Linear Programming (based on Coremen et al.)

LP in Standard form

Find values for n variables x1, x2, …, xn:     

Maximize ((j=1n cj xj)



(Maximize the objective function)

Subject to:


(j=1n aij xj  ( bi,  for i = 1, … m  
(subject to m linear constraints, and)


for all j = 1,…n, xj  ( 0

(all variables are non-negative)

The constant coefficients are cj, aij, and bi. 

Problem size: (n, m).

Example 1:

Maximize (2x1 –3x2 +3x3)

Three constraints: 

x1 +x2 –x3 ( 7,


-x1 –x2 +x3 ( -7,


x1 –2x2 +2x3 ( 4,


x1, x2, x3 (0

Converting some non-standard form to equivalent standard form

Note: In the standard for the inequalities must be strict (‘(,’ rather than ‘>’), equations are linear (power of x is 0 or 1)

1) Objective function minimizes as opposed to maximizes

Example 2.1: minimize (-2x1 + 3x2)

Action: Change the signs of coefficients

Example 2.1: maximize (2x1 –3x2)

2) Some variables need not be non-negative

Example 2.2: 

Constraints: x1 +x2 = 7, 
x1 –2x2 ( 4,
x1 (0, no constraint on x2.

Action: replace occurrence of any unconstrained variable xj, with a new expression (xj’ – xj’’),  and add two new constraints xj’, xj’’ (0.

Example 2.2:

Constraints: x1 +x2’ –x2’’ = 7, 
x1 –2x2’ +2x2’’ ( 4,
x1, x2’, x2’’ (0. 

The number of variables in the problem may at most be doubled, from n to 2n, a polynomial-time increase.

3) There may be equality linear constraints

Example 2.3:

Constraint: x1 +x2 –x3 = 7

Action: replace each equality-linear constraint with two new constraint with (, and (, and same left and right hand sides.

Example 2.3:

Two new constraints: x1 +x2 –x3 ( 7, and x1 +x2 –x3 ( 7. 

Total number of constraints may at most be doubled, from m to 2m, a polynomial-time increase.

4) There may be linear constraints involving ‘(’ rather than ‘(’ as required by the standard form.

Example 2.4:

Constraint: x1 +x2 –x3 ( 7

Action: Change the sign of the coefficients (as in the case 1).

Example 2.4:

New constraint replacing the old one: -x1 –x2 +x3 ( -7. (Note that now the example 2 is the same as example 1)

Note that equivalent forms of an LP have the same solution as the original one.

Simplex algorithm, Khachien’s algorithm, Karmarkar’s algorithm solves LP. 

First one is worst-case exp-time algorithm, other two are poly-time algorithms.

Simplex: A non-null region in the Cartesian space over the variables, such that any point within the region satisfies the constraints. 

When the constraints are unsatisfiable the simplex does not exist or it is a null region.

The optimum value of the optimizing function exists at some boundary (a corner point, or on infinite number of points over a hyperplane) of the simplex.

Simplex algorithm iteratively moves from one corner point of the simplex to another trying to increase the value of the optimizing function. 

Simplex algorithm works with the slack forms (defined below) of an input LP, the latter changes with iterations. Slack form is equivalent to the input, or, has the same solution.
Slack Form of a standard form of LP:

(1) Create a variable z for optimizing function ((j=1n cj xj):

z =  v + ((j=1n cj xj),  v is a constant (in the initial slack form v=0)

(2) For each linear constraint ((j=1n aij xj  ( bi,1( i (m) create an extra variable xj+i and rewrite the constraints:


xj+i = bi - (j=1n aij xj,  1 ( i ( m  

(3) Now the only constraints are over the variables, including the new ones (but not z).


For all variables, xj ( 0,  1 ( j ( n+m
LP in slack form is to find a coordinate in the first quadrant where the value of z is maximum. 

Note that the slack forms are non-standard. 

Simplex algorithm modifies one slack form to another (i) until z cannot be increased any more, or (ii) terminates when a solution cannot be found. 
The variables on the left-hand side of the linear equations in (2) are called basic variables (B), and those on the right-hand side are called non-basic variables (N).

Only non-basic variables appear in z.

In the initial slack form, original variables are the non-basic variables. So, the solution we are seeking is the coordinate for those variables where z is max.

