or analyze algorithms in an objective way.

Our primary concern while writing algorithms is its resource utilization - TIME,
MEMORY,

PROCESSORS,
POWER,
primarily time.

A secondary concern is the understandability of the algorithm. Readability is one of the primary concerns of a software engineer.

ALGORITHM ANALYSIS

1. Steps count, 2. Growth of that with input size, 3. Worst-case scenario
How do we judge which algorithm “runs” faster?

We really cannot!

Run times of implementations are CPU dependent, language dependent, programming style dependent, …

But we can measure which algorithm takes how many STEPS of computation, assuming that the basic operations like add, multiply, compare etc. takes one unit of time on machines for each of such steps, and all computations are done in the main memory (RAM model of computation).

Then again, the number of steps in an algorithm depends on the
INPUT SIZE! So, we measure the number of steps as a FUNCTION of the input-size of the problem. For example,

Problem: search a key in an array.
Input size: the total number of elements in the array.

What if the number is found in the first element of the array, or in the third element? It varies!

So, we study the “complexity” of an algorithm (with respect to the input size) for its WORST-CASE SCENARIO, or sometimes for an average case scenario. Almost, never for the best-case scenario: why?

Thus, a time-complexity, or steps-complexity, or simply “complexity” of an algorithm as a function of the input-size (or problem-size) expresses relatively how much more time the algorithm would take if the problem size were increased.

For example, an algorithm A has order n2 complexity, where n is the input size (array size). If it takes 10 ms to solve the problem in the worst case with n=100, then for n=300 it would take approximately 10*((300/100)2) = 90 ms.

Then we compare the “complexity functions” of two algorithms to decide which one is better for solving a problem. For example we will prefer order n2 algorithm over order 2n algorithm.

Why? Try to see using a spread sheet.
[image: image1.emf]Growth rate of functions

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10

n

f(n)

Series1

Series2

Series3

Series4

n

n^2

2*n^2 +3

2^n

The idea is that an order n2 complexity algorithm will eventually run faster than an order 2n complexity algorithm after a certain value of n (what value of n in this case?).

The above concept of comparing two growth functions is codified in the definition of Order notations.

	Algorithm 1:

For i = 1 to n do

 x[i] = x[i] + 1;

 x[i] = x[i]*2;

// runs on a very fast machine

	Algorithm 2:

For i = 1 to n do

 x[i] = x[i] + 1;

// runs on very old slow machine
	Algorithm 3:

For i =1 to n do

 For j = 1 to n do

 x[i] = j;

// runs on a very fast machine

What are the relations between the times consumed by algorithms 1 and 2, and that between 2 and 3?
Upper bound (Big-Oh): t(N) = O(f(N)) if there exists a positive constant c (real) and a corresponding integer n0 such that t(N) (c.f(N) when N (n0, for some integer n0.

Related definitions:

Lower bound: t(N) = ((g(N)) if there exists a positive constant c (real) and a corresponding integer n0 such that t(N) (c.g(N) when N(n0.

Tight bound: T(N) = ((h(N)) if and only if t(N) = O(h(N)) and t(N) = ((h(N)).

To prove any assertion all you need to do is to find an appropriate pair (c, n0) that satisfies the definition.

For example,

we will prove (i=1N log i = O(NlogN), for (c=1, n0=1); and

(i=1N log i = ((NlogN), for (c=1/4, n0=4)

And so, (i=1N log i = ((NlogN).

Proof:

(Part 1)

log 1 + log 2 + log 3 + . . . + log N <

log N + log N + log N + . . . + log N (N times) = N log N

Hence, for c = 1.0, we have (i=1N log i (cN logN for all N (n0 = 1,

or (i=1N log i = O(NlogN).

(Part 2)

log 1 + log 2 + log 3 + . . . +log N/2 + log (N/2+1) + . . . + log N

> log N/2 + log (N/2+1) + . . . + log N (N/2 terms)

> log N/2 + log N/2 + . . . + log N/2 (N/2 terms) = N/2 log N/2

We will prove that, N/2 log N/2 is > N/4 log N, for all N> some n0
Or, N/2 log N/2 > N/4 log N,

for all N> some n0
Or, N/2 log N - N/2 log 2 > N/4 log N,
for all N> some n0

Or, N/2 log N – N/4 log N > N/2 log 2,
for all N> some n0
Or, N/4 log N > N/2 log 2,

for all N> some n0

Or, log N > 2 log 2 = log 4, for N (0 and for all N > some n0
Thus, the inequality N/2 log N/2 > N/4 log N is true for all N > 4, or we have found that n0 =4.

Hence, for c = 0.25, we have found that

(i=1N log i > cNlogN, for all N> (n0 = 4),

or (i=1N log i = ((NlogN).

Combining Parts 1 and 2 of the proof:

(i=1N log i = ((NlogN).

ALGORITHM ANALYSIS (contd.)