Simplex algorithm shuffles variables between the sets N and B, exchanging one variable in N with another in B, in each iteration, with the objective of increasing the value of  z. This operation is the heart of the algorithm, and is called the pivot operation (described below).
Example 2:

	An LP in standard form:

Maximize (3x1 +x2 +2x3)

Three constraints: 

x1 +x2 +3x3 ( 30,


2x1 +2x2 +5x3 ( 24,


4x1 +x2 +2x3 ( 36,


x1, x2, x3 (0


	Equivalent slack form:

z = 0 +3x1 +x2 +2x3

Linear equations:

x4 = 30 -x1 -x2 -3x3

x5 = 24 -2x1 -2x2 -5x3

x6 = 36 -4x1 -x2 -2x3

Constraints:

x1, x2, x3, x4, x5, x6 (0

Sets: N={x1, x2, x3}, B={x4, x5, x6}


Note: the signs of the coefficients of the past linear constraints is changed in the new linear eq.

Pivot algorithm:
The process is explained with an example.
Use above example 2. A basic solution is the coordinate where you put all non-basic variables as 0, and the basic variables are determined by those. So, for example 2 slack form - the basic solution is: (x1 = 0, x2 = 0, x3 = 0, x4 = 30, x5 = 24, x6 = 36). This basic solution is feasible since all variables are non-negative. 

At this point z=0.
The pivot operation’s objective is to increase z.

A non-basic variable whose coefficient is positive in the expression for z can be increased to increase the value of z. 

In example 2’s slack form any non-basic variable is a candidate. 

We arbitrarily choose x1. 
This choice is called the entering variable xe in pivot. Our choice xe = x1.

If the other non-basic variables hold their value (0) as in the basic solution:

x1 can be increased up to 30 without violating constraint on x4, 

x1 can be increased up to 12 without violating constraint on x5, 

x1 can be increased up to 9 without violating constraint on x6.

So,  x6 is the most constraining basic variable.

x6 is chosen as the leaving variable xl by the pivot, xl = x6.

Pivot exchanges xe (x1) and xl (x6) between the sets N and B. Write an equation for x1 in terms of x2, x3, and x6. Replace x1 with this new expression wherever else x1 appears.
The new slack form for example 2 after this pivot operation is:
z = 27 +(1/4)x2 +(1/2)x3 -(3/4)x6  [now, max for z, i.e., v=27]

x1 = 9 –(1/4)x2 –(1/2)x3 –(1/4)x6

x4 = 21 –(3/4)x2 –(5/2)x3 +(1/4)x6

x5 = 6 –(3/2)x2 -4x3 +(1/2)x6 

x1, x2, x3, x4, x5, x6 (0

N={x2, x3, x6}, B={x1, x4, x5}

Basic solution after this pivot is (x1, x2, x3, x4, x5, x6) = (9, 0, 0, 21, 6, 0). 

z at this point is 27 that is >0, as was in the previous slack form.

For the next pivot candidates for the entering variable are x2 and x3 with positive coefficients. 

If xe=x3 is chosen, then the leaving variable is xl=x5. 

Pivot will be applied similarly as before exchanging x3 and x5 from N and B.

Simplex algorithm stops pivoting when none of the coefficients for basic variables in z is non-negative. This indicates that the final solution has been found. Optimum value for the initial objective function of the standard form LP is the last value of v in z of this terminating slack form. The basic solution at this point provides the coordinate for initial non-basic variables (x1, x2, and x3, in our example) where this optimum value v for the objective function can be found.

For the example above - the final basic solution is (8, 4, 0, 18, 0, 0) where v=28.

So, the optimum value for the objective function is 28 at (x1=8, x2=4, x3=0).

	[image: image1.jpg]293 The simplex algorithm 79.

PIVOT(N, B, A, b,c,v,1,e)

I > Compute the coefficients of the equation for new basic variable x,.

be < by/a

3 foreach j € N — {e}
4 dod,; <« aj/a.

5 Ay < la.

6 > Compute the coefficients of the remaining constraints.
7 for smh ieB—{l}

8 do 1), <« b — (l,é :

9 for each j € N — {e}

10 dou,, <——a,, 741“11(,
1 @y« —a;ay

12 1> Compute the objective function.

13 5« v+tcb

14 foreach j € N — {e}

15 d(n,e—:,—zum

16 T < —Cdy

17 1> Compute new sets of basic and nonbasic variables.
18 N=N-— (0) Ui

19 B=B—{ljUfe}

20 return (N B A,b,37)

PIvVOT works as follows. Lines 2-5 compute the coefficients in the new equatio
for x, by rewriting the equation that has x; on the left-hand side to instead have x
on the left-hand side. Lines 7-11 update the remaining equations by substitutin
the right-hand side of this new equation for each occurrence of .. Lines 13-1
do the same substitution for the objective function, and lines 18 and 19 update th
sets of nonbasic and basic variables. Line 20 returns the new slack form. As giver
if @, = 0, PIvOT would cause an error by dividing by 0, but as we shall see in th
proofs of Lemmas 29.2 and 29.12, PIvoT is called only when a;, # 0.

We now summarize the effect that PIVOT has on the values of the variables i
the basic solution.






Simplex Algorithm

(1) Initialization simplex creates and returns the first slack form. 

In case the corresponding initial basic solution is not feasible, because one of the variables has negative value, then the init-simplex does a complex operation of checking if the constraints are satisfiable or not. In the latter case init-simplex returns a modified equivalent slack form for which the basic solution is feasible. Otherwise, init-simplex terminates simplex because no solution may exist for the input.

(2) Simplex iteratively chooses xe and xl and keeps calling pivot algorithm.

(3) If at a stage none of the basic variables is constrained (can increase unbounded as the xe increases), then no xl exist at that stage. This indicates the input is unbounded, or the objective function can become infinity. The region simplex is not bounded.
(4) Simplex terminates when none of the coefficients of basic variables in z for that iteration is non-negative and returns the optimum value (v) and the solution co-ordinates.

Simplex algorithm has exponential time-complexity in the worst case, but runs very efficiently on most of the inputs. 

Simplex algorithm may also go into infinite loop over pivoting (v remains same from slack form to slack form), but some tie-braking policy in the choice of xe may stop that from happening.
Proof of the simplex algorithm uses the dual LP form (explained below). A direction for the proof is provided below.

	[image: image2.jpg]SIMPLEX(A, b, ¢)
I (N,B,A b, c,v) « INITIALIZE-SIMPLEX (A, b, c)
2 while some index j € N has ¢ >0

3 do choose an index e € N for which ¢, > 0
4 for each index i € B

5 doifa, >0

6 then A; < b;/a;,

T else A; < o0

8 choose an index / € B that minimizes A;
9 if A =00

10 then return “unbounded”

11 else (N,B, A, b,c,v) < PIVOT(N, B, A, b, ¢, v,l,e)
12 fori < 1ton

13 doifi € B

14 then X; < b;

15 else ¥; <0

16 return (¥, %, ..., %,)

The SIMPLEX procedure works as follows. In line 1, it calls the procedure
INITIALIZE-SIMPLEX (A, b, ¢), described above, which either determines that the
linear program is infeasible or returns a slack form for which the basic solution is
feasible. The main part of the algorithm is given in the while loop in lines 2-11. If
all the coefficients in the objective function are negative, then the while loop ter-
minates. Otherwise, in line 3, we select a variable x. whose coefficient in the ob-
jective function is positive to be the entering variable. While we have the freedom
to choose any such variable as the entering variable, we assume that we use some
prespecified deterministic rule. Next, in lines 4-8, we check each constraint, and
we pick the one that most severely limits the amount by which we can increase x,
without violating any of the nonnegativity constraints; the basic variable associated
with this constraint is x;. Again, we may have the freedom to choose one of several
variables as the leaving variable, but we assume that we use some prespecified de-
terministic rule. If none of the constraints limits the amount by which the entering
variable can increase, the algorithm returns “unbounded” in line 10. Otherwise,
line 11 exchanges the roles of the entering and leaving variables by calling the
subroutine PIVOT(N, B, A, b, ¢, v,1, ), described above. Lines 1215 compute
a solution for the original linear-programming variables %), ,, ..., %, by setting
all the nonbasic variables to 0 and each basic variable ¥; to b;. In Theorem 29.10,
we shall see that this solution is an optimal solution to the linear program. Finally,
line 16 returns the computed values of these original linear-programming variables.

To show that SIMPLEX is correct, we first show that if SIMPLEX has an initial
feasible solution and eventually terminates, then it either returns a feasible solution






	[image: image3.jpg]Lemma 29.11
Let L be a linear program in standard form, given as in (29.16)~(29.18). Let L,
be the following linear program with n + 1 variables: 4

maximize —X0 S (29.109)
subject to
"
Yayxj—xo < b fori=12....m, (29.110)
j=1
x =2 0 forj=0,1,....n. (29.111)

Then L is feasible if and only if the optimal objective value of L, is 0.