Note: the complexity functions (related to any algorithm’s complexity) are typically monotonically increasing functions with respect to their arguments, which is always the problem-input size. Without this assumption the definitions of order notations may run into complicacy.

Note: we typically consider only the dominant term ignoring the other ones. Thus, in 2(n2) + 3n we ignore the 3n, and the constant multiplicand 2 (absorbed in c).

So, 2(n2) + 3n = O(n2). It is actually ((n2).
O is often loosely (and confusingly) used for (in the literature, even in this class!

Note: n2+ 3n = O(n2), also = O(n3), and = O(n4), …

However, we will prefer the closest one O(n2) as the acceptable order notation for the function [actually we are referring to ((n2)].
Increasing order of functions:

Constant or O(1), O(log N), O(log2 N), …, O(N), O(N logN), O(N2), O(N2log N), O(N3), …, O(2N), O(3N), …

A short-cut way of comparing two functions f(n) and g(n):

(1) Lim n->inf [f(n) / g(n)] = constant, implies both f(n) and g(n) have the same order of terms in n, or, f(n) = ((g(n))

Example: f(n) = 3n2 + 5n, g(n) = 7n2 , the limit is 3/7

(2) Lim n->inf [f(n) / g(n)] = 0, implies g(n) has higher order term in n than that in f(n), or, f(n) = O(g(n))

Example: f(n) = 3n2 + 5n, g(n) = 2n3 , the limit is 0

(3) Lim n->inf [f(n) / g(n)] = inf, implies f(n) has higher order term in n than that in g(n), or, f(n) = ((g(n))

Example: f(n) = 3n2 + 5n, g(n) = 22n , the limit is infinity
Reminder on the Model of Computation:

Each instruction takes same time, e.g. add, mult, div, compare, etc.

A straight line code without a loop or conditional statement would take constant time O(1), we do not care the exact number of steps.

GENERAL RULES:

1. Loops: number of iterations/ recursions with respect to the input problem instance size N

2. Nested loops: multiplied

for I = 1 through N do

for j = 1 through N do

-whatever-

Analysis: O(N*N)

3. Consecutive statements: add steps, which leads to the max

for I = 1 through N do

-whatever-

for I = 1 through N do

for j = 1 through N do

-moreover-

Analysis: O(N) + O(N2) --> O(N2)

4. Conditional statements: max of the alternative paths (worst-case)

If (condition)

S1

Else

S2

Example of two algorithms for the same problem:

Problem (MAXIMUM SUBSEQUENCE SUM): Given an array of numbers find a subsequence whose sum is maximum out of all such subsequences.

Example: 3, 4, –7, 1, 9, -2, 3, -1
(e.g. stock-market data)
Answer: 11 (for subsequence 1+ 9 -2+ 3 = 11)

[Note: for all positive integers the answer is sum of the whole array.]

Algorithm 1:

for (i = 0 through N-1) do

for (j = i through N-1) do // choice of subsequence i through j

{
thisSum = 0;

for (k = i through j) do // addition loop

thisSum = thisSum + a[k];
// O(N3)

if (thisSum > maxSum) then

maxSum = thisSum;

// O(N2)

}

return maxSum;

End Algorithm 1.

Analysis of Algorithm 1: (i=0N-1 (j=iN-1 (k=ij 1 = … = O(N3)

Algorithm 2:

for (i = 0 through N-1) do

thisSum = 0;

for (j = i through N-1) do

{
thisSum = thisSum + a[j]; // reuse the partial sum from

 // the previous iteration

if (thisSum > maxSum) then

maxSum = thisSum;

}

return maxSum;

End Algorithm 2.

Analysis of Algorithm 2: (i=0N-1 (j=iN-1 1 = … = O(N2)

Proof Sketch: There are N(N+1)/2 (=N+(N-1)+(N-2)+… 1) possible list of subsequences. Both the algorithms go over them exhaustively.

There exist two other algorithms with complexity O(N log N) and O(N).
	[image: image2.emf]

Problem: (1) Prove the algorithm by induction. (2) Analyze its complexity.

Algorithm 4:

maxSum = 0;
thisSum = 0;

for (j = 0 through N-1) do

{
thisSum = thisSum + a[j]; // reuse the partial sum from

 // the previous iteration

if (thisSum > maxSum) then

maxSum = thisSum;

else if (thisSum < 0) then

thisSum =0;

// ignore computation so far

}

return maxSum;

End Algorithm 4.
Analysis of Algorithm 4: (i=0N-1 O(1) = … = O(N)

Problem: (1) How to track the start-end for the maxSum? (2) Prove the algorithm, stating any underlying assumption.

Exercise:

Answer all the embedded questions above.

Prove that ((i=0N-1 i) is ((N2).

Implement some of the Maximum subsequent sum algorithms and compare their run times!

Also, modify the algorithm you implemented to output not only the sum but the corresponding start (i) and end (j) pointer of the subsequence.