Proof Suppose that L has a feasible solution ¥ %,). Then the
solution ¥y = 0 combined with ¥ is a feasible solution to L, with objective
value 0. Since xy; > 0 is a constraint of L, and the objective function is to
maximize —xo, this solution must be optimal for Lgy.

Conversely, suppose that the optimal objective value of Ly is 0. Then ¥y = 0,
and the values of the remaining variables ¥ satisfy the constraints of L. .

We now describe our strategy to find an initial basic feasible solution for a linear
program L in standard form:

INITIALIZE-SIMPLEX (A, b, ¢)
1 let! be the index of the minimum b;
ifbh =0 > Is the initial basic solution feasible?
then return ({1,2,...,n}, {n+1,n+2,..., n+m}, A b,.c0)

form L,y by adding —x to the left-hand side of each equation
and setting the objective function to —xq

let (N, B, A, b, ¢, v) be the resulting slack form for L ux

> Ly has 7 + 1 nonbasic variables and m basic variables.

(N,B,A,b,c,v) < PIVOT(N, B, A, b,c,v,1,0)

> The basic solution is now feasible for L .

iterate the while loop of lines 2-11 of SIMPLEX until an optimal solution
0 L 4y is found

10 if the basic solution sets Xy = 0

oW

© %

11 then return the final slack form with xo removed and
the original objective function restored
12 else return “infeasible”

= 3 e t the
INITIALIZE-SIMPLEX works as follows. In lines 1-3, we implicitly tes! 3

basic solution to the initial slack form for L given by N = “.2: --"”.'E s
{n+L,n+2,..., n+4m), 5 = b; foralli € B, and X; = 0 for all J







Dual LP:
For every LP in standard form (primal) there exists a dual LP. Here is the transformation process:

	Primal LP (L):

Find values for the n variables x1, x2, …, xn:     

Maximize ((j=1n cj xj)





Subject to:


(j=1n aij xj  ( bi,  for i = 1, … m  



For all j = 1,…n: xj  ( 0
	Dual LP (L’):
Find values for the n variables y1, y2, …, ym:     

Minimize ((i=1m bi yi)


Subject to:


(i=1m aij yi  ( cj,  for j = 1, … n

            For all i = 1,…m: yi  ( 0


For each constraint in primal LP a new variable is introduced yi is introduced in the dual LP. For each variable in the primal LP a new linear constraint is created in the dual LP. The coefficients are exchanged. 

Dual LP is not an equivalent problem of the primal.

Dual LP is a minimization problem.

Lemma of weak duality: ((j=1n cj xj) ( ((i=1m bi yi), for all feasible solutions of both the primal and dual LP’s.


Corollary: When ((j=1n cj xj) = ((i=1m bi yi) (say, = v), then v is the optimal value for each of the primal and dual LP.

When the simplex algorithm terminates with none of the coefficients of the basic variables in z as non-negative, then this corollary is satisfied, thus, proving that the algorithm returns optimal value for the objective function of the primal input LP.

Auxialry LP and Initialization-Simplex Algorithm
Init-simplex algorithm creates an auxiliary form out of the constraints of the original LP. Auxiliary form itself is an LP.

	LP (L):

Find values for the n variables x1, x2, …, xn:     

Maximize ((j=1n cj xj)





Subject to:


(j=1n aij xj  ( bi,  for i = 1, … m  



For all j = 1,…n: xj  ( 0
	Auxiliary LP (LAux):

Find values for the n+1 variables x0, x1, x2, …, xn:  

Maximize (-x0)  

Subject to:


(j=1n aij xj  - x0 ( bi,  for i = 1, … m  



For all j = 0, 1,…n: xj  ( 0


Note that the LAux ignores the objective function of L. LAux is about verifying satisfiability of the constraints in L. 

The solution for LAux must be at point where x0 is 0. Hence, If LAux has a solution, then the constraints in L is satisfiable. 

Init-simplex creates LAux for a given L when the initial basic solution of L is not feasible. It solves LAux and if it has a solution it returns the last slack form to the simplex algorithm after removing x0 (because it is 0 at that stage anyway) as the slack form linear equations for the constraints of L. Slack form of the optimizing function of L is created independently.
Reminder: when the initial basic solution of L is feasible init-simplex just returns latter’s slack form.

